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Abstract The “optimal” speedup of an explicit and unconditionally stable time-

domain method, without sacrificing accuracy, is the ratio of the time step required
by accuracy to the time step determined by stability. In this work, by significantly

accelerating the explicit time-marching-based revealing of the stable modes for any
given time step, it is demonstrated that it is feasible to achieve a more than optimal

speedup.
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1. Introduction

Driven by the design of advanced engineering systems, there exists a continued need

to accelerate the methods in computational electromagnetics. An explicit time-domain

method can be matrix free, i.e., requiring no matrix solution. However, its time step

is traditionally restricted by the smallest space step to ensure the stability of a time-

domain simulation. When the structure being simulated involves fine features relative to

the working wavelength, the time step required for stability can be orders of magnitude

smaller than the time step required by accuracy. As a result, one has to simulate a

tremendous number of time steps to finish one simulation, which is computationally

expensive, although the complexity of the explicit time-domain method is linear (optimal)

at each time step.

In time-domain finite-element methods (TDFEMs), a number of unconditionally

stable schemes have been developed to remove the dependence of the time step on the

space step. Examples include the Newmark method (Gedney & Navsariwala, 1995),

the alternation-direction implicit (ADI) finite-element time-domain (FETD; Movahhedi

& Abdipour, 2007), the backward difference scheme (Jiao & Jin, 2002), etc. All of these

methods are implicit methods that require a matrix solution. They achieve unconditional

stability by sacrificing in computational efficiency. Recently, in He et al. (2012) and He

and Jiao (2012), an explicit unconditionally stable TDFEM is developed. This method
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retains the strength of an explicit time-domain method in avoiding solving a matrix

equation while eliminating its shortcoming in time steps. A significant speedup in CPU

time has been accomplished over the conditionally stable explicit TDFEM as well as the

unconditionally stable implicit TDFEM.

An explicit and unconditionally stable time-domain method removes the dependence

of the time step on the space step. Apparently, the “optimal” speedup of an explicit and

unconditionally stable time-domain method, without sacrificing accuracy, is �ta=�ts ,

where �ta is the time step required by accuracy, and �ts is the time step required by

stability. Such a speedup is proportional to �a=�min, the ratio of the space step required

by accuracy (�a) to the finest space step actually used for discretization (�min). The

contribution of this article is the development of an explicit and unconditionally stable

TDFEM that has a more than optimal speedup. Numerical experiments have demonstrated

its superior efficiency without sacrificing accuracy.

The remaining of this article is organized as follows. Section 2 analyzes the feasibility

of achieving a more than optimal speedup; Section 3 presents the proposed method. In

Section 4, numerical examples are presented to demonstrate the accuracy and efficiency

of the proposed method, and Section 5 concludes this article.

2. On the Feasibility of Achieving a More Than “Optimal” Speedup

A time-domain finite-element-based solution of the second-order vector wave equation

and its boundary conditions results in the following linear system of equations (Jiao &

Jin, 2002):

T
d 2u

dt2
C Su D j; (1)

in which T is a mass matrix, S is a stiffness matrix, u is the unknown field solution

vector, and j is a current excitation vector.

The explicit and unconditionally stable TDFEM presented in He et al. (2012) and He

and Jiao (2012) has two steps. The first step is a preprocessing step, in which the stable

modes are found for the given time step irrespective of its size. In this step, a conventional

explicit time-domain method is employed to solve Eq. (1) at a small number of time steps.

The resulting time-domain solutions are then used to synthesize the stable modes by an

efficient algorithm. By doing so, advantage is gained of the strength of an explicit method

in avoiding a matrix solution. Meanwhile, there is no suffering from the shortcoming of

an explicit method in requiring many time steps to finish one simulation. This is because

compared to the total number of time steps required by the explicit method to finish the

entire simulation, the number of time steps is small for revealing the stable modes from

the time-domain solutions. The detailed procedure of the aforementioned preprocessing

step (He et al., 2012) is as follows.

Step I. Preprocessing for building a complete and accurate space that spans all the

stable modes for any given time step irrespective of its size.

Step I-1. Use the conventional explicit time-domain method to solve Eq. (1)

and march on in time by one step. This can be performed in linear

complexity.

