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An Unsymmetric FDTD Subgridding
Algorithm With Unconditional Stability

Jin Yan

Abstract—To preserve accuracy in a grid with arbitrary
subgrids, a finite-difference time-domain (FDTD) subgridding
scheme, in general, would result in an unsymmetric numerical
system. Such a numerical system can have complex-valued eigen-
values, which will render a traditional explicit time marching
of FDTD absolutely unstable. In this paper, we develop an
accurate FDTD subgridding algorithm suitable for arbitrary
subgridding settings with arbitrary contrast ratios between the
normal grid and the subgrid. Although the resulting system
matrix is also unsymmetric, we develop a time-marching method
to overcome the stability problem without sacrificing the matrix-
free merit of the original FDTD. This method is general, which is
also applicable to other subgridding algorithms whose underlying
numerical systems are unsymmetric. The proposed FDTD sub-
gridding algorithm is then further made unconditionally stable,
thus permitting the use of a time step independent of space
step. Extensive numerical experiments involving both 2- and
3-D subgrids with various contrast ratios have demonstrated the
accuracy, stability, and efficiency of the proposed subgridding
algorithm.

Index Terms—Fast methods, finite-difference time-domain
(FDTD) method, stability, subgridding, unconditionally stable
methods.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method is one

of the most popular time-domain methods for electromag-
netic analysis [1], [2]. This is mainly because of its simplicity
and optimal computational complexity at each time step. The
conventional FDTD method requires a uniform orthogonal
grid. If there exist fine features in a structure, a fine space
step must be used to discretize them. Because of the connected
nature of an orthogonal grid, the regions where there are no
fine features are also discretized in a smaller space step. This
unnecessarily increases the number of unknowns to be solved.
Subgridding is an effective means to address this problem,
where fine grids are only placed in the necessary regions,
which need not to be conformal to the background regular grid.
In an FDTD subgridding method, the fields at the interface
between coarse and fine grids are typically estimated through
certain interpolation scheme. Such an interpolation may ruin
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the positive semidefiniteness of the original FDTD numerical
system, thereby causing instability. Meanwhile, the numerical
reflections at the interface between coarse and fine grids
and the different numerical dispersion in the two grids may
result in a worse solution accuracy. Therefore, a good FDTD
subgridding algorithm should guarantee both stability and
accuracy.

In the literature, an extensive work has been done to tackle
the FDTD subgridding problem. In [3], an initial run is
made on a coarse grid, the result of which is then used as
the boundary condition for a second calculation where the
grid in the region of interest is refined. Later, a variable
step-size method was developed in [4]. It provides a direct
interpolation scheme to update fields in both coarse and fine
grids simultaneously when a grid contrast ratio is 2. It also
develops an interpolation scheme based on the wave equation
for a contrast ratio of 3. The wave-equation-based scheme
was improved to be a mesh refinement algorithm in [S] by
interpolating a second-order difference at each mesh node,
and later extended to be a multigrid displacement method by
adding a buffer zone between coarse and fine meshes in [6].
To handle material traverse, a new subgridding algorithm in [7]
was developed for odd contrast ratios. Later, a multigrid
current method was proposed in [8] to handle any contrast
ratio by using a weighted current value from the coarse region
at the mesh interface to update the fine-region tangential fields
on the same interface. To minimize the numerical reflection,
Okoniewski et al. [9] proposed a new arrangement of mesh
where the coarse and fine mesh are offset in all directions.
Such a mesh allows the development of a pulsing overlapping
scheme where the outermost layer of the fine mesh is dropped
during update, but the mesh is expanded back to its original
size at the end of each update cycle. Instability, especially
late-time instability, has been observed in many of the afore-
mentioned subgridding algorithms. Various approaches have
been proposed to remedy this issue [6]-[9]. However, they still
lack a theoretical study on the stability. In [10], a subgridding
scheme with a reciprocal interpolation scheme was developed
in a recessed subgridding interface with stability guaranteed,
but the solution accuracy is compromised.

In [11] and [12], a class of subgridding algorithms was
developed in the framework of the finite integration technique
and the stability of this method is controlled by maintaining the
consistency of the field coupling scheme. It has handled cases
where the contrast ratio is 2. Another subgridding method
based on the finite element method was proposed in [13]. The
concept of maintaining the consistency of the field coupling
scheme can also be found in [14], which is based on an
equivalent passive network method. All of these methods
involve hybridization with other methods.
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Among existing FDTD subgridding algorithms, the consis-
tency of the field coupling scheme or reciprocity has been
widely adopted as a viable means to ensure stability. In other
words, if a field unknown A is used to generate a field
unknown B, then the field unknown B should also be involved
in the generation of the field unknown A. In some algorithms,
the coupling coefficient from A to B and vice versa are also
enforced to be equal. This certainly limits the accuracy of the
interpolation schemes as well as the meshing flexibility in a
subgridding scheme.

