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A Fast-Marching Time-Domain Layered Finite-Element
Reduction-Recovery Method for

High-Frequency VLSI Design

Houle Gan and Dan Jiao

Abstract—A fast-marching time-domain layered finite-element re-
duction-recovery (LAFE-RR) method is proposed for high-frequency
modeling and simulation of large-scale integrated circuits. This method
increases the time step of the LAFE-RR method by three orders of
magnitude. In addition, it preserves the computational efficiency of the
LAFE-RR method, i.e., the matrix reduction is achieved analytically from
a three-dimensional layered system to a single-layer one regardless of the
original problem size, and the sparsity of the reduced single-layer system
matrix is the same as that of the original system matrix. The method
applies to any arbitrarily-shaped multilayer structure. Numerical and
experimental results are given to demonstrate its validity.

Index Terms—Electromagnetics, finite element methods, high frequency,
on-chip circuits, time domain analysis.

I. INTRODUCTION

Driven by the continuous scaling of feature sizes and frequency
enabled by the advancement in processing technology, in the past
three decades, on-chip circuit modeling has experienced a series
of transitions: from R (resistance)-based, RC (resistance-capaci-
tance)-based, distributed RC-based, RLC (resistance-inductance-ca-
pacitance)-based, to transmission-line-based, to full-wave electromag-
netics-based analysis [1]–[11]. However, on-chip circuits present many
modeling challenges that are less pronounced in traditional full-wave
applications such as antennas, waveguides, and microwave circuits.
These challenges include ultra-large problem sizes, large number of
conductors, conductor loss, large aspect ratio, broadband, the presence
of substrate, etc. [1]. Among these challenges, large problem size is the
primary challenge. In [12], [13], a time-domain layered finite-element
reduction-recovery (TD-LAFE-RR) method was proposed to solve
large-scale IC design problems at high frequencies. This method
rigorously reduces the matrix of a multilayer system to that of a
single-layer system regardless of the original problem size. More
importantly, the matrix reduction is achieved analytically, and hence
the CPU and memory overheads are minimal. In addition, the reduced
system matrix preserves the sparsity of the original system matrix.
Numerical experiments have demonstrated four-orders-of-magni-
tude reduction in matrix factorization time. However, like many
time-domain methods, the time step of the TD-LAFE-RR method is
bounded from above by a certain value to ensure the stability of the
time-marching process. When applied to general multilayer structures
in which the layout structures are different in different layers, i.e.,
the conductor configuration is different in different layers, the time

Manuscript received November 19, 2007; revised July 04, 2008. Current ver-
sion published March 20, 2009. This work was supported in part by a grant from
the Office of Naval Research under award N00014-06-1-0716 and in part by a
grant from Intel Corporation.

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (email: djiao@purdue.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2008.2011393

step permitted by the TD-LAFE-RR method is small. To overcome
this problem, we propose a fast-marching TD-LAFE-RR method in
this work. This method increases the time step of the TD-LAFE-RR
method by three orders of magnitude. Meanwhile, it maintains the
same computational efficiency of the TD-LAFE-RR scheme. In what
follows, we first analyze the time step allowed by the LAFE-RR
method in solving general multilayered structures; then delineate the
proposed fast-matching method.

II. INVESTIGATION OF THE TIME STEP ALLOWED BY THE

TIME-DOMAIN LAFE-RR METHOD

The electric field� inside a 3D integrated circuit satisfies the second-
order vector wave equation
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subject to certain boundary conditions. In (1), �� , ��, �, � are relative
permeability, free-space permeability, permittivity, and conductivity,
respectively; � is the current source; � is the computational domain
that encloses the circuit. A time-domain finite-element solution of (1)
and its boundary condition results in a system of ordinary differential
equations [14]
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in which �, �, and � are square matrices, and 	 and �
 are column
vectors. Their elements are given by
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where �� are the vector bases used to expand the unknown electric
field �, and ��� ��

�
denotes volume integration. In (2), the matrix re-

sulted from the absorbing boundary condition is omitted for simplicity.
It can be easily incorporated into the framework after the core flow is
established.