Step I-2. At selected time instants, the number of which is O.k/, where k is the

number of physically important modes contained in Eq. (1), perform

the following.
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Step I-2-a. Add the field solution vector u in V as a column vector.

Matrix V is initialized to be zero. Orthogonalize the new

solution vector with respect to the other vectors that have

already been stored in V. The column dimension of the

orthogonalized V is denoted by k0. The computational cost

is linear for orthogonalizing O.k0/ vectors of length N .

Step I-2-b. Solve a reduced eigenvalue problem of size k0 shown below:

Bk0�k0 � D �2
Ak0�k0 �; (2)

where

Ak0�k0 D V
T

TV; Bk0�k0 D V
T

SV: (3)

Solve the weight Qy of each mode in the field solution

from Eq. (30) in He et al. (2012). Weight Qy can also be

determined by writing the field solution u as

u D ˆr Qy; (4)

where ˆr denotes the eigenvector matrix of Eq. (2). Mul-

tiplying both sides of Eq. (4) by ˆ
T
r A, and utilizing the

property of ˆ
T
r Aˆr D I, the weight Qy can be obtained as

ˆ
T
r Au D Qy: (5)

Then it is determined whether or not two criteria are satisfied to

terminate the preprocessing step. The first terminating criterion is to

assess whether or not the repeating eigenmodes are dominant in the

field solution. When progressively enlarging V and solving Eq. (2) step

by step, some eigenvalues will repeatedly appear from the solution of

Eq. (2). Denoting the weights of their corresponding eigenvectors in

the field solution by Qyl and the weights of the other eigenvectors by

Qyh, the first terminating criterion is

ˇ

ˇ QyT
h Qyh

ˇ

ˇ < "1

ˇ

ˇ QyT
l Qyl

ˇ

ˇ ; (6)

in which "1 is a small parameter defined based on prescribed accuracy.

When Eq. (6) is satisfied, the repeating eigenmodes can be identified

as physically important modes in the field solution. But to ensure the

accuracy of the identified physically important eigenmodes, the second

terminating condition is added as follows:

ˇ

ˇ

ˇ
�

qC1

l
� �

q

l

ˇ

ˇ

ˇ

ˇ

ˇ�
q

l

ˇ

ˇ

< "2; (7)

where �l denotes the eigenvalues that repeatedly appear from the so-

lution of Eq. (2), and "2 is the other user-defined accuracy parameter.

In Eq. (7), the difference between the repeating eigenvalues at two

adjacent steps, q and q C 1, is examined. When both Eqs. (6) and (7)



202 Q. He and D. Jiao

are satisfied, the corresponding repeating eigenmodes can be identified

as accurate, physically important eigenmodes of the original physical

problem, from which those eigenmodes that are stable for the given time

step are selected to build the space of stable modes. The preprocessing

step is then terminated. If either Eq. (6) or (7) is not satisfied, return to

Step I-1. The cost of the above step (Step I-2-b) is negligible because

of the reduced system size.

In the second step of the method in He et al. (2012), an explicit and unconditionally

stable time marching for the given time step is performed, regardless of how large it

is. The simulation is performed on a reduced and also diagonal system of O.k/, and

hence, the cost of the second step is negligible as compared to the cost of the first step.

As can be seen from the above overview of the explicit and unconditionally stable

TDFEM in He et al. (2012), the speedup of this method over the traditional explicit

method is

Speedup � Nt=p; (8)

where p is the number of time steps simulated in the preprocessing step, and Nt is the

total number of time steps required to finish the entire explicit-marching-based simulation.

The optimal speedup of an explicit and unconditionally stable time-domain method

over a traditional explicit method, as noted in Section 1, is

Optimal Speedup � �a=�min: (9)

To analyze the relationship between Eqs. (8) and (9), one should begin with the total

time T to be simulated. T is proportional to lmax=c, where lmax is the largest physical

dimension of the structure being simulated, and c is the speed of light. In other words,

in general, in a time-domain analysis, the entire structure of the underlying problem

needs to be traversed at least once by the input pulse. With a time step chosen based

on stability, Nt is proportional to lmax=.c�ts ), and hence, lmax=�min. Therefore, Nt=p is

proportional to

Speedup � Nt=p � lmax=.p�min/: (10)

Comparing Eq. (10) to Eq. (9), it is evident that by minimizing p, a more than optimal

speedup can be achieved.

