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Abstract—Low-complexity iterative and direct solvers are devel-
oped for the volume integral equation (VIE) based general large-
scale electrodynamic analysis. The dense VIE system matrix is first
represented by a new cluster-based multilevel low-rank represen-
tation. In this representation, all the admissible blocks associated
with a single cluster are grouped together and represented by a
single low-rank block, whose rank is minimized based on pre-
scribed accuracy. From such an initial representation, an efficient
algorithm is developed to generate a minimal-rank H2 -matrix
representation. This representation facilitates faster computation,
and ensures the same minimal rank’s growth rate with electri-
cal size as evaluated from singular value decomposition. For the
minimal-rank representation whose rank grows with electrical size
linearly for a prescribed accuracy, we develop linear-complexity
H2 -matrix-based storage and matrix-vector multiplication, and
thereby an O(N ) iterative VIE solver. Moreover, we develop an
O(N logN ) matrix inversion, and hence a fast O(N logN ) direct
VIE solver for large-scale electrodynamic analysis. Both theoret-
ical analysis and numerical simulations of large-scale one-, two-,
and three-dimensional structures on a single-core CPU, resulting in
millions of unknowns, have demonstrated the low complexity and
superior performance of the proposed VIE electrodynamic solvers.

Index Terms—Electrodynamic, electromagnetic modeling, fast
direct solvers, fast solvers, linear complexity solvers, radiation,
scattering, three-dimensional (3-D) structures, volume integral
equations (VIE).

I. INTRODUCTION

THE volume integral equation (VIE) based methods [1]–
[6] offer great flexibility in modeling both complicated

geometries and inhomogeneous materials in open-region set-
tings. From a computational perspective, integral equation (IE)
methods lead to dense matrices. The size of these dense ma-
trices, for volume based analysis, increases cubically with the
size of the objects under study. Therefore, the advantages of the
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VIE-based analyses can be fully accentuated only if they can be
performed with low computational complexity.

Existing fast VIE solvers for solving large-scale electrody-
namic problems are, in general, iterative solvers. These include
methods, such as fast Fourier transform [7]–[13], low-rank com-
pression [14], [15], fast multipole method (FMM) [16]–[20],
etc. The memory requirements in such methods scale at best
as O(N), whereas a single matrix-vector multiplication can
cost as small as O(N logN) in time complexity, where N is
matrix size. The overall complexity for such iterative solvers
is O(NrhsNitN logN), where Nrhs is the number of right-hand
sides, and Nit is the number of iterations. When the number of
right-hand sides under analysis and/or the number of iterations
are large, iterative solvers become inefficient since an entire
iteration procedure has to be repeated for each right-hand side.

There have been significant contributions in fast direct solvers
[23]–[41], for the analysis of problems ranging from circuits
to scattering problems. When dealing with ill-conditioned nu-
merical problems like those arising from multiscaled problems,
direct solvers have a potential to overcome the difficulty en-
countered by iterative solvers such as slow convergence or even
failure in convergence. For VIE analysis, although O(N) direct
VIE solvers have been developed for full-wave general three-
dimensional (3-D) circuit analysis [40], no O(N logαN)(α ≥ 0)
fast solvers have yet been made possible for electrically large
analysis. The main contribution of this paper is such a fast di-
rect VIE solver whose inversion complexity is O(N logN) based
on a minimal-rank H2-representation of VIE operators whose
rank has a linear growth rate with electrical size, in addition to
a fast iterative VIE solver whose matrix-vector multiplication
complexity is O(N).

To achieve these low complexities, one of the key challenges
is to compactly represent the dense VIE system matrix into a
reduced set of parameters, despite the large and electrical-size-
dependent rank in the off-diagonal blocks. This is fulfilled in
this work by finding a minimal-rank representation to approx-
imate the VIE operator based on prescribed accuracy, which
does not separate sources from observers. The minimal rank
required for representing the VIE operator will be analyzed
in Section II. Such a minimal-rank representation can be ob-
tained from singular value decomposition (SVD). However, a
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brute-force SVD is computationally expensive. We, hence, de-
velop an efficient algorithm to represent the original dense sys-
tem matrix using its minimal rank required by accuracy, while
avoiding the huge computational cost of SVD. This algorithm
will be detailed in the following Section III. In Section IV, we
present proposed fast VIE solvers for electrodynamic analysis,
enabled by the proposed minimal rank as well as nested rep-
resentation. In Section V, numerical results are presented to
demonstrate the performance of the proposed iterative and di-
rect solvers for arbitrary electrodynamic analysis. Section VI
relates to our conclusions. This paper is a significant expansion
of our conference paper [53] from theory, algorithm, and nu-
merical experiments perspectives. The algorithms developed in
this paper for obtaining a minimal-rank H2-representation of
complex-valued dense matrices are purely algebraic and kernel
independent. In addition to VIE, they can also be applied to other
IE operators.

It is worth mentioning that the algorithm developed in this
paper for obtaining a minimal-rank H2-matrix is very different
from that in [34]. In [34], because the problem being considered
is a circuit extraction problem whose electric size is small, an
interpolation-based H2-representation is first obtained, which is
then converted to a minimal-rank H2-matrix. Hence, the algo-
rithm developed therein is to convert an initial H2-matrix whose
rank is not minimal to a new H2 matrix, whose rank is minimal
for a prescribed accuracy. In this paper, the interpolation-based
H2-representation cannot be used since it upfront would pro-
duce a full-rank representation when handling electrically large
Green’s function. Therefore, our algorithm in this paper for ob-
taining a minimal-rankH2 for an electrically large kernel is very
different from the algorithm in [34], the details of which can be
found from Section III. In addition, all the algorithms developed
in this paper are for complex-valued numerical systems, unlike
the real-valued system concerned in an electrically small analy-
sis. Our previous direct-solver work reported in [29]–[32], [40]
are all based on an interpolation-based method to obtain an
H2-matrix, which is not amenable for handling the rank’s
growth with electrical size in electrically large analysis. There-
fore, the problem studied in this paper has not been addressed
by our previous work.