In this paper, to systematically control the stability of the
FDTD subgridding algorithm without sacrificing accuracy,
we first reformulate the FDTD algorithm from the original
edge-based dual-grid one to a new patch-based single-grid
formulation. Using this formulation, we only need to generate
one column vector and one row vector for each patch in a
single grid, regardless of whether the grid is 2-D or 3-D, it has
subgrids or not, and the grid/subgrid is uniform or nonuniform.
The product of the column vector and the row vector of each
patch is a rank-1 matrix. The system matrix is simply the sum
of the rank-1 matrices. Based on this new representation of
the FDTD algorithm, the stability of the FDTD-based methods
can be readily analyzed for both regular grids and grids having
subgrids. In a regular grid, each rank-1 matrix comprising the
FDTD system matrix is symmetric positive semidefinite, and
hence, the sum of them remains to be positive semidefinite,
thus ensuring the stability. In other words, one can always find
a time step to make the explicit FDTD time marching stable.
However, when subgrids are present, since field unknowns
at the interface would have to be interpolated from adjacent
unknowns to ensure accuracy, the resultant rank-1 matrix
is usually unsymmetrical. When the unsymmetrical matrix
has complex-valued or negative eigenvalues, it will make a
traditional explicit marching absolutely unstable. However,
in general, we cannot rule out these eigenvalues from an
unsymmetrical matrix. Even though the unsymmetrical matrix
generated from each patch has nonnegative real eigenvalues,
we cannot prove that the sum of these unsymmetrical matrices
has nonnegative real eigenvalues only. The property of a
symmetric matrix does not apply to an unsymmetrical matrix.
To overcome this problem, we propose a new time-marching
scheme, which preserves the FDTD’s advantage in matrix-free
time marching while remaining to be stable in the presence of
complex and negative eigenvalues. As a result, the proposed
method does not require reciprocal operations from one field
unknown to the other to guarantee stability. The proposed
time-marching scheme is also general, which can be used
to make other unsymmetrical FDTD subgridding algorithms
stable.

With the stability guaranteed in time, the interpolation
schemes can be developed solely to ensure accuracy. We hence
develop an accurate interpolation scheme to ensure the accu-
racy of the resulting subgridding algorithm. This scheme is
applicable to arbitrary contrast ratios between the normal gird
and the subgrid, as well as supporting nonuniform subgridding.
We also show that since there are only a few kinds of rank-1
matrices in the proposed algorithm, the maximum time
step permitted for a stable simulation can be analytically
analyzed. The proposed subgridding algorithm is then fur-
ther made unconditionally stable based on our prior work
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in [15] and [16]. Notice that the focus of this paper is an
accurate subgridding algorithm that is unsymmetric yet stable.
This is very different from [15] and [16] where a single
grid is used, whose focus is an unconditonally stable method.
Recently, in [17], we also developed a symmetric positive
semidefinite subgridding algorithm. However, this paper is
very different as it is unsymmetric while still being stable.
It provides more flexibility in interpolation for obtaining
interface unknowns, since there is no need to preserve a
symmetric system. Extensive numerical experiments involving
both 2- and 3-D subgrids with various contrast ratios have
demonstrated the accuracy, stability, and efficiency of the
proposed new subgridding method.

II. PROBLEM STATEMENT

In the original FDTD algorithm, one field unknown is
placed in a primary grid at the center point of each edge
and also tangential to the edge. The other field unknown
is placed in a dual grid in the same way. If there are N,
electric field unknowns and Nj, magnetic field unknowns, then
there are N, + Nj, equations in the FDTD-based discretization
of Maxwell’s equations. Essentially, we can view that each
equation is written for obtaining one electric or magnetic field
unknown, for example, obtaining the time derivative of one
electric field unknown from its surrounding magnetic field
unknowns and vice versa.

When there is a subgrid present in the discretization,
the original FDTD algorithm has to be modified. There are
also subgridding techniques that are not purely based on FDTD
anymore. However, using the original framework of FDTD
on the interface between the normal grid and the subgrid,
one would face the following problem. The generation of the
primary field unknown would require the dual field unknown at
the points that are not coincident with the points where the dual
field is generated from the primary field. A natural remedy to
this problem is to interpolate the unknown dual field at the
desired point from the known dual fields at adjacent points.
Such an interpolation scheme is not unique. However, its effect
on accuracy and stability is different. A theoretical stability
analysis is still lacking in many subgridding algorithms. On the
other hand, late-time instability has been observed from many
existing techniques. When instability occurs, there is no fun-
damental way forward to correct the stability problem.

Next, we will first present the proposed theory for making
an FDTD subgridding algorithm stable in general subgrid
settings. We then proceed to the details of the proposed
subgridding method.

IIT1. PROPOSED THEORY

A. Single-Grid Patch-Based FDTD Formulation When
Subgrids Are Present

To facilitate the development of a subgridding algorithm,
we adopt an alternative formulation of the FDTD. If we
term the original FDTD formulation an edge-based dual-grid
formulation (as each edge in the primary and dual grid is asso-
ciated with one field unknown), this alternative formulation is
a patch-based single-grid formulation we recently developed
in [15] and [16]. In the original formulation, since an edge-
based approach is used together with dual grids, when there
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Fig. 1. Tllustration of a patch-based discretization of Faraday’s law.

are subgrids, there are many scenarios to consider. In contrast,
the proposed new formulation is based on patches in a single
grid. As a result, the subgridding scenarios to be considered
become only a few kinds. Next, we provide a brief review of
this new formulation in the context of subgridding.

Consider a general 2-D or 3-D grid. For each patch, based
on the FDTD algorithm, we obtain the magnetic field normal
to the patch at the patch center, h;, as follows:

el
1 1 1 1 e oh;
T s T s xr 0 i 2 :_/ul_l (1)
Li L W, Wi e3 ot
es

where subscript i denotes the patch index and e denotes the
tangential electric field at the center point of every edge in
the patch, as shown in Fig. 1. L; and W; are the two side
lengths of patch i, and u; is the permeability at the patch
center. Equation (1) can be rewritten as
oh;
ot

where [e]; denotes the column vector containing all of the
electric field unknowns of patch i, and [b]iT is a row vector of

[b]T— 1 1 1 1 3)
L oL L w o wi ]

If {e} is a vector consisting of all N, electric field unknowns
in a grid, (2) can be rewritten as

(b1 [el; = —ui 2)

oh;

(b} e} = —pi—+ )
in which {b}; is [b]; in (3) extended to length N,, such that
{b}iT{e} = [b]iT[e],-. Obviously, {b}; has only four nonzero
entries as follows:

{b)i(g(i, k)) = [b1i (k),

in which g(i, k) denotes the index of the kth electric field
unknown of patch i in the global electric field vector {e}.
Considering all patches present in the mesh, the discretization
of Faraday’s law can be represented as

ofh
Sele} = —diag{ﬂ}% (6)

k=1,2,3,4 (5)

where {h} contains all of the 4 unknowns whose number
is Nj, diag{u} is a diagonal matrix of permeability, and {b}iT
is the ith row of S,.
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In a general patch present in a grid with subgridding, the row
vector shown in (3) will be different. However, its entries
remain to be the weighting coefficients of the electric field
unknowns along the contour of a patch for generating the
normal magnetic field at the patch center. To be more specific,
[p]; has m entries, where m is the number of electric field
unknowns along the contour of patch i. An arbitrary kth entry
of [b];, [b]i(k), is simply the weighting coefficient of electric
field unknown e; used to generate h;. Its sign is determined
by the right-hand rule. With the right-hand thumb pointing
to the direction associated with %;, if e;’s direction is along
the direction encircling the A;’s direction, the sign is positive.
Otherwise, the sign is negative.

In the original FDTD formulation, the discretization of
Ampere’s law is performed on a dual grid, resulting in the
following matrix equation:

0
(SnIN, xn, th} = diag{f};—f} +{/} (N

where {h} contains all of the 4 unknowns whose number is N,
diag{e} is a diagonal matrix of permittivity, and {j} denotes
a current source vector. Each row of (7) simply denotes a
discretized curl operation performed on the magnetic fields
producing the time derivative of an electric field.

In the alternative formulation, we rewrite (7) as follows:

{a}1hy+H{a}oho + - - -+ {a}n,hn, = diag{é}%-l-{j} (8)

where the matrix-vector multiplication of Sj{h} in (7) is
realized as the sum of weighted columns, instead of the
traditional row-based computation which we are more familiar
with. Here, {a}; is simply the ith column of S;, and h; is
the ith entry of vector {h}, which is nothing but the normal
magnetic field at the center of patch i. Based on how Ampere’s
law is discretized in the FDTD method, it is evident that {a};
has only nonzero entries at the rows whose indexes correspond
to the electric field unknowns generated from #;. In a regular
grid, h; is used to generate four electric field unknowns, which
are those along the four sides of patch i. Hence, {a}; has
only four nonzero elements, where all the others are zero.
Removing the zeros, {a}; simply becomes a vector of length
four in each patch as follows:

Li |, )

Clearly, it is the same as [b]; in a uniform grid.

In a general patch present in a grid with subgridding,
the column vector [a]; can become different from that shown
in (9). However, its entries remain to be the weighting coef-
ficients of the magnetic field used to generate the electric
field unknowns. To be more specific, an arbitrary kth entry
of [al;, [ali(k), is simply the weighting coefficient of 4; used
to generate e.

Though mathematically identical to (7), (8) allows us
to discretize Ampere’s law in the original grid of E and
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use the same patch-based approach. Basically, to discretize
Ampere’s law, we also loop over all the patches in the
original grid. On each patch, we generate a column vector {a};
(i=1,2,..., Np). Scaling {a}; by h; and summing it up over
all the patches in the original grid, we obtain the discretization
of the curl of H, as shown by the left-hand side of (8).

Now, if we take a time derivative of (8) and substitute (4)
into it, we obtain

Np

1 ey o)
; (;{a}i{b}f) fe} = —diagle}—5- — —— (10)
which can be compactly written as
0*{e} 1) 8
6[2 + C{E} = —dlag [g] 7 (11)
where
1) < g
C = diag { ;] > ;{a}f{b}? (12)

i=1

which is clearly the sum of the rank-1 matrix obtained from
each patch.
When loss is involved, (11) is augmented by one first-order

time derivative as follows:
1] o{j}
-1 — 13
g[e] PR CE)

2
aajj} +D, % + Cle) = —dia
where D, is a diagonal matrix whose entries are o /€.

In the patch-based formulation, after [a]; and [b]; are
obtained for each patch, we can use them to perform a leap-
frog time marching based on (4) and (8). We can also directly
solve (11) or (13) as a second-order differential equation
in time.

B. Stability Analysis of FDTD Without and With Subgrids

The stability of the first-order systems (4) and (8) as well
as the second-order based (11) is determined by the following
eigenvalue problem:

Cx = Ax. (14)

To analyze the stability, we can expand the field solution {e}
by using the eigenvectors of (14), obtaining

{e} = Viy}

where V denotes a matrix whose columns are eigenvectors.
Substituting (15) into (11) and multiplying both sides of (11)
by VT, we obtain

15)

*{y}

Fra vicviy} =0

viv

(16)

where source is removed as it is irrelevant to the stability
analysis. Since VICV = VIVA, where A is the diagonal
matrix of eigenvalues 4;, (16) becomes

0%yi
or?

+ilyl:09 (12192’9N€) (17)
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Performing a z-transform of the above, if all the eigenvalues
A; are nonnegative real, a time marching based on central
difference scheme would be stable as long as

2
v /lmax

where Amax is the largest eigenvalue. In this case, (11) can be
marched on in time explicitly as

At <

(18)

{e)'! = 2—APC){e}" (e}~ — Ar*diag {1] (M) :

€ ot
(19)

For a lossy system, as shown in [18], the time step is also gov-
erned by (18), where Amax is the maximum eigenvalue of C.

However, when the eigenvalues of C are complex-
valued or negative, no time step can make (17) stable [18].
In an FDTD subgridding scheme, since interpolations are
used to obtain the unknown fields at the subgrid interfaces,
the resulting rank-1 matrix of each patch is not symmetric.
The same is true for the global system matrix assembled from
each patch’s contribution. An unsymmetric matrix can have
complex-valued eigenvalues or even negative ones. In many
cases, one can prove the eigenvalues of Maxwell’s system to be
nonnegative if they are real. However, in general, the complex
eigenvalues cannot be ruled out. This can also be numerically
verified. When this happens, an FDTD subgridding algorithm
is absolutely unstable.