Adopting a central difference scheme to approximate the first- and
second-order time derivative in (2), we obtain

�	
��� � ����	�
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� (4)

in which � is the system matrix to be factorized

� � �� ���	�� (5)

and 	� represents the time step. The field value at the ��� ��-th time
step, 	���, can be solved in a time marching fashion from the solution
of 	 at previous time steps. When the problem size is large, it is diffi-
cult to solve matrix (4). The time-domain LAFE-RR method [12], [13]
was developed to overcome this problem. In this method, the 3D lay-
ered system matrix is analytically reduced to a 2D layered one. The 2D
layered system matrix is further analytically reduced to a single-layer
one. Once the unknowns on a single surface are known, the unknowns
on other surfaces and the unknowns in the volume can be recovered as
demonstrated in [12], [13].

To make the analytical reduction in the LAFE-RR scheme feasible
for general multilayered structures, matrix�, which is associated with
conductivity � as shown in (3), needs to be excluded from the system
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matrix�. This is because LAFE-RR method utilizes the layered prop-
erty to perform system reduction analytically. In a general multilayered
structure, permittivity is layered. However, conductivity is not layered.
Hence, matrix � needs to be excluded from �, i.e., � can only be
present in the right hand side of (4).

Rewriting (2) as

�
���

���
� �� � ����

��
� �� (6)

Adopting a backward differencing scheme to approximate the first-
order time derivative, and a central differencing scheme to approximate
the second-order time derivative in (6), we obtain
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Performing a �-transform on (7), we obtain
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which can be rewritten as
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As a worst-case stability analysis, assuming the computational domain
is uniformly filled by material of conductivity � and permittivity ��,
(9) becomes
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Denoting the eigenvalue of ������� by 	, we obtain
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To make � bounded in a unit circle to maintain the stability, the max-
imum allowed 	 is

	��� � 
� �
���


�
� (12)

Since 	 is the eigenvalue of �������, and the maximum modulus of
the eigenvalues of������� is ����������while 	 is bounded from
above by 	���, �� should satisfy the following criterion to ensure the
stability of the LAFE-RR method

�� �
�
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�������
(13)

in which ���� denotes the spectral radius of matrix ���. As can be seen
from (12), the larger the conductivity, and the smaller the permittivity,
the smaller 	���, and hence the smaller the time step ��. That’s why
the assumption of filling the computational domain uniformly by a ma-
terial of conductivity � and permittivity �� constitutes a worst-case sta-
bility analysis of the right-�-based LAFE-RR scheme. In reality, the
computational domain is partially filled by conductors. Also, the mate-
rial has a larger permittivity than the permittivity of air, and hence the
effective conductivity is smaller, and the effective permittivity is larger
than what is considered in the worst-case analysis.

Since 	��� needs to be greater than 0 to render a time-marching
scheme stable, from (12), it can be seen that

�� �
�
�
�

� (14)

The right-�-based LAFE-RR scheme was tested on typical copper-
made on-chip structures. It was shown that �	��	 � is needed to main-

tain the stability of the right-�-based LAFE-RR scheme. This agrees
with our theoretical analysis in (14).

In (7), a backward differencing is used to approximate the first-order
time derivative associated with �. Certainly, other differencing
schemes can be utilized as long as � is not associated with the most
advanced time step, and hence is excluded from the system matrix
to be factorized. A variety of differencing schemes were explored to
approximate the first-order time derivative. It was observed that as
long as� is excluded from the system matrix, the improvement in the
maximum allowed time step is small.