II. ON THE VIE OPERATOR AND ITS RANK

A. VIE Formulation for Wave-Based Analysis

Consider an arbitrarily shaped 3-D inhomogeneous dielectric
body of complex permittivity ε(r) occupying volume V , which
is exposed to an incident field Ei(r).

The scattered field due to the equivalent volume polarization
current J contributes to the total field at any point r in the sense
as expressed in the form of the following VIE:

Ei(r) =
D(r)
ε(r)

−
∫

V

[
μ0ω

2κ(r′)D(r′)

+ ∇
(
∇′ ·

(
κ(r)

D(r′)
ε0

)) ]
g(r, r′)dv′ (1)

where g(r, r′) = e−jk0 |r−r ′ |/4π|r − r′|, ω being the angular fre-
quency, κ the contrast ratio defined as (ε(r) − ε0)/ε(r), D(r′)
the electric flux density, whereas k0 is the free space wave
number.

Tetrahedral-based discretization is used to model the arbitrar-
ily shaped 3-D inhomogeneous dielectric scattering body and
divergence conforming Schaubert Wilson Glisson (SWG) basis
functions are used [1] to expand the unknown electric flux den-
sity D(r′). Each of the SWG basis function is defined for a face
of a tetrahedron.

By expanding the unknown electric flux density D(r′) in
terms of SWG basis functions Dn (r′) each with a coefficient
Dn , and then testing the resulting equation using Galerkin
method with Dm (r), we obtain the following linear system
of VIE:

SD = E (2)

where

Em

=
∫

Vm

�Ei · �Dm (�r)dv

Smn

=
∫

Vm

�Dm (�r)
ε̄n (�r)

· �Dn (�r)dv

− μω2
∫

Vm

∫
Vn

κn (�r′) �Dm (�r) · �Dn (�r)g(�r, �r′)dv′dv

− 1
ε0

(∫
Sm

∫
Vn

( �Dm (�r) · n̂)(∇′ · �Dn (�r′))g(�r, �r′)dv′ds

+
∫

Sm

∫
Sn

( �Dm (�r) · n̂)(∇′κn (�r′))g(�r, �r′)ds′dn′ds

−
∫

Vm

∫
Vn

(∇ · �Dm (�r))(∇′ · �Dn (�r′))g(�r, �r′)dv′dv

−
∫

Vm

∫
Sn

(∇ · �Dm (�r))(∇′κn (�r′))g(�r, �r′)ds′dn′dv

)
.

(3)

As evident, each system matrix entry involves all four possible
combinations of volume and surface integrals with different
terms for different observation and source locations.

B. Rank of the Electrodynamic VIE Operator

Unlike static problems, the rank of an electrodynamic IE
kernel increases with electrical size for achieving a prescribed
accuracy. Therefore, a fast solver built upon the low-rank prop-
erty would have a higher computational complexity for solving
electrically large problems as compared to electrically small
problems, if no advanced algorithms are developed to effec-
tively manage the rank’s growth with electrical size. The true
indicator of the rank’s growth is SVD, since its resultant rep-
resentation constitutes a minimal-rank representation of a ma-
trix for any prescribed accuracy. The SVD does not separate
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Fig. 1. Dielectric rod (1-D structure): singular value decomposition (SVD)
rank growth w.r.t. the electric size in an off-diagonal block.

sources from observers in approximating Green’s function, and
it finds a minimal-rank representation of the IE kernel as a whole.
The SVD is computationally O(N 3), and hence not practically
feasible for studying the rank of electrically large IE operators.
In view of the pivotal importance of this subject, a theoretical
study has been carried out on the rank’s growth with electri-
cal size in IEs [50]. A closed-form analytical expression of the
rank of the coupling Green’s function is derived, which has the
same scaling as that depicted by SVD-based rank revealing. The
findings on the rank-study are summarized as follows.

1) The rank (k) of the off-diagonal block, irrespective of the
electrical size, is far less than the size of the block, thus
the off-diagonal block has a low rank representation, i.e.,
k � N .

2) For static and 1-D configurations of sources and observers,
the rank required by a prescribed accuracy remains
constant irrespective of the problem size.

3) For 2-D and 3-D configurations, the rank varies as square
root of logarithm and linearly with the electrical size,
respectively.

To numerically verify the findings related to the rank in the
VIE setting concerned in this paper, in Fig. 1, we plot the number
of singular values and hence the rank required to maintain an
accuracy of 10−5 in a 1-D type VIE configuration. The size of the
two dielectric rods is kept to be 1 m geometrically separated by
a distance of 2 m, whereas the frequency (hence, discretization
also scales accordingly) sweeps to give the electric sizes as
plotted on the horizontal axis. We can observe a constant rank
throughout even if the electric size grows to as large as 100
wavelengths.

In Fig. 2, we plot the rank required to maintain an accu-
racy of ε versus electrical size in a 2-D VIE configuration, as
shown in Fig. 2(a). Two dielectric slabs of thickness 0.1 m,
side length 1 m, and dielectric constant 2.54 are separated by 2
m (center-to-center distance). The frequency (hence, discretiza-
tion, along each dimension, also scales accordingly) sweeps to
give the electric sizes as plotted on the horizontal axes. To test the
rank at larger electrical sizes, a mesh density of two points per

Fig. 2. Dielectric slab (2-D structure). (a) Geometry. (b) Adaptive cross
approximation (ACA)-SVD rank growth w.r.t. the electric size for different
accuracy settings using different meshing densities.

wavelength is used. The rank of the matrix formed between the
two slabs is obtained from adaptive cross approximation (ACA)
followed by a reduced SVD with accuracy parameter ε. The ε
is chosen to be 10−4 and 10−8, respectively. From Fig. 2, we
can observe that the rank’s growth rate is smaller than linear
with electrical size. We also use a mesh density of ten points per
wavelength, and test the rank using the same numerical proce-
dure. The rank’s growth rate remains the same as can be seen
from Fig. 2, which agrees with the findings of [50].