3. Proposed Method

To minimize the number of time steps p simulated in the preprocessing step, a theoretical

analysis is first conducted on what prevents early identification of the stable modes in

an explicit time-marching-based scheme. The preprocessing scheme in He et al. (2012)

was analyzed, and it was found that its explicit time-marching-based revealing of stable

modes can be viewed as an iterative process of finding the stable modes. Although it is

matrix free, it has a slow convergence rate, which prevents an early identification of the

stable modes, thereby achieving an optimal or even more than optimal speedup. Based

on this finding, a new algorithm is developed that significantly increases the convergence

rate of each non-DC stable mode while preserving the merit of the explicit-method-based

revealing of the stable modes in avoiding solving a matrix. Moreover, it was found that

the DC mode, the analytical eigenvalue of which is zero, has the slowest convergence
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rate, which cannot be increased by changing time-stepping formulas. It is hence proposed

to extract the DC mode and then remove the DC mode from the procedure of identifying

other non-DC stable modes. As a result, the number of time steps simulated in the

preprocessing step p is significantly reduced. The details of the proposed work are pre-

sented in what follows.

3.1. Theoretical Analysis

The solution of Eq. (1) at any time instant is a superposition of the eigenmodes of the

following generalized eigenvalue problem:

Sv D �Tv: (11)

Since S is semi-positive definite and T is positive-definite, the eigenvalues � are non-

negative real values. The smallest eigenvalues are zero, and their corresponding eigen-

vectors are called DC modes. Let ˆ be the eigenvector matrix of Eq. (11), ƒ be the

diagonal matrix comprised of the eigenvalues of Eq. (11), and I be an identity matrix.

The following properties hold true:

ˆ
T

Tˆ D I; ˆ
T

Sˆ D ƒ: (12)

In He et al. (2012), the stable modes were synthesized from the following traditional

central-difference-based explicit marching of Eq. (1):

T.unC1 � 2un C un�1/ C �t2
Sun D �t2j n: (13)

Expanding the field solution u in ˆ as

u D ˆy (14)

and multiplying Eq. (13) by ˆ
T gives

.ynC1 � 2yn C yn�1/ C �t2ƒyn D �t2
ˆ

T j n; (15)

where the properties shown in Eq. (12) are utilized. Setting the source to be zero and

performing a z-transform of Eq. (15) gives

.z � 1/2 C �t2�i z D 0; (16)

where �i is an eigenvalue of Eq. (11). The roots of Eq. (16) can be written as

z D
.2 � �t2�i / ˙

p

�t2�i .�t2�i � 4/

2
: (17)

To make Eq. (13) stable, jzj � 1 must be satisfied, from which �t2�i < 4 can be

deduced. When this happens, it can be seen from Eq. (17) that

jzj D 1: (18)

Thus, for every eigenmode of Eq. (11), the magnitude of z is the same.

In Eq. (15), not only is z related to the stability, it also signifies the convergence

rate of each eigenmode in the time-marching procedure. To explain, take one frequency
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component contained in the input spectrum as an example. For such a single-frequency si-

nusoidal input, in Eq. (15), when the z-transform of y converges to a constant, the solution

of y reaches its steady state. Since QZ.ynC1/� QZ.yn/ D zŒ QZ.yn/� QZ.yn�1/�, where QZ.�/

denotes the z-transform of a set, by recursively applying the equality, the following can

be obtained:

QZ.ynC1/ � QZ.yn/ D znŒ QZ.y1/ � QZ.y0/�: (19)

Therefore, the smaller jzj is, the faster the convergence is. In other words, the convergence

of the z-transform y can be achieved with a smaller n, thus a smaller number of steps.

As a result, it is found that when using a central-difference-based explicit marching, like

that in Eq. (13), the convergence rate of every eigenmode in the field solution, as shown

in Eq. (18), is the same and is also equally slow.

3.2. Proposed Method for Achieving a More Than Optimal Speedup

Based on the above finding, increasing the convergence rate of the eigenmodes is pro-

posed. The reason is straightforward. If an eigenmode converges earlier, it will show

up earlier in the reduced eigenvalue problem in Eq. (2) as a repeating eigenmode.

