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Cu–Graphene Hybrid Nanointerconnects
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Abstract— Cu–graphene (Cu-G) hybrid nanointerconnects are
promising alternative interconnect solutions for the development
of future integrated circuit technology. However, the modeling
and simulation of their high-frequency electrical performance
remains a challenging problem. To enable the design of compli-
cated Cu-G interconnects, we propose a multiphysics modeling
and simulation algorithm to cosimulate Maxwell’s equations,
dispersion relation of graphene, and Boltzmann equation. We also
develop an unconditionally stable time marching scheme to
remove the dependence of time step on space step for an efficient
simulation of the multiscaled and multiphysics system. Extensive
numerical experiments and comparisons with measurements have
validated the accuracy and efficiency of the proposed work. This
article has also been applied to predict the crosstalk effect and
propagation delay of graphene-encapsulated Cu nanointercon-
nects.

Index Terms— Boltzmann equation, Cu–graphene (Cu-G)
hybrid nanointerconnects, finite difference methods, hybrid inte-
grated circuits (ICs), Maxwell’s equations, multiphysics modeling
and simulation, time-domain analysis, unconditionally stable
algorithm.

I. INTRODUCTION

AS INTEGRATED circuits (ICs) have progressed to
nanometer-technology nodes and higher levels of inte-

gration, existing Cu-based interconnect solution has become
increasingly difficult in sustaining the continued evolution
of IC technology. Due to side wall and grain boundary
scatterings, the resistivity of Cu at small dimensions increases
rapidly [1], which leads to, for aggressively scaled Cu inter-
connects, an increased resistor–capacitor (RC) delay, a lower
current-driving capacity, more heat generations, a reduced
interconnect bandwidth, a larger crosstalk noise, and other
negative effects [2]. As a result, the overall performance and
reliability of an IC can degrade significantly.

Cu–graphene (Cu-G) hybrid nanointerconnect solutions,
such as graphene-encapsulated Cu interconnects, are promis-
ing alternatives to Cu-based interconnects. The hybrid can ben-
efit from the combined properties of both materials, and hence
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can be superior to either of them in terms of electrical and
thermal performance. Compared with Cu-based interconnects,
Cu-G interconnects exhibit an enhanced electrical conductivity
and current driving capacity [3], [4], a faster data transferring
speed [3], a larger thermal conductivity [5], and the resistance
to electromigration, therefore a better long-term reliability [6].
However, as far as the modeling of Cu-G interconnect is
concerned, most of the existing methods separately model the
graphene layers [7], [8] and the hybrid interconnect struc-
ture [9]–[12]. Such a decoupled approach may cause accuracy
problems in high-frequency simulations for two main reasons.
First, as shown in [13], most of these graphene models are no
longer sufficient at high frequencies since skin depth becomes
comparable to the mean free path. Second, these decoupled
electrical conductivity models of graphene [7], [8] assume
graphene’s steady-state responses to external stimulus. This
assumption can be valid for many low-frequency measure-
ments and single-frequency stimuli but is unlikely to hold
in emerging high-frequency IC scenarios. The main reason
for the failure at high frequencies is the low backscattering
frequency (BSF) of graphene (∼100 GHz) [14], [15]. When
the signal frequency in Cu-G interconnects becomes high
enough to reach the relatively low BSF of graphene, graphene
layers may not have enough scatterings to re-equilibrate them-
selves, thus may not give the physical steady-state response
as predicted by steady-state conductivity models. Since the
decoupled steady-state models can miss graphene’s dynamic
electronic responses in high-frequency simulations, a full-wave
dynamic modeling and simulation in time domain is needed.

To successfully develop Cu-G new interconnect solutions
for high-frequency IC technology, it is necessary to understand
the entire physical process that takes place in a Cu-G intercon-
nect. Under a voltage or current source excitation, the electric
and magnetic fields are generated in the physical layout of
a graphene interconnect. These fields drive the movement of
charge carriers in the graphene material. The resultant change
in conduction current, in turn, modifies the electric and mag-
netic field distributions. At high frequencies (e.g., 50 GHz),
the graphene layer may not reach a steady state, resulting in
a nonlinear conduction current response. To the best of our
knowledge, none of the existing models have sufficiently cap-
tured the dynamic physics present in the Cu-G interconnects.
Hence, they may lose their predictive power when applied to
the design of new Cu-G interconnects.

In this article, we develop a multiphysics-based model and
an efficient simulation algorithm to cosimulate directly in
time-domain Maxwell’s equations, equations characterizing
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graphene materials, and the Boltzmann equation from direct
current (dc) to high frequencies. To enable the simulation
of nanointerconnects within a feasible run time, the entire
numerical system is further made unconditionally stable in
time marching. In [16], we present a basic idea of this article.
In this article, we significantly expand the work in [16].
We detail the multiphysics modeling and simulation algorithm
for analyzing Cu-G interconnects, prove the time-domain
stability of the coupled simulation, validate the proposed work
against measured data, and also apply it to predict the crosstalk
and propagation delay of Cu-G interconnects, which has not
been reported in open literature.

The rest of this article is organized as follows. In Section II,
the proposed multiphysics model of Cu-G hybrid nanointer-
connects, including the theories and assumptions, is presented.
Section III details an unconditionally stable numerical algo-
rithm to simulate the proposed multiphysics model, followed
by a proof to its unconditional stability. Extensive numerical
experiments, such as the validation of both Maxwell and
Boltzmann solvers, dc conductivity, crosstalk effect, and prop-
agation delay of graphene-encapsulated Cu nanointerconnects,
are presented in Section IV. Finally, we summarize this article
in Section V.