In Fig. 3, we plot the rank versus electrical size in a 3-D
VIE configuration shown in Fig. 3(a). Again, a mesh density
of two points per wavelength is used. The rank of the matrix
formed between the two cubes is obtained from ACA followed
by a reduced SVD with accuracy parameter ε. The ε is chosen
to be 10−4, 10−8, and 10−12, respectively. From Fig. 3, it can
be seen that for a lower order accuracy setting like 10−4, the
rank’s growth rate is higher than linear. However, it has not
saturated to its asymptotic value yet, which can be seen from
the reduced growth rate when the accuracy setting is higher. One
has to wait until the rank’s growth rate saturates to obtain its
actual growth rate with electrical size, which is also pointed out
in [50]. The converged growth rate agrees with the theoretical
prediction, which is linear, as can be seen from Fig. 3. To be
clearer, when accuracy setting is low, only the plane waves
whose wave numbers are the closest to the working wave number
are necessary. Since they are distributed on a spherical shell,
their number grows quadratically with electrical size. However,
when the accuracy setting is higher, the plane waves whose
wave numbers are distributed within a certain distance away
from the shell need to be incorporated, and this distance is
inversely proportional to electrical size for a given accuracy,
rendering a linear growth rate of the rank. The rank obtained
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Fig. 3. Dielectric cube (3-D structure). (a) Structure. (b) ACA-SVD rank
growth w.r.t. the electric size for different accuracy settings using different
meshing densities.

using a mesh density of ten points per wavelength is also plotted
in Fig. 3. It exhibits the same growth rate with electrical size
as that obtained from two points per wavelength. The above
numerical results obtained from the VIE operator agree very
well with the theoretical findings in [50].

Since the number of unknowns in a VIE-based analysis scales
with the electric size in a cubic way, an error-bounded low-
rank representation exists for VIE operators, irrespective of the
electric size and object shape. Since SVD is computationally
expensive, in the following section, we present an efficient al-
gorithm for generating a minimal-rank H2-representation of the
VIE dense system matrix, which has the same rank’s growth
rate with electrical size as that dictated by SVD.

III. PROPOSED ALGORITHM FOR GENERATING MINIMAL-RANK

H2-REPRESENTATION OF THE ELECTRODYNAMIC

VIE OPERATOR

Starting from the original VIE operator, we develop a two-
stage algorithm to obtain a minimal-rank H2-representation,
which paves the way to the low-complexity VIE solvers to be
described Section IV. To help readers better understand the
proposed two-stage algorithm, it is necessary to first review
the cluster tree structure used to model an H2-matrix and the
H2-matrix partitioning.

A. Cluster Tree and H2-Matrix Partitioning

A cluster tree captures the hierarchical dependence of the
entire unknowns to be solved in a given problem. To build a
cluster tree, we recursively split the 3-D computational domain

Fig. 4. Illustration of a block cluster tree and resulting H2 -matrix partition.
(a) Block cluster tree. (b) H2 -matrix structure.

that is composed of the SWG basis functions for Dn into two
subdomains till the number of unknowns in each subdomain
becomes less than or equal to the leaf size (nmin ). Typical values
of nmin can be as small as 2 to as large as 100. The process results
in a cluster tree with each node in the tree called a cluster, as
illustrated by the left (right) tree of Fig. 4(a). The root cluster is
nothing but the entire unknown set, and the clusters at the bottom
leaf level correspond to the subdomains whose unknown number
is no greater than leaf size. The leaf size essentially controls the
depth of the tree. While doing the splitting operation, special
care is taken to adaptively make sure that at each nonleaf tree
level, every cluster has two children of similar size. We call this
splitting as a balanced splitting. Such a splitting facilitates most
efficient computational cases in the arithmetic operations to be
performed with the resultant matrix.

From the cluster tree, we partition the original dense VIE
matrix into multilevel admissible blocks based on a strong ad-
missibility condition [42]. To explain the process, we can place
the cluster tree in parallel with itself as illustrated in Fig. 4(a).
We can call the left tree row tree, and the right one column
tree, as their interaction forms a matrix. Starting from the root
level, we level-by-level check whether a cluster in the row tree
(denoted by t), and a cluster in the column tree (denoted by s)
are admissible or not. The two clusters are said to be admissible
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if they satisfy the following strong admissibility condition [42]:

max{diam(Ωt), diam(Ωs)} ≤ ηdist(Ωt ,Ωs) (4)

where η is a positive parameter, and diam(.) and dist(., .), re-
spectively, denote the Euclidean diameter of the support of a
cluster denoted by Ω, and Euclidean distance between the sup-
ports of any two clusters. As apparent from the condition that
once clusters t and s are admissible, they ought to be physically
apart. If t and s are admissible, they form an admissible block at
that tree level, and we do not check their children clusters. Such
an admissible block is marked in green in Fig. 4(b), denoted by
a green link in Fig. 4(a). If they are not admissible, we proceed
to check whether their children clusters satisfy the admissibility
condition or not. This procedure continues until we reach the
leaf level. At the end, the original dense VIE system matrix is
partitioned into multilevel admissible and inadmissible blocks,
as illustrated in Fig. 4(b). All the inadmissible blocks are formed
at the leaf level between leaf clusters.