C. How to Guarantee Stability When the System
Matrix Is Unsymmetric?

The aforementioned stability problem for an unsymmet-
ric matrix can be resolved by first employing a backward-
difference scheme to discretize (11) as follows:

I+ APC) e} = 2{e}" — (e} ! (20)
A\ n+l
— At’diag [1] (@) @D

€ ot

Since a backward-difference scheme is unconditionally stable,
we are allowed to use an arbitrarily large time step. However,
by doing so, we have to solve a system matrix of (I + Ar>C).
To retain the matrix-free merit of the FDTD, we can choose the
following time step to perform the backward time marching:

1
v Mmaxl .

With the above, p (Ar>C) = |At*imax| < 1 is satisfied, where
p(-) denotes the spectral radius of (). Hence, the inverse of
I+ A72C becomes explicit, which can be evaluated as

I+ A2C) =1 = AP2C+ (AFPC)? — - -

At < (22)

(23)

The above series can be truncated at the kth term without
sacrificing accuracy, where k is usually less than 10 as (22)
is satisfied. Since (23) does not involve any matrix inversion,
we can still obtain the solution in (20) explicitly as follows:

ey = A= APCH+ -+ (=DNAZOM) (24

where { f} denotes the terms moved to the right-hand side.
Therefore, no matter whether the system matrix C is
symmetric or not, we can find the solution explicitly via
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Fig. 2. Tllustration of a grid with subgrids. (a) 2-D. (b) 3-D.

either (19) or (24) without incurring any instability. More
importantly, the choice of the time step shown in (22) also
agrees with the choice of the time step of the traditional
explicit time marching. Hence, we do not sacrifice in the
size of time step while making the inverse of the backward-
difference-based system matrix explicit.

IV. PROPOSED SUBGRIDDING ALGORITHM WITH
GUARANTEED STABILITY AND ACCURACY

In an FDTD grid with subgrids, the patches can be cate-
gorized into two big classes. One has its regular [a] and [b]
vectors. The other class of patches has modified [a] and [b]
vectors, because the fields along the subgrid edges have to
be obtained through interpolations across patches to ensure
accuracy. Based on the stability analysis in Section III-B, it is
not necessary to have the two curl operators to be reciprocal
to guarantee stability, and thus, the interpolation scheme can
be made very flexible. Since the field solution in the FDTD
algorithm is known along three orthogonal directions in an
orthogonal grid, the interpolation can be carried out in three
directions to achieve good accuracy. In this section, we develop
a novel FDTD subgridding algorithm with a guaranteed accu-
racy. This algorithm supports an arbitrary contrast ratio of
the regular grid size to the subgrid size. It also allows for
nonuniform grids in both regular and subgrid regions.

Considering a regular grid involving subgrids as shown
in Fig. 2(a) and (b), we place all of the electric field unknowns
along the edges of the grid and at the center of each edge.
Thus, our {e} is composed of tangential electric field along
each edge in the regular grid (regular edge), in the subgrid
(subgrid internal edge), and on the interface between the
regular grid and the subgrid (subgrid interface edge), as shown
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in Fig. 2(a). The magnetic field unknown is placed at the
center of each patch, along the normal direction of the
patch. Thus, {h} consists of the magnetic fields normal to
each patch at the patch center. It is also worth mentioning that
although both positive and negative directions can be chosen
as the reference direction of the electric field unknown along
each edge, we choose the conventional positive x-, y-, and
z-directions. The same is true for the reference direction of
the normal magnetic field at the patch center.

A. Building Column Vector [a] and Row Vector [b]T for
Each Patch With Guaranteed Accuracy

A grid can involve many patches. However, we find that
regardless of a 2-D or 3-D grid, the patches can be categorized
into three irregular types based on their corresponding [a]
and [b] vectors. This is attributed to the proposed patch-based
formulation, which makes the resultant subgridding algorithm
suitable for both 2-D and 3-D grids with almost no change.
Next, we elaborate the construction of [a] and [b] vectors for
each type of the irregular patches.

1) Irregular Patch Type 1: This patch is a coarse patch in
the regular-grid region, but having at least one side shared
with the subgrid region, as shown by the patches marked
as 1 in Fig. 2(a) and (b). For convenience of explanation,
we consider one side with subgridding. Along this side, there
are more than one edges due to subgridding. Let the number
of edges on this side be n, and the length of the jth edge be /;.
The /; can be the same for all edges. It can also be different
in different edges, as shown in Fig. 2(a).

To generate the magnetic field at the coarse patch center,
we need to use the tangential electric field at the center of
each side. For the side having subgrids, the electric field
unknowns are placed at the center of each subgrid edge.
Hence, the electric field at the center of the side needs to
be obtained from the subgrid electric fields. This can be
accurately done as follows:

n l
2: J
e = _L,-ej

J=1

(25)

in which L; is the entire length of the side, where subscript
i denotes the patch index. The resulting row vector [b]iT for
this patch can be written as

1 1 1 1
bl = |——, —, —, ——0T 26
[]l [ Li,Ll’,Wi, Wiv } ( )
where
L1 l
ol = |1, 22 27)
L L; L;

Hence, [b]iT is no longer of length 4, but of length 3 4 n. The
accuracy of the resulting (2) is of second order. This is because
if we perform a line integral of the electric field along the
contour of the patch using the electric field unknowns located
on the contour, and equate it to —u (6h; /ot) at the patch center
multiplied by the patch area, we will obtain (26).

The above [b]iT is written for the case when the fourth
electric field in a patch is associated with the subgrids. If it
is another electric field, say the jth electric field, the ol
is multiplied to the jth entry of the original [b]l.T, and the
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Fig. 3. Tllustration of the interpolation scheme.

denominator of (27) should be changed to the length of the
side having subgrids. If there are multiple sides shared with
the subgrid region, then o’ will be attached to each entry
associated with the subgridding side.