II. MULTIPHYSICS MODELING OF Cu-G
HYBRID NANOINTERCONNECTS

The electromagnetic performance of a Cu-G interconnect is
governed by Maxwell’s equations from dc to high frequencies

∇ × E = −μ
∂H
∂ t

(1a)

∇ × H = ε
∂E
∂ t

+ σE + ji (1b)

where E is the electric field intensity, H is the magnetic field
intensity, ji is the input (supply) current density, and μ, ε,
and σ are the permeability, permittivity, and conductivity,
respectively.

When considering the existence of graphene layers, espe-
cially their conduction current density jg = σE in changing
the entire electromagnetic response, conventional simplified
steady-state σ models [7], [8] can miss the dynamic nonlinear
physics at high frequencies, including both the nonlinear
buildup of the conduction current in graphene and the nonlin-
ear coupling between the external field and electron behavior
inside graphene layers. Therefore, an accurate model requires
a direct observation of the charge carriers in graphene, which
is described by the distribution function f (r, k, t) in phase
space (real r-space and momentum k-space). Based on the first
principles, f (r, k, t) is governed by the following Boltzmann
equation:

v · ∇r f + q

h̄
E · ∇k f + ∂ f

∂ t
= − f − f0

τ
(2)

where v = dr/dt is the velocity vector, k = p/h̄ is the wave
vector of Bloch wave in momentum space, q is the amount
of charge in each carrier, and h̄ is the Planck constant. The
magnetic effects in Boltzmann equation are not considered
here as they are much smaller than electric effects in IC

Fig. 1. (a) Structure of a single-layer graphene with length L and width W .
(b) Linear dispersion of graphene. Dirac cones are located at the six corners
of the hexagonal Brillouin zone. Therefore, the valley degeneracy gv = 2.

interconnects. The scattering term on the right-hand side of
the Boltzmann equation is approximated by the relaxation time
approximation [17], where τ is the relaxation time, and f0 is
the Fermi-Dirac distribution at the equilibrium state

f0 =
[

1 + exp

(
ξ − ξF

kBT

)]−1

(3)

in which ξ is the carrier’s energy, ξF is the Fermi energy (also
called Fermi level or chemical potential), kB is Boltzmann’s
constant, and T is the temperature.

Given f (r, k, t), the conduction current density jg in
graphene can be evaluated from an integration over k-space
as

jg = gs gvq

(2π)d

∫
k

f vdk (4)

where gs and gv are the spin and valley degeneracy, respec-
tively, and d denotes the problem dimension, which is
2 and 3 in a 2-D and 3-D analyses, respectively. In order
to calculate jg from (2) and (4), the velocity vector v needs to
be expressed as a function of k. Semiclassically, by treating
the Bloch waves as wave packets, the classical velocity v
is defined as the group velocity dω/dk of such wave pack-
ets [17]. The frequency ω is associated with a wave function
of energy ξ by quantum theory, ω = ξ/h̄, and hence

v = ∇kξ/h̄. (5)

After substituting the following linear dispersion relation of
graphene [18], which is illustrated in Fig. 1(b):

ξ = vFh̄k (6)

where vF = 106 m/s is the Fermi velocity and k =
(k2

x + k2
y)

1/2, we can express the velocity vector v as the
following function of k:

v(k) = ∇kξ/h̄ = vFk̂ (7)

with k = kx x̂ +ky ŷ, and k̂ = k/|k| being the unit vector along
the direction of k.

The proposed system of equations, which governs the
electromagnetic performance of Cu-G interconnects, consists
of three sets of first-principle equations, namely, Maxwell’s
equations (1), Boltzmann equation (2), and the dispersion rela-
tion of graphene (6). Because the carrier distribution function

Authorized licensed use limited to: Purdue University. Downloaded on May 18,2020 at 14:30:56 UTC from IEEE Xplore.  Restrictions apply. 



492 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 68, NO. 2, FEBRUARY 2020

Fig. 2. Illustration of the cosimulation flow.

f is a function of r, k, and t , the computational domain for
this model has seven dimensions in 3-D analyses and five
dimensions in 2-D analyses. A flow of the cosimulation of
these equations in time domain is illustrated in Fig. 2. Given an
external source and initial conditions, Maxwell’s equations (1)
are solved to obtain electric field E(r, t), using which the
Boltzmann equation (2) can be solved to obtain charge carrier
distribution f (r, k, t). From integrating f (r, k, t) over k-space
as shown in (4), the conduction current density jg(r, t) in
graphene layers is calculated at each space point. At the next
time instant, graphene’s conduction current density term σE
in Maxwell’s equations (1) is replaced by latest jg(r, t), while
the conduction current density in other conducting materials
is still updated using σE. Now, with all the current updated,
Maxwell’s equations (1) are ready to be solved again. The
whole process continues until a desired time is reached or until
the physical phenomenon happening in a Cu-G interconnect
has reached its steady state.

III. MULTIPHYSICS COSIMULATION IN TIME

DOMAIN AND STABILITY ANALYSIS

There are two major challenges in the multiphysics
simulation of Cu-G interconnects. The first challenge is
that Boltzmann equation (2) is a 7-D equation in a 3-D
analysis, which is computationally expensive. To reduce the
computational cost, we utilize the fact that graphene is a 2-D
material, hence we can solve a 2-D version of Boltzmann
equation (2) in conjunction with the 3-D Maxwell’s equations.
However, even using a 2-D Boltzmann equation, there are
five dimensions involved, making the simulation of Boltz-
mann subsystem much slower than that of the Maxwell
subsystem. The second challenge arises from the small size
of nanointerconnects, which results in a large number of time
steps to finish one simulation using explicit solvers. To address
this problem, we develop an unconditionally stable cosimula-
tion algorithm to remove the dependence of time step on space
step.