B. Stage I: Cluster-Based ABT -Representation

With the H2 cluster tree and matrix partition built, we first
construct a cluster-based nondegenerate hierarchical low-rank
representation. This is different from a commonly used block-
based low-rank representation like that in an H-matrix [42].
With this new approach, the admissible blocks formed by a sin-
gle cluster at its tree level are grouped together to be represented
by a single low-rank block. Such a representation significantly
reduces the storage and time requirements for obtaining a low-
rank representation of the original dense system matrix, espe-
cially in 3-D settings. This makes the solution of millions of
unknowns resulting from the electrically large VIE feasible on
a single-core CPU. The accuracy of the low-rank representation
of the multiple admissible blocks formed by a single cluster is
also better controlled since their weights in the matrix relative
to each other are considered, as compared to individually build-
ing a low-rank form for each admissible block. After the initial
cluster-based low-rank representation is generated, we proceed
to the second stage to obtain a minimal-rank H2-matrix.

For each cluster in the cluster tree, it can form multiple admis-
sible blocks at its tree level, as shown by the links in Fig. 4(a).
The number of such admissible blocks is bounded by a constant
Csp [46]. The Csp can be as large as hundreds in a 3-D con-
figuration. Hence, it is not efficient to handle each admissible
block one by one and generate its low-rank form individually.
Instead, we propose to group these admissible blocks together
and generate a single low-rank representation. Although physi-
cally, these blocks can be scattered in the matrix as disconnected
blocks, algorithm wise, we can put them together to form a sin-
gle block. After generating the low-rank representation for this
single block, we can distribute it back to the original location
of each admissible block if needed. As a result, our low-rank
representation has a one-to-one correspondance with each clus-
ter in an H2-tree, instead of being individually constructed for
each admissible block. This concept is illustrated in Fig. 5.

Consider an arbitrary cluster t, and its associated admissible
blocks G(t,s1 ) , G(t,s2 ) , ..., and G(t,sp ) at its tree level. We group

Fig. 5. Cluster-based low-rank representation.

them into a single matrix as the following:

Gt =
[
G(t,s1 ) ,G(t,s2 ) , ...,G(t,sp )

]
(5)

where p is the number of admissible blocks formed by t at its
tree level. We then perform an ACA (see [42, p. 69]) on this
matrix and obtain a factorized form of

Gt εA= Ã#t×k ′B̃T
(#s1 +#s2 + ···+#sp )×k ′ (6)

based on prescribed accuracy εA . The computational cost of
this step is simply O(k′2(#t + #s)), where #s = #s1 +
#s2 + · · · + #sp , and # denotes the cardinality of a set. This
is much smaller than the cost of a brute-force SVD, which
scales cubically with block dimension. It is also smaller than a
block-by-block ACA procedure, whose cost is O(k′2(#t)Csp +
k2#s). In addition, the storage of Gt is also greatly reduced
from O(k′(#t)Csp + k#s) required by a block-based ACA to
O(k′(#t + #s)) units. In addition to computational efficiency,
the accuracy of such a low-rank representation is also better
controlled since now all admissible blocks are put together and
their approximation error is controlled by εA as a whole in (6).
The resulting rank is also the minimal one required to represent
the entire admissible blocks formed by cluster t for εA accuracy
in the ACA procedure. For example, for an admissible block
whose column cluster is very far from its row cluster, to achieve
a 1% accuracy in representing itself may require a rank of 40.
However, when being put together with other admissible blocks
formed by the same cluster, this block may not contribute any
additional rank as it is negligible in matrix norm. Hence, it is
more efficient to group the admissible blocks together to con-
struct a single low-rank block as the relative weight of each
admissible block in the entire matrix is taken into account in
this representation.

After ACA, we perform another SVD, obtaining

Gt εacc= A#t×kBT
#s×k (7)

where k is the further reduced rank, as compared to k′ in (6),
based on the required accuracy εacc. This step is performed
because the rank k′ determined from ACA is not the minimal
rank determined by accuracy [33].

Furthermore, because the initial matrix to perform SVD is
a factorized low rank form obtained from ACA, the SVD can
be performed as a reduced SVD (r-SVD) [42], whose compu-
tational cost is much reduced to O(k2(#t + #s)) as compared
to a brute-force SVD. As shown in [33], adding an additional
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step of r-SVD after ACA is effective in further reducing the rank
without sacrificing prescribed accuracy.

After the aforementioned procedure, we obtain a cluster-
based ABT representation of the original VIE system matrix, as
illustrated in Fig. 5. The rank of this representation is minimized
based on accuracy for each cluster.

C. Stage II: Minimal-Rank H2-Matrix Construction

With the ABT form obtained for each cluster of an H2-tree,
in this section, we show how to construct an H2-matrix repre-
sentation out of it. Such a minimal-rank H2-matrix provides a
compact nested structure for more efficient computation.

In an H2-matrix, the inadmissible blocks keep their orig-
inal full-matrix representations, while admissible blocks are
represented in the following factorized form:

Gt,s = VtSt,sVsT

Vt ∈ C#t×kt

St,s ∈ Ckt ×ks

Vs ∈ C#s×ks

(8)

with Vt(Vs) called a cluster basis associated with t and s,
respectively. St,s is called a coupling matrix, and kt(s) is the
rank of Vt(Vs). The cluster basis Vt is nested in an H2-matrix,
which satisfies the following relation:

Vt =

[
Vt1 Tt1

Vt2 Tt2

]
=

[
Vt1 0

0 Vt2

][
Tt1

Tt2

]
(9)

where t1 , t2 ∈ children(t) are the two children clusters of t. Tt1

and Tt2 are called transfer matrices associated with a nonleaf
cluster t, and they are used to build a relationship between t and
its two children.