To construct column vector [a]; for this patch, we need
to find out how the magnetic field at this patch is used to
generate electric field unknowns. Within this patch, the electric
field unknown along the regular edge is obtained from the
magnetic field at the center of this patch and the other one
at the center of the adjacent patch sharing the regular edge.
Hence, the corresponding entry in [a]; is the same as that in a
regular discretization, which is =(1/L;), =(1/W;), or another
one if a nonuniform grid is used. However, to ensure accuracy,
the electric field along the subgrid interface edge cannot be
obtained in the same way. Taking one subgrid interface edge
highlighted by a red arrow in Fig. 3 as an example, to obtain
the electric field accurately at the edge center, we need to
know the magnetic field at the point marked by x above the
red arrow. Since the magnetic fields are only known at the
center of every patch, the magnetic field at this point has to
be interpolated. Here, we perform a linear interpolation using
the magnetic fields at adjacent patches, since it can provide a
second-order accuracy.

To explain this interpolation scheme, let the coarse patch
being considered be patch i. The subgrid interface edge must
be shared by patch i and a fine patch in the subgrid. Let this
fine patch be patch j, as shown in Fig. 3. Let the magnetic
fields at the center points of the two patches be, respectively,
h{ and nt , where we use the superscript to indicate whether
the patch is coarse or fine. To interpolate the magnetic field
at the marked point accurately, we also find another coarse
patch k. This patch and patch i share a regular edge in
common, and this regular edge is perpendicular to the subgrid
edge and closer to the subgrid edge in between the two regular
edges of patch i. We denote the magnetic field at the center
of this patch by hj. The magnetic field at the marked point
can then be accurately interpolated as

h (d d t
h =2 (_2;,; + _lhg) + ) (28)

t \ d d

where 11, 1, di, and d are distances labeled in Fig. 3, and
t = t1 +t and d = d; + d>. These distances can be
readily found from the coordinates of the three patch centers.
Obviously, a linear interpolation along all directions is used
to obtain the magnetic field at the marked point. With 4,
the electric field at the subgrid interface edge can be accurately
obtained from the magnetic field at the fine patch center and
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that at the marked point as follows:

f
N Ly 29
ot W]f
Substituting (28) into (29), obviously, the coefficient in
front of h; for generating e; is —(l/ij)cj, where
c¢j = (©2/t)(d1/d) and the distance parameters are those
corresponding to the jth subgrid edge.
The aforementioned interpolation results in the follow-
ing [a]; vector:

(30)

in which u is a vector of

€19

where W/ is the width of the fine patch whose electric field
is generated from h; and ¢; (j = 1,2,...k) are positive
coefficients between 0 and 1. Here, k can be greater than n,
because the magnetic field at patch i may also be used to
obtain electric fields not belonging to patch i. To be specific,
on the patch i being considered, we can generate n such
c-coefficients, where n is the number of subgrid edges on the
side having subgrids. As shown in Fig. 3, this is the number
of subgrid edges on side BC. The rest of k —n entries in u are
due to other electric field unknowns generated from #;. In the
following, we will give a complete count of these electric field
unknowns.

In a 2-D setting, if along the adjacent sides of BC, namely,
right half of AB and left half of CD, there are subgrids,
then the electric fields on these subgrid edges will have to
be generated from h;. This is because h; will be used to
interpolate the missing magnetic field required to generate the
electric fields on those edges, as highlighted by a red mark
adjacent to C D. The same linear interpolation as shown in (28)
can be used, from which the corresponding c; coefficient
can be identified. In a 3-D setting, the three sides of AB,
BC, and CD become six patches perpendicular to patch i
and centering patch i, with three on one side of patch i and
the other three on the other side of patch i. All the subgrid
edges on the six patches along the direction of BC will be
related to h;. The electric field unknowns on these edges
will be interpolated in the same way, as shown in Fig. 3.
If coarse patches i and k for the subgrid edge do not exist
(this can happen for a subgrid edge falling onto the face of
a subgrid region), the adjacent coarse patches parallel to the
imaginary patch i and k can be used to interpolate magnetic
fields at the center points of imaginary patch i and k and
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subsequently used in (28). The resultant c¢; coefficients in front
of h; remain to be between 0 and 1. Regardless of 2-D and
3-D, since the electric field unknowns to be generated from
h; on patch i are all orientated in the same direction, the sign
of their corresponding entries in [a]; is the same. If there
are multiple sides shared with the subgrid region in patch i,
similarly, vector u will appear at the corresponding entry and
follow the original sign of the entry.

2) Irregular Patch Type 2: For this type, the patch is a fine
patch in the subgrid but with at least one side falling onto the
subgrid interface with the regular grid. This type of patches is
illustrated by patches marked by 2, and 21 in Fig. 2(a) and (b),
where subscript denotes the number of edges on the interface.

In such a patch, [b]iT remains the same as that in a
regular grid, but the length and width used are the fine-patch
counterparts. Thus, we have

, R S T
[b]l =77 7 oo |
L Li W, W,

However, [a]; is different. Again, to determine [a];, we need to
find out how the magnetic field at this patch is used to generate
electric field unknowns. Within the patch, among the four
electric field unknowns, two are not located on the interface
and thereby shared by two fine patches. They are generated
from h; in the same way as the regular ones. For the two
residing on the interface, each of them requires one magnetic
field that is outside the subgrid and unknown, as shown by the
marks in Fig. 3. Again, such a magnetic field is interpolated
from the magnetic fields at the three patch centers in the same
way, as shown in (28). Hence, the resultant [a]; vector is
- | -
b
Li(l c2)

(32)

[al; = (33)

where ¢» and c3 are positive coefficients between 0 and 1.
Based on (28), they have the form of ¢; = (¢1/¢) in which #;
and ¢ are distance parameters associated with the subgrid edge
residing on the interface. If only one edge of the fine patch
falls onto the interface between a regular grid and a subgrid,
only one ¢ coefficient is present. If edges 2 and 3 are not on
the interface but other edges, (33) can be simply permuted.