A. Unconditionally Stable Time-Marching
Scheme of the Maxwell Subsystem

In this article, we apply an implicit uncondition-
ally stable time-domain scheme developed in [19] to a
finite-difference time-domain (FDTD)-based discretization of
Maxwell’s equations. This scheme is theoretically proved to

be unconditionally stable for general problem settings hav-
ing arbitrary structures and inhomogeneous materials. In this
method, we discretize Maxwell’s equations (1) as

Se{e}n+1 = −Dμ
{h}n+ 1

2 − {h}n− 1
2

	t
(8a)

Sh{h}n+ 1
2 = Dε

{e}n+1 − {e}n

	t
+ Dσ {e}n+1

+ { jg}n + { ji}n+1 (8b)

where {e}n represents the vector of electric field intensi-
ties at the nth time instant, {h}n+( 1

2 ) represents the vector
of magnetic field intensities at the n + ( 1

2 ) time instant,
{ jg} represents the vector of conduction current densities in
graphene layers, { ji} represents the input current densities,
and Dμ, Dε , and Dσ are diagonal matrices of permeability,
permittivity, and conductivity, respectively. The matrix-vector
products Se{e} and Sh{h} represent discretized ∇ × E
and ∇ × H. The Se and Sh can be readily constructed
using a single-grid patch based FDTD formulation developed
in [20].

If we eliminate {h} in (8), we will end up with the
following backward-difference-based discretization of the
second-order vector wave equation for E if { jg} is not
considered:
{e}n+1 − 2{e}n + {e}n−1 + 	tD−1

ε Dσ ({e}n+1 − {e}n)

+	t2D−1
ε ShD−1

μ Se{e}n+1 =−	t2D−1
ε

(
∂{ j}
∂ t

)n+1

. (9)

Discarding the source term since it has nothing to do with
the stability, and performing a z-transform of the above
time-marching equation, we can find

|z| = 1√
1 + 	t2λ

, (10)

where λ is the eigenvalue of D−1
ε ShD−1

μ Se. Since in an
FDTD method, Sh = ST

e is satisfied in a uniform grid [20],
the eigenvalues of D−1

ε ShD−1
μ Se are always nonnegative. Sub-

stituting λ ≥ 0 into (10), it can be readily found that z’s
modulus is always bounded by 1 regardless of 	t . Hence,
the time marching of (9) is ensured to be unconditionally
stable. Although it appears that we have to solve a matrix
in the time marching, using the scheme developed in [19],
this matrix’s inverse can be explicitly found, thus avoiding a
matrix solution.

The updating from one time step to the next in (8) can also
be rewritten as

MA{x}n+1 = MB{x}n + {b j }n+1 (11)

where

{x}n =
[ {e}n

{h}n− 1
2

]
and {b j }n+1 =

[−{ jg}n − { ji}n+1

0

]

and

MA =
⎡
⎢⎣

Dε

	t
+ Dσ −Sh

Se
Dμ

	t

⎤
⎥⎦ and MB =

⎡
⎢⎣

Dε

	t
0

0
Dμ

	t

⎤
⎥⎦ .
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B. Unconditionally Stable Time-Marching
Scheme of the Boltzmann Subsystem

The high dimensionality of the phase space makes solving
the Boltzmann equation (2) a challenging task. One of the
biggest obstacles for a deterministic Boltzmann solver is the
requirement of huge memory. To resolve the memory issue,
the past few decades have seen many efforts along two major
directions for solving the Boltzmann equation. One direction
is the Monte Carlo approach, where the Boltzmann equation is
solved by simulating a stochastic process [21]–[23]. Another
direction is to expand the distribution function f with basis
functions in k-space, and then truncate the expansion to the
first few terms according to the accuracy. The commonly used
expansions are spherical harmonics expansion [24] and Fourier
harmonics expansion in quantized k-space [25]. Both of the
two directions can reduce the required memory by a few
orders. However, the disadvantages are: 1) the simplification
of the original Boltzmann equation and 2) the requirement of a
self-iterative solver to determine a few key parameters like the
expansion coefficient. These existing Boltzmann solvers can
hardly provide the dynamic time-domain nonlinear transition
we want to capture from the original Boltzmann equation (2).
Therefore, in this article, we develop a direct deterministic
Boltzmann solver for the Cu-G system. The advancement of
dynamic random access memory (DRAM) technology and
today’s computers has greatly alleviated the limitation from
huge memory requirements. On the other hand, the 2-D nature
of graphene reduces the dimension of phase space from six to
four. These two factors make a direct deterministic Boltzmann
solver feasible for the Cu-G hybrid nanointerconnects.

However, the direct Boltzmann solver still needs to be care-
fully developed to resolve two challenges. First, the extremely
small space step could require an extremely small time step
due to the stability requirement. For example, in one Cu-G
hybrid nanointerconnect to be shown later, a conditionally
stable Boltzmann solver can require millions of time steps
to finish one run. Because of the expensive computational
cost for the Boltzmann subsystem, the need for simulating
many time steps can significantly degrade the efficiency of the
simulation. Second, the coupling with the Maxwell subsystem
should not ruin the stability, or should even maintain the
global unconditional stability of the entire system. Both of
the challenges are solved with the following unconditionally
stable Boltzmann solver.