It can be seen clearly that to build an H2-representation, we
need to find cluster basis V for each leaf cluster, transfer ma-
trices Tt1 and Tt2 for each nonleaf cluster, as well as coupling
matrix S for each admissible block. In the following, we show
how to find them efficiently from the ABT form obtained for
each cluster at the first stage. This algorithm is a bottom-up
tree-traversal procedure, where we first compute the cluster ba-
sis for the leaf clusters, then obtain the two transfer matrices of
each nonleaf cluster level by level. After the cluster bases are
obtained, we compute the coupling matrices.

1) Leaf Clusters: We first generate cluster bases at the leaf
level. To build a nested relationship among cluster bases, for
each leaf cluster, we require its cluster basis not only represent
the admissible block formed by this cluster at the leaf level, but
also the admissible blocks involving this cluster at all the other
levels. To do so, for each leaf cluster t, we build the following
Gram matrix:

Gt
2 = GtGtH

= Ai(BT
i B̄i)AH

i

+
∑

j∈ancestral−level

At,j (BT
j B̄j )AH

t,j (10)

where Gt represents the low-rank block in G whose rows cor-
respond to the unknowns in cluster t. This block is composed
of a single AiBi

T (7) that captures all the admissible blocks
formed by t at t’s level, as well as t-related rows in the AjBj

T

blocks formed by t’s parent clusters at nonleaf levels. Here, j
is the index of the parent clusters of t at nonleaf levels. In (10),
BT

j B̄j is a k × k matrix, prepared a priori for each cluster and
is just referenced to each of the lower level children. At,j , in
the summation term, represents the rows corresponding to clus-
ter t of the bigger matrix Aj at each ancestral level. B̄j is the
complex conjugate of Bj . The Gt

2 shown in (10) is clearly of
leaf size O(nmin).

Next, we perform an accuracy controlled (εacc) Schur or SVD
decomposition to get

(
Gt

2

)
nm in ×nm in

εacc= PDPH . (11)

The cluster basis for t now can be obtained as

Vt = Pnm in ,k (12)

where k is determined based on εacc when truncating (11).
2) Nonleaf Clusters: For clusters at a nonleaf level, if we

follow the same procedure as that in the leaf level, the Gram
matrix size will become increasingly large when we traverse
the tree from bottom to top. Since the cluster basis generated
at the leaf level l = L for a leaf cluster has already taken into
account upper level blocks related to this leaf cluster, the Gram
matrix formed at one level up l = L − 1 can be accurately pro-
jected onto the cluster bases formed at l = L level. This will
yield a small k × k matrix for which the cost of SVD is trivial.
Similarly, the Gram matrix formed at l = L − 2 level can be
accurately projected onto the cluster bases formed at l = L − 1
level. Hence, the nonleaf cluster bases are generated level by
level from bottom to top so that the entire computation becomes
efficient. This enables performing an SVD on an O(k) matrix
at each level l.

Consider an arbitrary nonleaf cluster t, instead of directly
building its Gram matrix, as shown in (10), we project it onto its
children’s cluster bases to get a k × k matrix as the following:

Gt
2,pro j = Ai,small(BT

i B̄i)Ai
H
small

+
∑

j∈ances.

Aj small(B
T
j B̄j )Aj

H
small (13)

where

Ai,small =

[
Vt1 0

0 Vt2

]H

Ai (14)

and each of this multiplication costs O(k2(#t)) time requiring
only O(k2) storage units. The remaining multiplications in (13)
involve three O(k)-sized matrices requiring O(k3) operations
only.

We then perform an SVD on Gt
2,pro j to obtain

(
Gt

2,pro j

)
k×k

εacc= PDPH (15)
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the cost of which is O(k3) only. The two transfer matrices of
the nonleaf cluster t now can be obtained as[

Tt1

Tt2

]
=

[
P1

P2

]
(16)

where P1 and P2 are P’s block rows corresponding to t’s two
children clusters t1 and t2 respectively.

3) Formation of Coupling Matrices: After the factorized
ABT form is generated for each cluster, for each admissible
block in the H2-matrix, its factorized form is readily known as
G̃(t,s) = A#t×kBT

#s×k . The A#t×k is the same as that gener-
ated for cluster t, and the BT

#s×k is simply the t-cluster-based
BT ’s columns corresponding to column cluster s.

To obtain the coupling matrix for each admissible block, we
utilize the following relationship:

G̃(t,s) = A#t×kBT
#s×k = VtSVsT (17)

and the fact that the proposed cluster bases are unitary. Hence,
we have

(S)k×k = VtH ABT V̄s (18)

where V̄s is the complex conjugate of Vs . The total cost of
computing the coupling matrix is again O(k2(#t + #s)). Since
V is nested, at the nonleaf level, the cluster basis is manifested
as transfer matrices.

4) Transforming Complex-Valued Cluster Bases to Real-
Valued Ones: The nested cluster bases constructed in the
proposed algorithm are complex valued. They can be readily
converted to real-valued cluster bases following the procedure
described in [34, Sec. III.E]. As a result, the new cluster bases
satisfy VT V = I instead of the original VH V = I. This prop-
erty helps make the subsequent matrix inverse more efficient,
since our IE system matrix is symmetric instead of complex-
conjugate symmetric. With the cluster bases updated to real-
valued ones, the coupling matrices of the admissible blocks are
also correspondingly updated, as shown in [34, Sec. III.E].