In addition, the magnetic field at this subgrid patch may
also be used to obtain electric fields elsewhere not belonging
to this patch. This can happen when the coarse patch has two
sides or more having subgrids. In this case, (33) will have
more than four entries, whose value can be readily determined
from the interpolation of the pertinent electric field unknown
from this patch’s magnetic field. However, regardless of the
number of other electric field unknowns generated from this
patch’s magnetic field, [b]iT is zero corresponding to these
other electric field unknowns.

3) Irregular Patch Type 3: This type of patches is a coarse
patch without any subgrid edges, i.e., it consists of the regular
edges only, as marked by patch 3 in Fig. 2(a) and (b).
However, the magnetic field at this patch is used to generate
electric fields elsewhere, and hence, the resultant [a]; vector
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is different from the regular one. This type of patches is those
patches that are connected with the subgrids through vertices
in both the 2- and 3-D grids.

In this type of patches, [b]iT remains the same as

[b]! = [

since four electric fields along the patch contour produce the
magnetic field at the patch center.
The [a]; vector, however, takes the following irregular form:

1 1 1 1
T s T s I, 0 1xs (34)
Li L Wi W,

[al; = (35)

L~k

where c¢;(j = 1,2, ...k) are interpolation coefficients whose
absolute value is between O and 1, but can be either pos-
itive or negative, k is the number of electric fields that
are generated from the magnetic field at this patch center,
and L' are the length parameter of the fine patch that has
electric field j.

We can also have a complete count of the electric field
unknowns generated from type-3 h;. Take patch k shown
in Fig. 3 as an example, and it belongs to type 3. All the
electric field unknowns along the left half of BC and upper
half of BE that have subgrids will have one entry in [a]; of
patch k. In 3-D settings, the side of BC becomes two patches
(of a coarse patch size) perpendicular to patch k and centering
patch k. All electric field unknowns along the subgrid edges
on the two patches and parallel with BC will be generated
from hy. Similarly, the side of BE also becomes two patches
perpendicular to patch k and also centering patch k. All electric
field unknowns along the subgrid edges on the two patches and
parallel with BE will be generated from /. The above can
be extended to the rest of three vertices of patch k, if through
those vertices, patch k is also attached to subgrids.

B. Estimation of Maximum Time Step

Due to the interpolation scheme, the time step estimated
from the Courant—Friedrichs—Lewy condition can be inaccu-
rate for a mesh involving subgrids. Although the maximum
time step can be calculated from the largest eigenvalue of the
system matrix, calculating eigenvalues of the global matrix can
be computationally expensive especially when the matrix size
is large, and thus, we should find an efficient way to estimate
the time step accurately.

One way is to use matrix norm. Since the spectral radius of
a matrix is bounded from the above by its matrix norm, we can
estimate the norm of the global system matrix C by analyzing
each rank-1 matrix, thus providing an upper bound of the time
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step used for time marching. Since the system matrix C can
be represented as diag{1/€}Spdiag{1/u}S., we have

p(C) = [Cll = || diag{1/€}Sp|l[|diag{1/u}S.]

which is true independent of the type of the norm used. For
example, if 1-norm is used, the above can be written as

(36)

p(C) = | diag{1/€}Spll1|diag{1/u}Sc 1 (37)
which is further bounded by
p(C) < | diag{1/€}Sxll1lIdiag{1/u}S,llo (38)

because the infinity norm (maximum absolute row sum) of S,
is no less than its 1-norm (maximum absolute column sum)
based on the structure of S,. Since each column of S, is an {a};
vector and each row of S, is a {b}iT vector, the above bound
can be quickly evaluated from {a}; and {b}iT of the rank-1
matrix of each patch. To be specific, the patch whose column
vector {a}; has the largest norm determines ||diag{1/e}Sx|l,
and the patch whose row vector {b}iT has the largest norm
determines ||diag{1/u}S.||1. Hence,

1
E%(maxi [{a}ill1) (max; [I{b}ill1)

min 4 min

p(C) < (39)
where subscript i, denotes the smallest entry.

The aforementioned method provides an upper bound that
may overestimate the actual spectral radius of C. Next, we pro-
pose another method to provide a more accurate bound of the
time step in a subgridding scheme.

We first rewrite (11) as

% +Cife) = —diagié] 6{a]t}", (i=1,....Ny) (40)
where
{e} ={e1} +{ea} + -+ {en,} (41)
C; is the rank-1 matrix of patch i, and
C=C+Cr+---+Cy,. (42)

Obviously, adding the Nj equations in (40), we obtain the
original equation (11). The Nj sets of equations in (40) can
be compactly written as

) &ps 1] o))
C{e} = —d -1 — 43
ot? + e lag[e] ot (“43)
where {e} = {e1,ea, ..., ENh}T, and
C 0 0 0 I111 o |
- 0 C, O 0 I111 |
C=| .
0 0 0 Cy, JLITT oo 1
= Caly (44)

which is a block diagonal matrix C; made of each patch’s
rank-1 matrix, multiplied by Iy whose block entry is L. I is
symmetric, whose 2-norm is also its spectral radius. This
spectral radius can be readily found as 1, since its nonzero
eigenvalue can be analytically found to be 1. As for the block
diagonal matrix Cy, its 2-norm is also its spectral radius,
because it is symmetric. Hence, the eigenvalue of a single
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patch’s matrix, whose value is the largest among all C; values,
determines the spectral radius of C as follows:

p(C€) < ICall2lllfll2 = p(Ca) = maxi (p(Cy)).  (45)

p(C;) is nothing but
p(Ci) = (b} {a)i.