If � is kept on the left hand side as in (2) and (5), the maximum
allowed time step is still

�� �
�
	���

�������

but 	��� is equal to 4. This leads to a much larger time step. Testing
on typical on-chip structures has shown that the time step at a level of
�	��
 � can be used to maintain the stability, which is three orders of
magnitude larger than �	��	 �. However, if� is kept on the left hand
side of (2), apparently, a LAFE-RR solution is not feasible because
conductivity is not layered in a general multilayered structure. In the
Section III, we describe a fast-marching method that enlarges the time
step required by the LAFE-RR method by three orders of magnitude.
In addition, it enlarges the time step without losing the computational
efficiency of the LAFE-RR method.

III. PROPOSED FAST-MARCHING METHOD

We still keep� at the left hand side of (2). The matrix equation we
solve in time domain is still (4), which can be rewritten as

��� 	����������

� ������
�
���� � 
	�������� ���� � �

�
� (15)

If (15) is solved in time instead of (7), a three-orders-of-magnitude in-
crease in the time step can be achieved. Therefore, as long as (15) is
solved using the LAFE-RR method, the time step can be increased
without losing the computational efficiency. The task is hence nar-
rowed down to the development of a LAFE-RR solution for (15).

To ease the illustration of the proposed method, we denote (15) by

��� 	������
 � �� (16)

Equation (16) is solved at each time step in the time marching process.
To enable a LAFE-RR solution,� is split into two parts as

� � �� ��� (17)

in which�� is artificially constructed to permit a LAFE-RR solution,
and�� is the difference between�� and�. Equation (16) at each time
step is then solved iteratively by
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It is clear that when the convergence is reached, 
��
 � 
����
, and
hence 
��
 is the solution of (16). In (18), the initial value 
��
 can be
chosen as



��
 � �

� (19)

which is the field value at the previous time step; it can also be chosen
as



��
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��� (20)
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which is linearly extrapolated from the field values at the previous two
time steps. Both choices work effectively. But (20) is shown to produce
a better accuracy by our numerical experiments. Next, we will explain
the proposed fast-marching method from three perspectives: the con-
struction of ��, the convergence of (18), and the LAFE-RR solution
of (15).

A. The Construction of ��

�� in (17) is a conductivity related matrix. It is assembled from its
elemental contribution as

�
�
���� � ���

�
� �������� (21)

in which ��
� is artificially assigned conductivity in element �, which is

determined based on

�
�
� �

�� if �� � �

� �� � if �� � �
(22)

in which �� is the true (physical) conductivity in element �. In elements
that �� is 0, ��

� is chosen as either � (nonzero) or 0 so that when adding
�� upon �, the combined matrix permits a LAFE-RR solution.

To construct ��, one approach is to introduce a solid metal plane
in each metal layer. This will allow the matrix combined from�� and
� to permit a LAFE-RR solution for any multilayered structure. For
example, for a RF IC circuit, �� is chosen as the metal conductivity
in all the metal layers, while it is set to 0 in the other dielectric layers.
As a result, in each layer along the � direction (stack-growth direction),
conductivity is a constant. Hence, when combining�� and� together,
the resultant matrix permits a LAFE-RR solution in which the reduc-
tion from a 3D layered system to a single-layer one can be achieved
analytically without any computational cost. As another example, for
an on-chip interconnect network in which the layer-growth direction
is often chosen as � or �, by introducing a solid plane in each metal
layer to construct ��, the configuration of conductivity is the same
for each layer along either �-or �-direction. As a result, when com-
bining �� and � together, the resultant system matrix also permits a
LAFE-RR solution. Introducing a solid plane in each metal layer is the
simplest and most generalized approach to construct ��. Depending
on the structure, one could select other �� � as long as the conduc-
tivity distribution permits a LAFE-RR solution.

B. The Convergence of the Iterative Scheme in (18)

In [16], the following theorem was proven.
Theorem 1: Define a sequence of iterates of the form

�
����� � ��

��� � 	 (23)

Let� be a square matrix such that 
��� � 	, then ��� is nonsingular
and the iteration in (23) converges for any initial vector ����.