IV. PROPOSED LOW-COMPLEXITY ITERATIVE AND DIRECT VIE
SOLVERS FOR ELECTRICALLY LARGE ANALYSIS

A. Storage and Complexity

The cluster bases are stored at the leaf level. For each nonleaf
cluster, we store its two transfer matrices, each of size kvar × kvar.
Coupling matrices of size kvar × kvar are stored at correspond-
ing levels to represent the off-diagonal admissible interactions
between clusters. Considering the fact that the number of ad-
missible blocks formed by a cluster at each level is bounded by
sparsity constant Csp, the total memory cost can be evaluated as

Memory Cost =
L∑

l=0

O(k2
var(2

l + Csp2l))

+ 2CspO(n2
min)N

=
L∑

l=0

O(k2
varCsp2l) (19)

where the nmin -related term is associated with the storage of
inadmissible blocks.

With the proposed minimal-rank H2-representation, the rank
(kvar) scales linearly with electrical size. Hence, for VIE, we
have

kvar = O(N
1
3 ). (20)

Substituting it into (19), we obtain

Memory Cost =
L∑

l=0

O

(
Csp2l

(
N

2l

) 2
3

)

=
L∑

l=0

O(CspN
2
3 2

l
3 )

= CspO(N) (21)

which is linear regardless of electrical size.

B. Matrix-Vector Multiplication and Its Complexity

Multiplying minimal-rank H2-based S with a vector x com-
prises of multiplying its inadmissible blocks and admissible
blocks with x [21], [42] [48]. In the multiplication with admis-
sible blocks, we can fully take advantage of theH2 -tree structure
TI and the nested cluster bases as follows.

1) For Admissible Blocks: We perform the following three
steps.

1) Forward transformation: Compute xs := (Vs)Tx|ŝ for all
clusters s ∈ TI .

2) Coupling-matrix multiplication: Compute yt :=∑
s∈Rt St,sxs for all clusters t ∈ TI where Rt contains

all the clusters s such that (t, s) is an admissible block.
3) Backward transformation: Compute yi :=∑

t,i∈t̂(V
tyt)i .

2) For Inadmissible Blocks: For these blocks, a full matrix-
vector multiplication is performed.

With the proposed minimal-rank H2-representation, the total
operation count for a matrix-vector multiplication is given by

MVM Cost =
L∑

l=0

O(Csp2lk2
var)

=
L∑

l=0

O

(
Csp2l

(
N

2l

) 2
3

)

=
L∑

l=0

O(CspN
2
3 2

l
3 )

= CspO(N). (22)

We can see that with a minimal-rank H2-representation, even
though the rank grows with electrical size, the complexity of
H2-based matrix-vector multiplication is kept linear for general
VIE-based electrodynamic analysis.
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TABLE I
RECURSIVE INVERSE ALGORITHM

Procedure H2 -inverse (S, X) (X is temporary memory)

If matrix S is a nonleaf matrix block

H2 -inverse (S11 , X11 )

S21 ⊗ S11 → X21

S11 ⊗ S21 → X12

S22 ⊕ (−X21 ⊗ S12 ) → S22

H2 -inverse (S22 , X22 )

−S22 ⊗ X21 → S21

−X12 ⊗ S22 → S12

S11 ⊕ (−S12 ⊗ X21 ) → S11

else

Inverse (S) (normal full matrix inverse)

C. Matrix Inversion and Its Complexity

The H2-represented system matrix S can be written as

S =

[
S11 S12

S21 S22

]

then by Sherman–Morrison–Woodbury formula, the inverse for
S given by S−1 can be recursively evaluated as

S−1 =
[
S−1

11 ⊕S−1
11 ⊗S12⊗F−1⊗S21⊗S−1

11 −S−1
11 ⊗S12⊗F−1

−F−1⊗S12⊗S−1
11 F−1

]

where F = S22⊕(−S21 ⊗ S−1
11 ⊗ S21) and ⊕,⊗ are addition

and multiplication defined for the H2-matrix elaborated. The
recursive inverse formulation can be realized by the code in
Table I. It can be seen that the computation of inverse involves
a full-matrix inverse at the leaf level and a number of block
matrix–matrix multiplications at the nonleaf levels. The main
operation in the inverse algorithm is to perform fast block ma-
trix multiplications based on orthogonal nested cluster basis.
For example, since VT V = I is satisfied for each cluster s, an
admissible block based matrix multiplication encountered in the
inverse procedure can be done based on

VtS1VsT × VsS2VrT = VtS1(VsT × Vs)S2VrT

= VtS1(I)S2VrT

= VtS1S2VrT

where only S1S2 needs to be computed, the cost of which
is O(k3

var). Similarly, all the remaining 6 cases which are
encountered out of the possible 27, have been presented in
[33]. Each is bounded by O(k3

var) operations. As shown in
[30], each of the Csp2l number of admissible blocks at level
l requires Csp number of block multiplications each costing
O(k3

var) operations. So, the total cost to get an H2-matrix based

inverse is

Inversion Cost

=
L∑

l=0

(# of blocks at level l)(one block cost)

=
L∑

l=0

(Csp2l)O(Cspk
3
var)

=
L∑

l=0

C2
sp2

lO(k3
var). (23)

With the rank’s growth with electrical size taken into account,
we obtain

Inversion Cost =
L∑

l=0

O

((
N

2l

) 3
3

C2
sp2

l

)

= O

(
C2

spN
L∑

l=0

1

)

= C2
spO (N logN) . (24)

Thus, we see that for a VIE, with the proposed minimal-rank
representation, the underlying storage and matrix-vector multi-
plication cost becomes linear while the inversion cost becomes
as fast as O(N logN).

D. Matrix-Vector and Matrix–Matrix Multiplication for
Solutions

The solution vector D is then obtained by multiplying the
resulting S−1 having the same H2-structure as S, by E. For
multiple right-hand sides, we use H2-based matrix–matrix
multiplication to obtain final solutions.