1) Unconditionally Stable Boltzmann Solver: Substituting
(7) into (2), the 2-D Boltzmann equation for graphene in the
4-D phase space (x − y − kx − ky) becomes

vF

k

(
kx

∂ f

∂x
+ky

∂ f

∂y

)
+ q

h̄

(
Ex

∂ f

∂kx
+Ey

∂ f

∂ky

)
+ ∂ f

∂ t
= − f − f0

τ
.

(12)

In terms of the discretization of the derivatives, the indepen-
dence among r, k, and t allows us to consider each first-order
derivative independently. First, ∇r is discretized with a central
difference to maintain the same accuracy ∼O(	r2) as that in
FDTD. Second, ∇k is also discretized with a central difference
to align with the ∇r. Mathematically, the role of r and k

in the Boltzmann equation (12) can be exchanged without
changing the equation much. Thus, aligning the numerical
treatment of r and k can simplify the system matrices and
thereby the solution of the Boltzmann subsystem. Having
∇r and ∇k discretized with the central difference in phase
space, the remaining ∂/∂ t could be discretized in time with a
backward difference to guarantee the unconditional stability.
As a result, we obtain

(
Sr + Sn

k

){ f }n+1 + { f }n+1 − { f }n

	t
= { f0} − { f }n+1

τ
(13)

where { f }n is the vector of carrier distribution function at the
nth time instant, and Sr { f } and Sn

k { f } represent discretized
v · ∇r f and (q/h̄)E · ∇k f , respectively. Here, the superscript
n of Sn

k denotes the time instant of E used to obtain Sn
k . The

grid used for discretizing Maxwell’s equations is also used for
solving the Boltzmann subsystem, and the f is assigned at the
H’s points. The electric field E used in the Boltzmann equation
is center-averaged by neighboring E fields in the grid. The
matrix-based expression here follows a similar logic as that
in the Maxwell subsystem. All local f (i, j, ik, jk) in the 4-D
phase space are reorganized and labeled with a global index

mik , jk
i, j = jk Nx Ny Nkx + ik Nx Ny + j Nx + i (14)

in which Nx , Ny , and Nkx are the number of nodes along
the x-, y-, and kx -directions, respectively. The local index
(i, j, ik, jk) means the position in phase space is at (x =
i	x+x0, y = j	y+y0, kx = ik	kx +kx0, ky = jk	ky+ky0),
where (	x,	y,	kx,	ky) and (x0, y0, kx0, ky0) denote the
cell size, and starting point along each dimension. Thus, each
local f (i, j, ik, jk) becomes the mik , jk

i, j th element f
m

ik , jk
i, j

in

vector { f }.
The entries of two matrices Sr and Sn

k , using a central
difference in a uniform grid, can be analytically extracted as
the following. Take Sr { f } ∼ v · ∇r f as an example. Since in
v · ∇r f , we use nearby f values to generate a value f̃ at a
local point (i, j, ik, jk), the central-difference formula written
in local indices is

f̃ (i, j, ik, jk)

= vx (ik, jk)
f (i + 1, j, ik, jk) − f (i − 1, j, ik, jk)

2	x

+ vy(ik, jk)
f (i, j + 1, ik, jk) − f (i, j − 1, ik, jk)

2	y
.

This formula, if written in global indices (14), becomes

f̃
m

ik , jk
i, j

=vx m
ik , jk
0,0

f
m

ik , jk
i+1, j

− f
m

ik , jk
i−1, j

2	x
+ vy m

ik , jk
0,0

f
m

ik , jk
i, j+1

− f
m

ik , jk
i, j−1

2	y
(15)

which is simply a row of the matrix-based expression { f̃ } =
Sr { f } ∼ v·∇r f . Since v is independent of r for graphene here,
the (i, j) indices for v are denoted as (0, 0). The elements of
matrix Sr , hence, can be directly extracted from (15) as

Sr
m

ik , jk
i, j ,m

ik , jk
i+1, j

= vx m
ik , jk
0,0

/(2	x) = −Sr
m

ik , jk
i, j ,m

ik , jk
i−1, j

Sr
m

ik , jk
i, j ,m

ik , jk
i, j+1

= vy m
ik , jk
0,0

/(2	y) = −Sr
m

ik , jk
i, j ,m

ik , jk
i, j−1

. (16)
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For the other matrix Sn
k { f } ∼ q

h̄ E · ∇k f , we can find its
elements similarly by exchanging E to v and k to r.

The proposed time-marching formula for the Boltzmann
subsystem (13) is

Bn{ f }n+1 = { f }n + { f̃0} (17)

where the constant term { f̃0} = { f0}	t/τ and the system
matrix

Bn = (1 + 	t/τ)I + 	t
(
Sr + Sn

k

)
. (18)

2) Proof on the Unconditional Stability of the Boltzmann
Solver and the Choice of Time Step: To analyze the stability,
the eigenvalues of matrix Bn , thereby the eigenvalues of
Sr and Sn

k , should be studied. Here, we first prove that
both Sr and Sn

k , with a central difference in a uniform
grid, are skew-symmetric. Still take Sr { f } ∼ v · ∇r f as an
example. From the matrix elements in (16), the transpose
of matrix element Sr

m
ik , jk
i, j ,m

ik , jk
i+1, j

is Sr
m

ik , jk
i+1, j ,m

ik , jk
i, j

, whose value

is the opposite of Sr
m

ik , jk
i, j ,m

ik , jk
i+1, j

. The same procedure can be

applied to j . Thus, the skew-symmetry of Sr is proved.
The key factors to the skew-symmetry are: 1) the velocity
v is independent of r-space and 2) the r-space is discretized
uniformly along each direction. These two together guarantee
the matrix elements in (16) to be the same, regardless of the
choice of (i, j). For the other matrix Sn

k { f } ∼ (q/h̄)E · ∇k f ,
we can exchange E to v and k to r and end up with a similar
proof.