From (18), it can be seen that� in our iteration scheme is
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Denoting the eigenvalues of � by �, we have
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in which � denotes the eigenvector. From (24) and (25), we obtain
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�� can be assembled from elemental contribution as
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as can be seen from (17) and (21). From (22), we obtain
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Equation (26) can be written as
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in which ��
 denotes an assembling from the elemental contribution.
Take a RF IC circuit as an example and consider a single layer, � and
�� are constant whereas �� is space dependent. The eigenvalue � can
be calculated from
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By replacing ��
� in each element uniformly by ��, we can obtain the

upper bound of � ’s modulus
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Clearly

��� � 	� (33)

Therefore, the condition of 
��� � 	 is satisfied.
In general cases, �, ��, and �� are all space dependent. To theoreti-

cally analyze the upper bound of the eigenvalues of�, we can approx-
imate the left matrix in (30) by
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�
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�
������� �������� (34)

in which an effective ��, ����� , is used to fill every element. Clearly,
����� is bounded between the minimum �� and the maximum ��. Sim-
ilarly, the right matrix in (30) can be approximated by
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in which effective conductivity and effective permittivity, ����� and
��� , are used to fill every element. As a result, � can be estimated from
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Since in every element, ��
� � ��

� we have

����� � ����� � (37)

Hence, from (36), it can be deduced that ��� � 	�As a result, 
��� � 	
is satisfied for general cases also. Hence, the iterative scheme in (18)
always converges regardless of the choice of the initial vector. Also,
since at each time step, the previous values such as (19) and (20) are
used as the initial guess, the iteration can converge very rapidly.

C. The LAFE-RR Solution

Since ��� ��
�
��� permits a LAFE-RR solution, the following
LAFE-RR steps are taken to solve (15).
Step 1: Analytically reduce the multilayer system matrix of �� �

��
�
��� to a single-layer system matrix.
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Fig. 1. Geometry of a three-metal-layer on-chip interconnect. (a) Cross-sec-
tional view. (b) Top view.

Step 2: Pre-calculate the LU factorization of the single-layer system
matrix for the time marching process.
Beginning of the Time Marching:

Step 3: Perform the iteration in (18). When the iteration converges,
���� in (15) is obtained.

Sub-step 1: Solve the single-layer system and obtain
surface unknowns in that single layer.
Sub-step 2: Recover solutions of surface and volume
unknowns in all other layers.

Step 4: Construct the new right hand side of (15) for the next time
step. Go back to step 3.
End of the Time Marching.

Since the number of iterations to reach a required accuracy in Step 3 is
very small (1 or 2 on average in our numerical experiments), the pro-
posed method increases the time step without losing the computational
efficiency of the original LAFE-RR method.

Before proceeding to the numerical validation, it is worth mentioning
that (15) can also be solved by using other iterative solvers such as
conjugate gradient (CG) method with �� � �������� chosen as the
preconditioner. Since both �� � �������� and �� � ������� are
symmetric positive definite. The convergence of CG is also guaranteed.
In addition, the solution of ��� �������� is computationally cheap
by using the LAFE-RR method.

IV. NUMERICAL AND EXPERIMENTAL VALIDATION

The first example considered here is a three-metal-layer on-chip in-
terconnect structure. The geometry is depicted in Fig. 1 from both the
cross-sectional view (in �-� plane) and the top view (in �-� plane). All
the dimensions are close to realistic on-chip circuits. The conductivity
of all metals is 5���� ��	. The conductivity of the silicon substrate
is ��� ��	. There exist five �-orientated wires in M1 and M3 layers,
respectively, as shown in Fig. 1(b). The width of these wires is 1 �	,
and the spacing is 1 �	. The interconnect length (9 �	) along � is
subdivided into 9 layers. Its two ends are both attached to an air layer,
which is truncated by a first-order absorbing boundary condition. The
top and bottom boundaries along �-direction are PEC (perfect electri-
cally conducting) boundaries. The left and right boundaries along �-di-
rection are PMC (perfect magnetically conducting) boundaries. The
layer growth direction is chosen as �. Each layer is divided into 780
triangular prism elements.