V. NUMERICAL RESULTS

The numerical results from the proposed fast solvers are vali-
dated with the analytical Mie Series solution in the first multilay-
ered dielectric sphere examples. Next, large-scale 1-D, 2-D, and
3-D dielectric structures, resulting in more than millions of un-
knowns, are simulated to demonstrate the accuracy controlled
performance benefits that can be achieved with the proposed
solvers. In all these numerical examples, η = 1 is used in (4)
for building the H2 cluster tree. The computer used has a single
Inte Xeon E5-2690 CPU core running at 3 GHz.

A. Analytical Validation for an Eight Layered Dielectric
Sphere

The numerical results from our proposed fast solvers are first
validated with the analytical Mie Series. An eight layered dielec-
tric sphere of one wavelength (free-space) radius is simulated
with a permittivity profile which increases from the outermost
to the center of the sphere. The outermost layer has a rela-
tive permittivity of 1.5, which increases in steps of 0.5 each
layer to the innermost layer value of 5.0. The cross-sectional
view of the simulated sphere is shown in Fig. 6(a). The field
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Fig. 6. Multilayer dielectric sphere of k0a = 6.28: structure and RCS com-
parison. (a) Multilayer dielectric sphere. (b) RCS comparison with Mie-series
solution.

of excitation is a normalized −z directed plane wave polarized
along the x−axis of standard cartesian coordinates. In Fig. 6(b),
radar cross section (RCS in dB) of this eight layered sphere is
plotted as a function of spherical coordinate polar angle (θ in de-
grees) for zero azimuth. It is evident that the numerical results
from our proposed solvers (both direct and iterative solvers)
show good agreement with the analytical Mie Series solution.
The convergence criterion used in the BiCGStab iterative solver
is 10−3 .

B. Large-Scale Dielectric Rod

The performance of the proposed solvers is first demonstrated
on a dielectric rod of relative permittivity 2.54, whose length is
placed along z-axis, and cross section in the x − y plane. It
is centered at the origin. The cross section of the rod is fixed
at λ0/10 × λ0/10 whereas its length is increased from 1λ0 to
8, 194λ0 . This results in scaling the number of unknowns N
from 164 to as large as 1.31 million, with a mesh density of
λ0/10. A normalized −y directed and z−polarized plane wave
is used as excitation. Since only one dimension of the simulated
structure is changing, this example essentially represents 1-D
problem characteristics [50]. In Fig. 7, it is proven numerically

Fig. 7. Rank and iteration counts.

Fig. 8. H2 -matrix representation and inversion accuracy.

that indeed the accuracy determined rank for all these simu-
lated large-scale rod examples remain constant, irrespective of
the electric size. We also plot the total number of iterations re-
quired for BiCGStab iterative solver for a convergence criterion
of 10−3. It is clear that only five iterations are required to con-
verge regardless of the electric size of the rod. In Fig. 8, the
representation and inversion accuracy is shown as a function of
the scaling of number of unknowns. It is clear that the accuracy
of the inverse is well-controlled below 0.5% error for all the
simulated large-scale problems.

Finally, the scaling of computational resources with number
of unknowns is presented in Fig. 9. It is evident from the numer-
ical results that, because of constant representation rank, storage
requirements and solution times for iterative and direct solvers
scale linearly with the number of unknowns. This proves the
validity of (22) and (24). We can see that even for a dense ma-
trix of size 1.31 million unknowns, it only takes about 40 min.
to get an accuracy controlled inverse of the VIE system matrix.
For such rod-like structures, our proposed fast iterative solution
can be obtained in less than 4 min.
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Fig. 9. Dielectric rod: scaling of computational resources with number of
unknowns.

Fig. 10. Simulated dielectric slab.

C. Large-Scale Dielectric Slab

For 2-D field variation, the performance of the proposed
solvers is demonstrated on a dielectric slab of relative permittiv-
ity 2.54. The thickness of the slab is fixed at λ0/10 whereas its
length and width is increased from 8λ0 × 8λ0 to 16λ0 × 16λ0
and finally to 32λ0 × 32λ0 . Such a dimension scaling results
in the scaling of the number of unknowns N from 89,920 to
as large as 1,434,880 that is over 1.43 million, with a mesh
density of λ0/10. The geometry of the simulated structure is
shown in Fig. 10, with the slab placed in the x − z plane. Nor-
malized −y directed and z−polarized plane wave is used as
excitation. Since two dimensions of the simulated structure are
changing, this example represents 2-D problem characteristics
[50]. In Fig. 11, it is shown numerically that for maintaining
the same level of matrix representation accuracy (∼0.03%), the
rank for these simulated large-scale slab structures increases in
a square-root of logarithmic trend with the electric size. The
performance of the iterative solver is summarized in Fig. 12(a).
A single matrix-vector multiplication time scales linearly with
the number of unknowns as well as the memory consumption.
In Fig. 12(b), the direct inverse time is shown as a function
of N . It is clear that the inverse time scales linearly with the
number of unknowns since the rank scales as square-root of
log-linear of electrical size. In this figure, one more data point

Fig. 11. Dielectric slab: rank and H2 -representation error versus electrical
size.

Fig. 12. Solver performance for large-scale slab structures. (a) Memory and
MVM time as a function of N . (b) Inverse time as a function of N .
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TABLE II
CSP AS A FUNCTION OF N FOR THE DIELECTRIC SLAB

N 89 920 359 040 876 000 1 434 880

Csp 55 53 57 57

Fig. 13. Simulated arrays of large-scale dielectric cube.

having N = 876 000 for a 25λ0-size slab is added to confirm
the complexity. The Csp is given in Table II, which is shown
to have saturated to the constant range. We have also assessed
the inverse accuracy by evaluating ||I − SS−1 || for matrix size
whose memory cost is feasible on our computer platforms. This
error is shown to be 3.9e−2 and 7.49e−2 for the 8λ0 × 8λ0 (N
= 89 920), and 16λ0 × 16λ0 (N = 359 040) slab, respectively.