This is because each C; is a rank-1 matrix whose form is
{a},-{b}iT . For such a matrix, it has only one nonzero eigen-
value, which can also be analytically found as {b}iT{a}i [16].

Since (11) is equivalent to (43), the time step for an explicit
yet stable simulation is bounded by

At < = - : '
J/max; (p(C;)) \/maxi ({b} {a}i)

(46)

(47)

As a result of the proposed method, the computational cost
is negligible to determine the choice of the time step. Since
there are only a few types of patches, thus C;, the maximum
of their spectral radius can also be readily identified. Next,
we provide a quantitative analysis for each type of patch.

1) Regular Patch (in a Uniform or Nonuniform Grid):
In both 2- and 3-D settings, the patches that are not adjacent
to the interface between a regular grid and a subgrid are
considered as regular patches. Their corresponding rank-1
matrices are

Co=| L (48)

where we omit the permittivity and permeability for
convenience.

Based on [16], the eigenvalue of a rank-1 matrix of {a}{b}”
is {p}T{a}, and hence, we have

2

+ .
Wi

2
p(Co) = (49)

72
L;
If L; = W;, the above is simply 4/L;.

In a nonuniform grid, the average width of the two patches
sharing the electric field edge is, in general, used for achieving
a better accuracy. In this case, Cy becomes

-1

_Ifll-

2 [ 111 1}
! i LW W

W1,
1

L w2,

Cy =

where the length parameters L1, L2, W1, and W2 are aver-
aged between two patches sharing the electric field edge. The
spectral radius of Cp should also be calculated accordingly.
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2) Irregular Patch Type 1: For every patch of this type,
the corresponding rank-1 matrix has the following form:

|

Ci &1V

I,
Li> Li> W;> W;

I
Sl

—u

in which o is the v shown in (27) extended to length k by
appending zeros at the end if k > n. For this rank-1 matrix,
its eigenvalue is

2 1 1
C)= =+ —+—ilu
p( 1) L2 Wiz Wi

1

(52)
3) Irregular Patch Type 2: For this type of patches, the cor-

responding rank-1 matrix has the following form:

_ | -

o | T 1111
2 = 1 Ll"Ll‘,Wl‘, :

where ¢, and c¢3 are nonzero or one of them is zero. When they
are nonzero, they are positive coefficients between O and 1.
More nonzero entries can also appear in the column vector {a}
for this patch depending on the subgrid configuration.
However, since the row vector {b} has only four nonzero
entries, the eigenvalue of this matrix is

2—c3
2
Wi

2—co
L?

1

+

p(Cr) = (54)

4) Irregular Patch Type 3: For every patch of this kind,
the corresponding rank-1 matrix has the following form:

p—

b
L.
1
"

Cs ! —L, zeros(1, k)i| (55)

1 1
Wi L, L W;" W,
Cl

Ly

L “k

where ¢; (j =1, ..., k) are interpolation coefficients that can
be either positive or negative, and k zeros are appended at the
end of the row vector. The spectral radius of C3 can be readily
calculated as

2

W (56)

2
p(C3) = —

+
2
L
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From the aforementioned analysis, it can be seen clearly that
for an explicit time marching, the time step of the proposed
subgridding scheme is determined by the fine patch residing
in the fine grid, since such a patch has the largest eigenvalue.

V. ExpPLICIT FDTD SUBGRIDDING ALGORITHM
WITH UNCONDITIONAL STABILITY

In the existing FDTD subgridding algorithms, temporal sub-
gridding schemes have also been developed to take advantage
of the large time step size permitted by the coarse grid and
localize the use of small time step in the subgrid region. In this
paper, we will leverage our prior work in [15] to make the
entire scheme unconditionally stable while still being explicit.
In other words, one can use a large time step size for both
regular and subgrid regions.

In a subgridding mesh, if the coarse grid size is chosen
based on accuracy requirements, the time step required by
stability can be estimated as the time step required by accuracy
divided by contrast ratio C R from the analysis of Section IV.
When CR is large, the time step required by stability is much
smaller than that required by accuracy. To tackle this problem,
one can separate the unknowns in the coarse grid from those
in subgrids and solve them in an explicit-implicit fashion.
One can also resort to temporal subgridding schemes. Here,
we provide an approach based on [15], where the source of
instability is found from the fine region and deducted from
the system matrix. As a result, an explicit FDTD subgridding
algorithm can also be made unconditionally stable. This per-
mits the use of a large time step size, solely determined by
accuracy regardless of space step, in both regular and subgrid
regions.

Given any desired time step At, we first categorize all the
cells in the grid into two groups. One group G, has regular cell
sizes and permits the use of the desired time step, while the
other group G includes all the fine cells in the subgrids and
their adjacent cells that require a smaller time step for a stable
simulation. Accordingly, C can be split into the following two
components:

C=Cr+C. 57)

where Cy is assembled from G and C. is from G.. Based
on (12), C can be obtained by summing up the rank-1 matrix
over all the patches in G and hence being

p

> Ly

i=1, ieG, 1

Cy :diag[%] (58)
in which p is the number of patches in the group G.