Therefore, this eigenmode can be identified in a reduced number of steps. To increase the

convergence rate, performing the following backward-difference-based time marching is

proposed:

.T C �t2
S/unC1 C T.�2un C un�1/ D �t2j n; (20)

but by using a central-difference based time step. By doing so, on one hand, expensive

matrix solutions are avoided because the solution of .T C �t2
S/ can be found from the

solution of T, the mass matrix that is either diagonal or can be solved in linear complexity

(White, 1999; Jiao & Jin, 2003; Chen & Jiao, 2009). This is because choosing a central-

difference-based time step satisfies k�t2
T

�1
Sk < 1, and thereby .T C �t2

S/�1 D .I C

B C B
2 C � � � /T�1 with B D ��t2

T
�1

S, which can converge in a few terms. The

computational cost of multiplying .T C �t2
S/�1 by any vector is simply the cost of a

few matrix-vector multiplications of either T
�1b or Sb type, with b being a vector. By

taking BT
�1f as an example, with f being a vector, it can be done in sequence from

right to left, which consists of one linear-complexity computation of f1 D T
�1f , since T

is either diagonal in nature or can be solved in linear complexity, with one sparse matrix-

vector multiplication Sf1 denoted by f2 and another linear-complexity computation for

obtaining f3 D ��t2
T

�1f2. After computing BT
�1f , the result of which, denoted by

f3, can be reused for the following computation, since B
2
T

�1f can be computed as Bf3

instead of starting from scratch. The same approach applies to the following terms.

In addition to avoiding expensive matrix solutions, the scheme shown in Eq. (20)

also accelerates the convergence of the eigenmodes, since now

jzj D
1

p

.1 C �t2�i /
; (21)

which can be obtained by performing a z-transform of Eq. (20). As a result, the con-

vergence of all the non-DC eigenmodes of Eq. (11) is accelerated. However, the DC

eigenmodes, whose analytical eigenvalues are zero, have the same slow convergence

rate as that in the original central-difference-based explicit marching. As a result, even



Explicit and Unconditionally Stable Time-Domain Method 205

though non-DC modes converge in a much smaller number of time steps, as long as the

DC mode has not converged to its accurate value, the inaccurate DC mode can delay

the accurate identification of other non-DC modes. In addition, the DC mode must still

be accurately obtained before terminating the preprocessing step for applications where

DC modes play an important role in the field solution. If the DC modes can be removed

from the preprocessing step, the preprocessing time to identify the non-DC stable modes

can greatly be shortened, while the DC mode can be separately extracted. Hence, it is

proposed to update the preprocessing scheme for finding the stable modes by changing

Step I-2-a as follows.

In Step I-2-a shown in Section 2, instead of adding the field solution vector u in V,

field solution u is added with its DC-mode component excluded. Thus,

V D Œu.t1/ � u0.t1/I u.t2/ � u0.t2/I : : : �; (22)

where u0.ti / denotes the DC-mode component of the field solution at time instant ti .

u0.ti / can be found in the following way. The field solution u.t/ at any time can be

written as

u.t/ D ˆ0y0 C ˆhyh D u0.t/ C ˆhyh; (23)

where ˆ0 denotes the eigenvectors corresponding to the zero eigenvalues of Eq. (11),

thus being DC modes; ˆh denotes the rest of the eigenvectors; and

u0.t/ D ˆ0y0: (24)

Multiplying ˆ
T
0 T on both sides of Eq. (23) and utilizing the property of ˆ

T
Tˆ D I

gives

ˆ
T
0 Tu.t/ D y0: (25)

Substituting Eq. (25) into Eq. (24),

u0.t/ D ˆ0ˆ
T
0 Tu.t/: (26)

The number of DC modes can be large since the nullspace of Eq. (11) is large. How-

ever, all eigenvectors in the nullspace (ˆ0) share a common zero eigenvalue. For a given

right-hand side b, their contributions to the field solution can be represented by a single

vector, V0V
T
0 b, for any frequency and at any time (Zhu & Jiao, 2012). Denoting this

single vector by w0, it is orthogonalized with respect to T. u0.t/ in Eq. (26) can then be

obtained as

u0.t/ D w0w
T
0 Tu.t/: (27)

Next, it is shown how to quickly obtain w0.