As a result of skew-symmetry, the eigenvalues of Sr + Sn
k

are purely imaginary [26]. From the expression of matrix Bn

in (18), we can see clearly that its eigenvalues are

λ(Bn) = 1 + 	t/τ + 	tλ
(
Sr + Sn

k

)
.

Since λ(Sr + Sn
k ) are purely imaginary, we have

|λ(Bn)| =
√

(1 + 	t/τ)2 + 	t2|λ(
Sr + Sn

k

)|2 ≥ 1. (19)

Hence, the amplification factor of Boltzmann subsystem
Bn{ f }n+1 = { f }n is bounded by 1, regardless of the choice of
time step. As a result, we prove the proposed time marching
of Boltzmann subsystem is unconditionally stable.

The unconditional stability allows for a choice of any large
time step without affecting stability. Hence, in real simulations,
the time step can be solely chosen according to the accuracy
requirement. The relaxation time approximation in Boltzmann
equation (2) assumes an exponential decay with a relaxation
time τ . Therefore, the physical process gives the Boltzmann
subsystem a characteristic time constant τ . According to the
sampling theorem, an accurate time step to capture the time
constant τ in the Boltzmann subsystem would be

	t ≤ τ/10. (20)

C. Unconditionally Stable Time-Marching
Scheme of the Coupled System

As for the coupling between the Maxwell subsystem and
the Boltzmann subsystem, the Boltzmann subsystem directly
uses the electric field intensity E from the Maxwell subsystem,
whereas the Maxwell subsystem uses, indirectly from the

Boltzmann subsystem, the conduction current density { jg}n

in graphene layers. The { jg}n is evaluated from { f }n through
the integration of (4), which is numerically evaluated from
a trapezoidal integration rule to maintain the second-order
accuracy in the truncated k-space. For a surface conduction
current density, the x-component of (4) can be written as

j n
gx_2D = gs gvq

(2π)2

∫
kx

∫
ky

f nvx dkxdky (21)

a 2-D trapezoidal integration of which yields

j n
gx_2D(i, j)

= gs gvq

(2π)2

	kx	ky

4

Nkx−1∑
ik =0

Nky−1∑
jk=0

α(ik, jk) f n(i, j, ik, jk)vx (ik, jk)

(22)

where the coefficient α(ik, jk) = 4 inside the kx -ky grid,
α(ik, jk) = 2 on the four outermost boundaries of the grid,
and α(ik, jk) = 1 at four corners of the grid. The y-component
of j n

g_2D can be obtained by changing vx in (22) to vy .
After replacing the local index of f n(i, j, ik, jk) with global
index (14), the numerical trapezoidal integration (22) could be
expressed by a matrix-vector product of { jg}n

2D = S j_2D{ f }n .
The { jg}n

2D here is a surface current density, which agrees
with the fact that graphene is a 2-D material whose current
flow is a sheet current flow. However, Maxwell’s equations
require a volume current density { jg}n . Here, we can treat a
graphene layer as a thin sheet [11] and obtain an equivalent
volume current density { jg}n = { jg}n

2D/dz [27], where dz
is the grid size perpendicular to the graphene sheet. Thus,
by using S j = S j_2D/dz, we obtain

{ jg}n = S j { f }n . (23)

The coupled systems of equations, including the Maxwell
subsystem (11), the Boltzmann subsystem (17), and the cou-
pling mechanism through conduction current density (23),
constitute a nonlinear system of equations, as shown in the
following:[

MA 0
0 Bn

] [{x}n+1

{ f }n+1

]
=

[
MB M j

0 I

] [{x}n

{ f }n

]
+

[{x0}n+1

{ f̃0}
]
(24)

where

M j =
[−S j

0

]
and {x0}n+1 =

[−{ ji}n+1

0

]
.

Given an initial condition {x}0 and { f }0, and the excitation
{x0}, we can update the system in time based on (24), and
finally obtain the full-wave response of general 3-D Cu-G
hybrid nanointerconnects.

Next, we prove that the proposed time marching of the
cosimulation system shown in (24) is unconditionally stable.
Since the constant terms and excitation are irrelevant to
stability, they are ignored in the following stability analysis.
For the coupled nonlinear system of equations (24), at every
time step, we have[{x}n+1

{ f }n+1

]
=

[
M−1

A MB M−1
A M j

0 (Bn)−1

][{x}n

{ f }n

]
=Gn

[{x}n

{ f }n

]
. (25)
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As can be seen, the amplification matrix Gn is a block upper
triangular matrix, whose eigenvalues {λ(Gn)} consist of the
eigenvalues of the two diagonal block matrices M−1

A MB , and
(Bn)−1, namely

{λ(Gn)} = {
λ
(
M−1

A MB
)} ⊕ {λ((Bn)−1)}.