D. Large-Scale Array of Dielectric Cubes

A large-scale array of dielectric cubes having εr = 2.54, il-
luminated by a plane wave ( �E = E0e

jky ẑ), is simulated to
demonstrate the performance of the proposed fast VIE solvers
for pure 3-D field variation. The dimension of each cube
is 0.3λ0 × 0.3λ0 × 0.3λ0 and the distance between neighbor-
ing cubes is fixed at 0.3λ0 . The mesh density is 0.1λ0 . The
number of simulation unknowns N are scaled from 3 024 to
1.037 million by increasing the array size from 2 × 2 ×
2, 4 × 4 × 4, 8 × 8 × 8 to 14 × 14 × 14. The geometry of
the simulated structure is shown in Fig. 13. Before present-
ing the solvers performance, it is worth pointing out that the
theoretical bounds presented in Section V inherently assume
that the sparsity constant, Csp has saturated for all tree lev-
els. For cubic growth of unknowns for 3-D problems, as pre-
sented here, such saturation is attained in the order of mil-
lions of unknowns, as shown in Table III. It is thus, important
to analyze the performances for iterative and direct solvers as
(Memory or MVM cost)/Csp and (Inverse time)/C2

sp , respec-
tively. In Fig. 14, we plot the rank for maintaining a matrix rep-
resentation accuracy (<0.8%). The rank’s growth rate is shown
to be no greater than linear with the electric size in this exam-
ple. The matrix representation error is also shown to be at the

TABLE III
CSP AS A FUNCTION OF N FOR THE DIELECTRIC CUBE ARRAY

N 3 024 24 192 193 536 378 000 1 037 232

Csp 16 42 95 327 270

Fig. 14. Dielectric cube array: rank and H2 -representation error versus
electrical size.

same order for the last two unknown numbers. The error for
the first two N cases is small because of smaller N, and hence
the admissible partition has not saturated and many computa-
tions are full-matrix based. The performance of the iterative
solver follows the same trend set by rank representation and
is presented in Fig. 15(a). A single matrix-vector multiplica-
tion time as well as storage scales linearly with the number
of unknowns. In Fig. 15(b), the direct inverse time divided by
sparsity constant square, is plotted to show that indeed the in-
version time complexity scales almost as O(N), which agrees
with our theoretical complexity analysis. The inverse error mea-
sured by ||I − SS−1 || is shown to be 9.03e-3, 1.73e-2, and
3.03e-2, respectively, for the array size of 2 × 2 × 2, 4 × 4 × 4,
and 8 × 8 × 8, respectively.

E. Comparison Between the Proposed New H2-Construction
Algorithm and Existing One

We have also compared the performance of the new cluster-
based low-rank algorithm described in Section III with the
conventional one that is admissible-block based. Take a slab
simulated in Section V-C whose side length is 80 wavelengths
as an example, the new algorithm takes 153.77 s and 3.083
GB memory to finish generating the low-rank representation of
the whole matrix; and another 18.72 s to obtain a minimal-
rank H2 representation, whereas the conventional one costs
790.17 s and 5.162 GB memory in the first stage, and 48.98 in
the second stage. Table IV has a detailed comparison between
the two methods in both CPU time and memory consumption.
As another example, for the 4 × 4 × 4 cube array simulated in
Section V-D, the computational resources cost by the new algo-
rithm are listed in Table V in comparison with those of the old
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Fig. 15. Solver performance for large-scale cube array structures. (a) Memory
and MVM time as a function of N . (b) Inverse time as a function of N .

TABLE IV
COMPARISON BETWEEN PROPOSED NEW H2 -CONSTRUCTION ALGORITHM AND

CONVENTIONAL ONE FOR AN 80 WAVELENGTH DIELECTRIC SLAB

Method Stage-I Time (s) Stage-II Time (s) Memory (MB)

New 1.537700e+02 18.72 3.082725e+03
Old 7.901700e+02 48.98 5.161887e+03

TABLE V
COMPARISON BETWEEN PROPOSED NEW H2 -CONSTRUCTION ALGORITHM AND

CONVENTIONAL ONE FOR A 4 × 4 × 4 DIELECTRIC CUBE ARRAY

Method Stage-I Time (s) Stage-II Time (s) Memory (MB)

New 2.762000e+01 3.41 5.510190e+02
Old 1.583500e+02 9.92 9.583854e+02

algorithm. Again, the new method has a better performance in
both CPU time and memory usage.

VI. CONCLUSION

Low-complexity iterative and direct solvers are developed for
the VIE-based general large-scale electrodynamic analysis. The

large-scale system matrix is represented by an H2-structure.
To efficiently obtain a minimal-rank H2-representation, we first
generate a rank-minimized ABT form for each cluster in the
H2-tree. Based on such a cluster-based low-rank form, we ex-
tract nested cluster bases and coupling matrices to obtain an
efficient H2-matrix representation with its rank minimized by
accuracy. This algorithm can also be applied to other initial
representations of the IE operators such as an FMM-based rep-
resentation to obtain a minimal-rank H2-matrix.

Analytical expressions of complexities for storage, matrix-
vector-multiplication and matrix inversion are derived for
general 3-D VIE-based electrodynamic analysis. For rank
that grows with electrical size linearly, O(N) iterative and
O(N logN) direct inverse solvers are achieved with the pro-
posed representation of VIE operators. Numerical simulations
for large-scale 1-D, 2-D, and 3-D structures, resulting in millions
of unknowns, demonstrate the efficiency and complexity of the
proposed VIE electrodynamic solvers. The algorithms devel-
oped in this work are kernel-independent, and hence applicable
to other IE operators as well.
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