The single vector w0, which carries the contributions to the field solution from

all null-space eigenvectors for a given right-hand side, can be obtained by solving the

frequency-domain counterpart of Eq. (1) at one relatively low frequency (Zhu & Jiao,

2012) as follows:

.S � !2
T/ Qu D Qj ; (28)

where Qu and Qj are the frequency-domain counterparts of u and j , respectively. When

the problem size is large, solving Eq. (28) can still be a computational challenge. This
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challenge can be overcome by a rigorous divide-and-conquer algorithm for fast DC-mode

extraction (He & Jiao, 2013). In this algorithm, the original large-scale system matrix

shown in Eq. (28) is rigorously decomposed into small sparse matrices that are fully

decoupled, and then the solution of Eq. (28) is synthesized from the null-space of the

small sparse matrices.

Except for the change of Step I-2-a based on the aforementioned algorithm, the

other steps in the preprocessing scheme of He et al. (2012), summarized in Section 2,

remain the same. With the aforementioned algorithm, all non-DC stable modes are

found in a significantly reduced number of time steps, thus reducing p. Combining

the non-DC stable modes identified from the updated preprocessing scheme with the

DC-mode w0 separately extracted from Eq. (28), the space of stable modes is completed

based on the second step; i.e., explicit and unconditionally stable time marching can be

performed.

4. Numerical Results

The first example is a parallel plate whose height, width, and length are 1, 2, and 900 �m,

respectively. The computational domain is truncated by a perfect electric conductor

(PEC) on the top and at the bottom, a perfect magnetic conductor (PMC) on the left

and right boundaries, and two air regions backed by the first-order absorbing boundary

conditions in the front and at the back. The space resolution along x, y, and z is 1,

1, and 300 �m, respectively. The parallel plate structure is excited by a current source

launched from the bottom plate to the top plate at the near end, while the voltages are

extracted between the two plates at the near and far ends. The current source is the

derivative of a Gaussian pulse with I.t/ D 2.t � t0/ exp.�.t � t0/2=�2/, where t0 D 3�

and � D 8 � 10�11 sec.

The time step required by accuracy is 10�13 sec, and that by stability is 10�15 sec,

yielding an optimal speedup of 100. The method in He et al. (2012) requires 1,900 steps of

explicit time marching in the preprocessing procedure to build an accurate and complete

space of stable modes for the given time step of 10�13 sec. In contrast, the proposed

fast method only costs 600 time steps in finding the same set of non-DC stable modes.

The accuracy parameters "1 and "2, used in Eqs. (6) and (7), are chosen as 10�3 and

10�2, respectively. The time-domain solutions are sampled every 50 steps to perform

the computing tasks in Step I-2 shown in Section 2. The square roots of the non-DC

stable modes are found to be 3:684 � 1011, 7:965 � 1011, 1:141 � 1011, 1:827 � 1012,

and 1:849 � 1012 rad/s, respectively. The DC mode for the given right-hand side is

extracted by the fast DC-mode extraction algorithm (He & Jiao, 2013) at 5 GHz with

negligible cost. To finish the entire time-domain simulation in a time window of 0.5 ns,

the conventional explicit time-domain method must simulate 5 � 105 steps. The speedup

of the proposed method, � 5 � 105=600, is over 800 as compared to the conventional

explicit time-domain method and is hence much more than the optimal speedup 100 in

this example. The voltages waveforms sampled at the near and far ends of the structure,

as shown in Figure 1, agree very well with those obtained from the conventional explicit

time-domain method.

The second example is a 600-�m-long on-chip interconnect with three metal layers

and four dielectric layers, as shown in Figure 2 (He et al., 2012). The relative per-

mittivity "r is given on the left-most side of the figure from the bottom layer to the

top layer. The thickness of each layer is shown on the right-most side, with the unit



Explicit and Unconditionally Stable Time-Domain Method 207

Figure 1. Voltage waveforms of parallel-plate structure simulated from the proposed method in

comparison with reference solutions.

being 0.1 �m. The width of each segment along the horizontal y-direction is also

listed in Figure 2. The current source is the same as that used in the first example,

and it is launched from the bottom metal plate to the center wire as well as from the

top metal plate to the center wire, as shown by the arrows in middle of the figure.