In other words, the overall stability of the coupled nonlinear
system (24) is decoupled and determined by the stability of
each subsystem (11) and (17). Because both |λ(M−1

A MB)| and
|λ((Bn)−1)| are bounded by 1, all the |λ(Gn)|, thereby ρ(Gn)
are bounded by 1; hence, we prove that the cosimulation
algorithm (24) is unconditionally stable for an arbitrary choice
of time step. Note that, in this cosimulation scheme (24),
neither of the two physical coupling flows determines the over-
all time marching stability. The first coupling flow from the
Maxwell part, manifested by the electric field E in Boltzmann
subsystem, enters system matrix Sn

k but cannot change its
skew-symmetry, thus cannot determine the stability of the
Boltzmann subsystem. The second coupling flow from the
Boltzmann part, the conduction current density of graphene,
becomes the off-diagonal block in (24), thus cannot determine
the eigenvalues thereby the stability of the Maxwell subsystem.

The unconditional stability of the entire system allows both
Maxwell and Boltzmann subsystems to use the same arbitrary
time step, despite their different characteristic time constants.
Hence, the time step can be chosen solely based on accuracy.
For the Boltzmann subsystem, the sampling theorem sets
an upper limit of the accurate time step. The characteristic
time constant of the Maxwell subsystem is usually deter-
mined by the main signal frequency νsig, which requires a
	t ≤ 1/(10νsig). Taking into account Boltzmann’s time step
requirement (20), an accurate time step for the entire coupled
system would be

	t ≤ min{τ/10, 1/(10νsig)}. (26)

Since both Maxwell and Boltzmann subsystems use backward
difference in time, the overall accuracy in time for each
subsystem as well as for the whole coupled system is O(	t),
while the accuracy in space is of second order.

IV. NUMERICAL RESULTS

In this section, we first validate the accuracy of the
proposed multiphysics solvers by comparing our numerical
results with measurements. After validating both Maxwell
and Boltzmann solvers, we proceed to simulate realistic
graphene-encapsulated Cu nanointerconnects [3] and analyze
their dc conductivity, crosstalk effect, and propagation delay.

A. Validation of the Maxwell Solver

We first validate the accuracy of the proposed work by
simulating a realistic test-chip interconnect structure, which
is fabricated using a silicon processing technology [28].
This 100-μm-long test-chip interconnect comprises three
metal layers and five inhomogeneous dielectric stacks, whose
cross-sectional view is illustrated in Fig. 3. Fig. 3 also shows
all geometrical dimensions and the relative permittivity εr of
each layer. A current source of a time-derivative Gaussian

Fig. 3. Geometry of a test-chip interconnect. (a) 3-D view of three metal
layers, where the current source is supplied from bottom metal layer to the
center wire at port 1. (b) Front view of the test-chip interconnect.

pulse ji = −(t − t0)exp[−((t − t0)/τs)
2] A/m2 (t0 = 4τs ,

τs = 2 × 10−11 s) is placed right in the middle at the near-end
of the center interconnect. The 100-μm-long interconnect is
sandwiched between two 20-μm-long air layers in the front
and at the back. The smallest mesh size used in the simulation
is 0.04 μm, and the time step for time marching is 4 × 10−13 s
due to the proposed unconditionally stable method. After per-
forming a fast Fourier transform (FFT) on the current source
and the simulated time-domain port voltages, we directly
obtain the Z-parameters of the structure, which are then
converted into S-parameters with a 50-� reference impedance.
The S-parameters of this test-chip interconnect are measured in
the frequency range of 45 MHz–40 GHz using an HP8510 sys-
tem, where the undesirable signals from cables and probes are
further removed following the short-open-load-thru (SOLT)
technique, meanwhile the remaining noises generated by the
bondpads, vias, and access lines are deembedded using a
YZ-matrix technique [28]. The simulated S-parameters and
measured ones, as shown in Fig. 4, agree very well with each
other.

B. Validation of the Boltzmann Solver

When numerically solving Boltzmann equation (2) for
nanometer-scale structures, we choose the backward dif-
ference method (13) because of its unconditional stability
as proved in Section III. The other common difference
methods for discretizing a first-order time derivative equa-
tion (2) are either unstable (e.g., central difference method)
or conditionally stable (e.g., forward difference method and
Crank–Nicholson method). Fig. 5(a) shows that the backward
difference method (13) allows for the use of a large time
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Fig. 4. Simulated S-parameters of a test-chip interconnect in comparison
with measurements. (a) Magnitude of S11 and S21. (b) Phase of S11 and S21.

step irrespective of the extremely small space step. In this
example, initial f is Fermi-Dirac distribution (3), Fermi
energy ξF = 0.21 eV, relaxation time τ = 4 × 10−11 s,
the electric field Ey = 2 × 104 V/m, dx = 0.018 μm,
and dy = 0.5 μm. All three methods use the same dt =
2 × 10−11 s. After performing the time marching for a long
time, only backward difference method remains stable. When
approaching the steady state, the backward difference method
also exhibits a much smaller unphysical oscillation caused by
numerical error.

As for the accuracy, we find all three methods, backward,
forward, and Crank–Nicholson methods, give similar results
as long as the time step dt is accurately chosen based on
the sampling theorem. Taking Boltzmann equation (2) as an
example, the characteristic time length is the relaxation time τ ,
thus a time step dt = τ/20 would be an accurate choice.
Within the interval of such a time step, the time dependence
of physical quantities does not go beyond linear, and therefore,
backward, forward, and central differences should produce the
same result in terms of approximating the time derivative.
To further investigate the convergence rate, a new example
is specifically designed and illustrated in Fig. 5(b). To make
all three methods stable when using the same time step dt =
τ/20, we adopt a large grid dx = 5.4 μm and dy = 5 μm,
and a smaller electric field Ey = 2 × 103 V/m. The other