Fig. 2. The voltage simulated by the proposed method in comparison with a
direct simulation.

Fig. 3. Illustration of convergence. (a) Relative error versus number of itera-
tions. (b) Relative residual versus number of iterations.

Since the configuration of conductivity is different in different layers
along �, using the original LAFE-RR method, the right-�-based
scheme is adopted, which requires a time step as small as ����� 
 to
maintain stability. By using the proposed fast-marching method, the
time step is significantly increased to ����� 
 while still maintaining
the stability of the time marching process. The matrix �� for this
example is constructed by replacing the interconnect wires in M1
and M3 layers by solid planes while keeping the conductors in M2
layer the same. When iteratively solving (18), the relative error for the
convergence checking is defined as

	 �
�




�

���

�
����	
�

� �
��	
�

�
��	
�

(38)

in which 
 is the dimension of the unknown field vector. As can be
seen from (18), when the difference between ���	 and �����	 shrinks
to zero, �����	 becomes the solution of (16). Hence, the relative error
defined in (38) can serve as a good measure of convergence. It is
also computationally inexpensive compared to relative residual that
involves the computation of a large matrix-vector multiplication.
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Fig. 4. Crosstalk simulation of a large-scale on-chip 3D interconnect.

The near end of the 1 ��-wide wire in M2 was excited by a current
source. The source waveform was the time derivative of a Gaussian
pulse, ������� � ����� � ��� ��	 ���� ���

��� � , in which � is
1.0e–12 s, and �� is 
� . The current probe was placed underneath the
1 ��-wide wire in the dielectric layer between M1 layer and M3
layer. The voltage at the far end of the 1 ��-wide wire was simulated.
In Fig. 2, the result obtained by the proposed fast marching method is
compared with that obtained by solving (15) directly without using the
LAFE-RR method. As shown in Fig. 2, an excellent agreement was
observed, which demonstrates the accuracy of the proposed method.

The maximum allowed relative error was set to 0.01 for the nu-
merical simulation that produces the result shown in Fig. 2. In total,
100,000 time steps were run. The number of iterations was � �� at
the beginning, and very soon dropped to 1. The average number of it-
erations was 1 over the 100,000 time steps. Hence, the time step was
increased without sacrificing the computational efficiency of the orig-
inal LAFE-RR method. In Fig. 3(a), the relative error is plotted with
respect to the number of iterations at � � ���
�, � � ���
�, and
� � ����
�, respectively. Fast convergence was observed. The rel-
ative residual of (18) and (16) with respect to the number of itera-
tions is also plotted in Fig. 3(b). The relative residual is defined as
���� ���
����� ������, in which 2-norm is used. It can be seen
that the relative error defined in (38) turns out to be a more stringent
convergence criterion compared to the relative residual in this scenario.

The second example is a large-scale test-chip interconnect structure
that involves 2000 orthogonal wires in M1 and M3 layers. Due to a
nondisclosure agreement, the detail of this structure is not given here.
The matrix�� for this example is constructed by placing a solid metal
plane in M1 and M3 layers respectively, while keeping M2 conduc-
tors the same. The voltages are sampled at the near ends of two M2
wires, the far ends of which are left open. The crosstalk of the two
near-end ports are then extracted and compared with the measured data.
As shown in Fig. 4, good agreement was observed. Note that a time step
of ����� �was used in this simulation, which cannot be achieved by the
original right-�-based LAFE-RR scheme. The number of iterations at
each time step was 1 on average in this simulation.

V. CONCLUSION

In this work, the time step allowed by a TD-LAFE-RR method in
general on-chip applications was analyzed. A fast-marching method

was developed to increase the time step by three orders of magnitude,
while maintaining the same computational efficiency of the original
LAFE-RR method. Numerical and experimental results demonstrated
the validity of the proposed method.
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