The computational domain is truncated by the same conditions as used in the first

example. The time step required by accuracy is 8 � 10�13 sec, and that by stability

is 10�16 sec, yielding an optimal speedup of 8,000. The method in He et al. (2012)

requires 14,800 steps of explicit marching in the preprocessing procedure to build an

Figure 2. Cross-sectional view of 3D on-chip interconnect (geometrical unit is 0.1 �m).
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Figure 3. Voltage waveforms of 3D on-chip interconnect simulated from the proposed method in

comparison with reference solutions.

accurate and complete space of stable modes for the given time step of 8 � 10�13 sec.

In contrast, the proposed fast method only needs 1,800 time steps to find the same space

of stable modes accurately. The accuracy parameters "1 and "2 are both chosen as 10�3.

Two non-DC stable modes are identified from the updated preprocessing step, the square

roots of whose eigenvalues are 7:20873�1011 and 1:57404�1012 rad/s, respectively. The

DC-mode is separately extracted by solving Eq. (28) at 5 GHz using the fast algorithm

in He and Jiao (2013). To finish the entire time-domain simulation in a time window

of 2 ns, the speedup of the proposed method is approximately 2 � 107=1,800 over the

conventional explicit time-domain simulation, which is more than optimal. Once again,

excellent agreement with reference solutions is observed in the time-domain results, as

can be seen from Figure 3.

5. Conclusions

The optimal speedup of an explicit and unconditionally stable time-domain method,

without sacrificing accuracy, is the ratio of the time step required by accuracy to the

time step determined by stability. This work develops an explicit and unconditionally

stable TDFEM with a speedup greater than optimal speedup. Numerical experiments

have demonstrated its superior performance.

Funding

This work was supported by a grant from Intel Corporation, a grant from the Office

of Naval Research (award N00014-10-1-0482), and a grant from the National Science

Foundation (NSF; award 1065318).



Explicit and Unconditionally Stable Time-Domain Method 209

References

Chen, D., & D. Jiao. 2009. Time-domain orthogonal finite-element reduction-recovery (OrFE-

RR) method for electromagnetics-based analysis of large-scale integrated circuit and package

problems. IEEE Trans. CAD 28:1138–1149.

Gedney, S. D., & U. Navsariwala. 1995. An unconditionally stable finite-element time-domain

solution of the vector wave equation. IEEE Microw. Guided Wave Lett. 5:332–334.

He, Q., H. Gan, & D. Jiao. 2012. Explicit time-domain finite-element method stabilized for an

arbitrarily large time step. IEEE Trans. Antennas Propagat. 60:5240–5250.

He, Q., & D. Jiao. 2012. An explicit and unconditionally stable time-domain finite-element method

of linear complexity. The 11th International Workshop on Finite Elements for Microwave

Engineering (FEM2012), Estes Park, CO, 4–6 June.

He, Q., & D. Jiao. 2013. A rigorous divide-and-conquer algorithm for fast DC-mode extraction.

IEEE International Symposium on Antennas and Propagation, Orlando, FL, 8–12 July.

Jiao, D., & J. M. Jin. 2002. Finite element analysis in time domain. In The finite element method

in electromagnetics, 529–584. New York: John Wiley & Sons.

Jiao, D., & J. M. Jin. 2003. Three-dimensional orthogonal vector basis functions for time-domain

finite element solution of vector wave equations. IEEE Trans. Antennas Propagat. 51:59–66.

Movahhedi, M., & A. Abdipour. 2007. Alternation-direction implicit formulation of the finite-

element time-domain method. IEEE Trans. Microw. Theory Tech. 55:1322–1331.

White, D. A. 1999. Orthogonal vector basis functions for time domain finite element solution of

the vector wave equation. IEEE Trans. Magnet. 35:1458–1461.

Zhu, J., & D. Jiao. 2012. Fast full-wave solution that eliminates the low-frequency breakdown

problem in a reduced system of order one. IEEE Trans. Compon. Packag. Manufact. Technol.

2:1871–1881.