Fig. 5. Surface current density in a graphene layer under a constant electric
field Ey . (a) Extremely small grid and large electric field: dx = 0.018 μm,
dy = 0.5 μm, and Ey = 2 × 104 V/m. The dt = 2 × 10−11 s. (b) Larger grid
and smaller electric field: dx = 5.4 μm, dy = 5 μm, and Ey = 2 × 103 V/m.
The dt = 1 × 10−12 s. (c) Error as a function of time step.

parameters remain the same as shown in Fig. 5(a). The current
density solved from the backward difference method, as shown
in Fig. 5(b), agrees very well with those from other methods,
including the Drude model. In Fig. 5(c), we plot the error
as a function of time step, where the error is assessed by
�{ j}−{ jref }�/�{ jre f }�, in which the Crank–Nicholson method
with dt = 1 × 10−15 s is employed as the reference
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Fig. 6. (a) Geometry and discretization of a Cu-G nanowire whose far-end
is shorted to the ground PEC. The graphene layers, in gray color, are coated
on top, left, and right surfaces. (b) Front view of the near-end. (1) Bare Cu
without graphene coating. (2) Single graphene layer coated on the top surface.
(3) Corresponds to the structure in (a).

solution { jre f }, and norm-2 is used. The { j} is from either the
backward or the forward difference, which includes j at all
of the simulated time instants. As can be seen, the backward
difference can produce accurate results, and its convergence
rate is of first order as theoretically expected.

Another feasible validation is the surface dc conductivity
σdc_2d of a graphene sheet. Although the model developed in
this article aims at the high-frequency and nonlinear responses
of graphene, the solver can also accurately reproduce the
measured σdc_2d. One measurement, using the well-known
four-point measurements by injecting an excitation current
through graphene ribbon and measuring the voltage drop,
reports a σdc_2d = 0.015 S [14] for a graphene sheet of
Fermi energy ξF = 0.21 eV, mean free path l = 600 nm,
and therefore, relaxation time τ = l/vF = 6 × 10−13 s. After
substituting these parameters into the simulations as shown
in Fig. 5, and dividing the steady-state surface current density
jy by the constant electric field Ey , the proposed Boltzmann
solver gives a simulated σdc_2d = 0.0147 S, which agrees
very well with the measurements since the relative error is
only 2.0%.

C. Enhanced Electrical Conduction in Cu-G Nanowires
Predicted by the Coupled Solver for Multiphysics Simulation

With both the Maxwell solver and the Boltzmann
solver validated, next, we employ the proposed coupled
Maxwell–Boltzmann solver to simulate a Cu nanowire encap-
sulated by a single graphene layer on the top, left, and right
sides, as illustrated in Fig. 6. The size of the Cu stripline,
W = 180 nm, H = 60 nm, and L = 10 μm, is similar to
that of a measured Cu-G nanowire [3], whose conductance
is measured with standard four-point techniques. We use a
uniform regular grid to discretize the Cu into 10 × 8 × 20 grid
cells. Graphene layers have a relaxation time τ = 2 × 10−11 s
and a Fermi energy ξF = 0.21 eV, based on which we

Fig. 7. Simulated conductance G of the three interconnect structures in Fig. 6.

truncate the effective k-space into an energy range from 0
to 2ξF. Then, we discretize the truncated 2-D k-space with
10 × 20 grid cells. The Maxwell computation domain is a
box with perfect electric conductor (PEC) boundaries at the
top and the bottom, and perfect magnetic conductor (PMC)
boundaries at the other four sides. To see the full-wave
response of such a Cu-G nanowire, we inject into the structure
a current source whose waveform is a Gaussian derivative in
time, ji = −1016(t − t0)exp[−((t − t0)/τs)

2] A/m2, where
t0 = 4τs and τs = 2 × 10−9 s, indicating a maximal signal
frequency of approximately 0.5 GHz. For the aforementioned
real-space grid, conventional FDTD requires a small 	t ,
therefore, about 108 time steps to finish the simulation in the
width of a full pulse. However, in our unconditionally stable
algorithm (24), only 200 time steps are simulated, where time
step is solely determined by the accuracy requirement.

We perform a Fourier transform of the time-domain data
and calculate the admittance Y (ω) = Iinput(ω)/Vdrop(ω),
whose real part, the conductance G, is plotted in Fig. 7. The
numerical and analytical conductance G of the bare Cu case,
plotted in solid lines in Fig. 7, shows a fairly good correlation
with an error of 5.07%. Compared with the numerical G in
bare Cu structure, a single graphene layer’s coating on the top
surface enhances the conductance G by 13.4%, whereas the
coating on three sides enhances G by 26.4%. For the structure
in Fig. 6(a), measurement [3] reports a 22% enhancement
on G, which is very close to the simulated 26.4% here.

D. Increased Crosstalk Effect and Decreased Propagation
Delay in Graphene-Encapsulated Cu Nanointerconnects
Predicted by the Proposed Multiphysics Solver

Next, to study the effect of coating graphene layers on the
crosstalk, especially for cutting-edge 10-nm technology node,
we analyze two parallel Cu-G nanointerconnect wires, whose
geometry and discretization are illustrated in Fig. 8. We adopt
similar settings as the one in Fig. 6. Each Cu interconnect,
whose W = 10 nm, H = 10 nm, and L = 10 μm, is dis-
cretized into a uniform 10 × 8 × 20 grid. In this example,
we inject a current source at port 1 and port 2 in turn,
whose waveform is ji = −(t − t0)exp[−((t − t0)/τs)

2] A/m2,
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Fig. 8. Geometry and discretization of two parallel Cu-G nanointerconnects.
The cross section of each nanointerconnect is 10 nm × 10 nm, much smaller
than that in Fig. 6. Port voltages on ports 1 and 2 are sampled for analyzing
the crosstalk S21.

where t0 = 4τs and τs = 2 × 10−11 s. The pulse has a
maximal signal frequency of approximately 50 GHz. Due
to the small spatial feature, conventional conditionally stable
methods require about 107 time steps to finish the simulation
of Maxwell subsystem, and 109 time steps to simulate the
Boltzmann subsystem in the window of a full pulse [29].
However, using the proposed unconditionally stable algorithm,
only 200 time steps are required, where the time step is
solely determined by accuracy. Furthermore, the same time
step is used for simulating both Maxwell and Boltzmann
subsystems. We then do an FFT on the simulated time-domain
responses, from which we extract the crosstalk |S21| between
the two ports. As can be seen in Fig. 9, the graphene coating
clearly increases the crosstalk effect as compared to Cu-based
counterparts.

For analyzing the propagation delay in the Cu-G nanoint-
erconnects, we use the same structure as in Fig. 8. This time,
we inject a current source of

ji(t) =
{

1.09 × 1010 A/m2, 7.5 ps < t < 57.5 ps

0, otherwise.

The resulting port voltages, given in Fig. 10, have a ramp
waveform of 50-ps transient time and 0.12-V maximum
voltage, which is compatible with current complementary
metal–oxide–semiconductor (CMOS) technology. The 50%
propagation delay between the near-end and far-end of a
single nanowire and their dependence on the length L of
nanowires are listed in Table I. For the 10 nm × 10 nm thick
graphene-encapsulated Cu nanointerconnects, from length
L = 5 μm to L = 20 μm, the propagation delay is only 26%
of the bare Cu counterparts. The result shows that Cu-G
nanointerconnects have a faster data-transferring speed than
that of bare Cu interconnects.

E. Comparisons Between Proposed Multiphysics Solver and
Drude Model-Based Simulation in Graphene-Encapsulated
Cu Nanointerconnects

Graphene has been extensively simulated via various mod-
els in the past decade. Among these models, the Drude

Fig. 9. Crosstalk S21 of the Cu-G nanointerconnects in Fig. 8. (a) Magnitude
of S21. (b) Phase of S21.

model [13], [30]–[32], within the framework of Boltzmann
transport theories, is a widely used model and has shown good
accuracy in a linear regime. The analytical Drude model yields
the conductivity of graphene in the frequency domain

σ̃g(ω) = σdc

1 + jωτ
(27)

where ω is the angular frequency, τ is the relaxation time
as that in the Boltzmann equation (2), and σdc is the dc
conductivity of graphene. In Fig. 11, we show voltage drops
predicted by the proposed multiphysics solver and the Drude
model-based simulation in graphene-encapsulated Cu nanoin-
terconnects. As can be seen, the two are very different, and
the proposed solver captures physics that cannot be captured
in Drude model-based simulation. The structure and parameter
settings are the same as those in Fig. 8, including the same
relaxation time τ = 20 ps. The injected source current has a
waveform of ji = −(t − t0)exp[−((t − t0)/τs)

2]×1016 A/m2,
where t0 = 4τs and τs = 20 ps, the maximal signal frequency
of which is approximately 50 GHz. It has been shown that the
relaxation time of graphene predicted by theory can vary in a
wide range between 0.1 and 100 ps. However, as a modeling
and simulation method, the proposed work has no restriction
on the choice of material parameters. To demonstrate this
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Fig. 10. Near end and far end port voltages of a single nanointerconnect.
(a) Single graphene-encapsulated Cu nanointerconnect in Fig. 8. (b) Bare Cu
counterparts of (a) without graphene coating.

TABLE I

PROPAGATION DELAY VERSUS LENGTH L

point, we also simulated the same example using τ = 1 ps,
which is the relaxation time observed in many experiments.
As can be seen in Fig. 11, there still exists a noticeable
difference between a simplified model-based analysis and the
proposed multiphysics analysis, although the difference is
smaller.

From extensive numerical experiments, we have found
that in structures whose size is smaller than 100 nm
and when the signal frequency is comparable to the BSF
of graphene, the Drude model-based simulation can miss
important physical effects, while the proposed multiphysics
simulation can capture it. On the other hand, for large struc-
ture sizes and lower frequencies, the two simulations can
generate the same results. Due to limited space, the details
of this part are not reported here, but they can be found
in [33].

Fig. 11. Time-domain voltage drop (labeled to the right) along the single
graphene-encapsulated Cu nanointerconnect in Fig. 8. The Gaussian derivative
source current is plotted in solid line and labeled to the left.

V. CONCLUSION

In this article, we propose a multiphysics model for gen-
eral 3-D Cu-G hybrid nanointerconnects via cosimulating in
time-domain Maxwell’s equations, Boltzmann equation under
relaxation time approximation, and the linear dispersion of
graphene. We also develop an unconditionally stable simula-
tion algorithm for the proposed multiphysics model, allowing
for the use of an arbitrarily large time step irrespective of
the extremely small space step for simulating nanointercon-
nects. Numerical experiments and their comparisons with
measurements validate the accuracy and efficiency of the
proposed multiphysics modeling algorithm. From the sim-
ulated full-wave response in time domain, many essential
parameters of Cu-G nanointerconnects, including electrical
conductivity, crosstalk effect, and propagation delay, can be
easily evaluated. In the future, more physics effects, such
as the intraband transition in graphene and the surface scat-
tering at the Cu-G interface, can be included to further
enrich the multiphysics model and enhance the prediction
power.
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