Let the E and H unknown number in Gy be ¢ and p,
respectively. If we eliminate the zero rows of {a}; and zero
columns of {b}iT, (58) becomes a small ¢ x g matrix, which
can be written as

C(f) — AqxpBT

f gxq pPXq (59)

where A stores all the p column vectors and B consists of
all the row vectors. We then find the largest / eigenvalues 4;
and their corresponding eigenvectors F;l{ ) of C f by using the
Arnoldi method. The complexity of doing so is only O (%g).
To check whether Fg{ ) are accurate approximations of the
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Fig. 4. Simulation of a 2-D wave propagation problem. (a) Mesh details.
(b) Simulated electric field at two observation points in comparison with
reference analytical solutions. (c) Entire solution error versus time for different
contrast ratios.

original eigenvectors of C, we extend F;l{ ) to Fy; of length N,
based on global unknown ordering. We then perform the
following accuracy check:

ICFp; — A;Fpill

(60)
ICF i

Those Fj; values satisfying the above accuracy requirement
are then identified as the unstable modes. They are first
orthogonalized to be Vj, and then deducted from the system
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Fig. 5. Ratio of numerical phase velocity to the speed of light as a function
of frequency for different grid ratios.

matrix as follows:

C, =C-V,Vjic. 61)

The above allows for a much larger time step than C. We then
perform explicit marching on the updated system matrix as

e}t =2{e}" — {e}" ! — APCile}" + AP {f)" (62)

followed by the following treatment to ensure that the resul-
tant {e} has no component in the V; space:

{e}"™ = {e)! — v, VH eyt (63)

Since the contribution of Vj, is removed from C, the time
marching of (62) is stable for the desired large time step.
When the time step is chosen based on accuracy, the removed
V), modes are not required for accuracy either [15], [18], [20],
hence ensuring accuracy.

VI. NUMERICAL RESULTS
In this section, we simulate a variety of 2- and 3-D examples
involving different subgrids to demonstrate the validity and
efficiency of the proposed method. The time step is determined
by the method described in IV-B, specifically (47). If the
unconditionally stable method is used, then the time step is
determined by the sampling accuracy for the given input.

A. 2-D Wave Propagation

We first simulate a wave propagation problem in a 2-D
rectangular region. The grid is shown in Fig. 4(a). Along
both the x- and y-axes, the coarse grid size is L, = 0.1 m.
To examine the validity of the proposed FDTD subgridding
method, the blue region is subdivided into fine grids where the
fine grid size is controlled by contrast ratio CR = AL./ALy.
Fig. 4(a) shows the mesh details when CR = 5. The incident
electric field is E" = $2(r — 9 — )c/c)e_(’_’o_x/c)z/r2 with
c=3x10% m/s, 7 = 2x 1078 s, and fy = 4z. All the boundary
unknowns are terminated by exact absorbing boundary condi-
tion. To check the accuracy of the proposed FDTD subgridding
method when CR = 2, we first sample the electric field at two
observation points located at (0.1, 0.05) m and (0.275, 0.3) m
and plot it in Fig. 4(b). Point 1 is inside the coarse mesh,
while point 2 is on the boundary of the subgridding region.
The reference result we use here is the analytical solution.
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TABLE I

SIMULATION PARAMETERS FOR 2-D WAVE PROPAGATION
PROBLEM WITH DIFFERENT CONTRAST RATIOS

Contrast Ratio 2 5 10 100
Time Step (s) 1.4e-10 | 4.9e-11 | 2.3e-11 2.3e-12
Num. of E FD.TD' 220 1300 5100 501,000
Subgridding 68 116 276 20256
Time (s) FD.TD' 0.12 0.68 3.92 11237.47
Subgridding 0.04 0.24 0.47 169.89
Speedup 3 2.83 8.34 66.14

For example, the analytical electric field at point r; along
the direction #; should be Ejn(r;) - #;. It is clear to see that
the simulated fields agree with the analytical solution very
well. To examine the solution error in the entire computational
domain, we calculate the relative error of the entire £ unknown
vector as ||{e} — {e}analll/Il[{€}analll at each time step with
contrast ratio being 2, 5, 10, and 100, respectively. The entire
solution error is shown in Fig. 4(c). Obviously, the solution
accuracy in the entire computational domain is always very
good for the four contrast ratios. The lower the contrast ratio is,
the better the accuracy is. Meanwhile, the accuracy is saturated
once the contrast ratio reaches a certain value.

In this example, we also examine the dispersion error of the
proposed subgridding method. The same pulse is used. The
electric field is sampled at the center point of the subgrid,
which is then Fourier transformed. The ratio of the Fourier
transformed response over the Fourier transform of the total
field, which is also the incident field for this free-space
example, is computed at the left boundary to extract the
numerical phase velocity. This velocity compared with the
ideal speed of light ¢ is plotted as a function of frequency
in Fig. 5. As can be seen, a good accuracy is observed in
the entire working frequency band. In addition, as expected,
the dispersion error at a higher grid ratio is shown to be greater
than that at a lower grid ratio.

To demonstrate the efficiency of the proposed FDTD sub-
gridding method, we also simulate the same problem using
the conventional FDTD method with uniform fine grids. The
simulation parameters are summarized in Table I. A significant
CPU time speedup is observed from the proposed subgridding
method as it uses many less unknowns than the conventional
FDTD method.

B. 3-D Wave Propagation

The second example is a free-space wave propagation
problem in a 3-D cube. The size of the computational domain
in each direction is 5.1 m. Along all the directions, the coarse
space step L. is 0.1 m, resulting in 132651 coarse cells.
The coarse cell at the center is further subdivided into fine
cells with contrast ratio being 5, and therefore, the fine
grid size Ly is 0.02 m. The total number of E unknowns in
the mesh is 414 240. The same incident field is supplied as that
of the first example. An exact absorbing boundary condition
is also supplied to all the unknowns on the boundary.

The existence of fine cells renders the time step of the
proposed FDTD subgridding method less than 4.0 x 107! s.
Since the analytical solution to this problem is known, we first
plot the simulated electric field at two observation points
in comparison with the analytical solution in Fig. 6(a).
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Fig. 6.  Simulation of a 3-D wave propagation problem. (a) Simulated
electric field at two observation points in comparison with reference analytical
solutions. (b) Entire solution error versus time. (c) Entire solution error versus
time when the unconditionally stable methods are applied to the proposed
FDTD subgridding method.

Point 1 is at (0.1, 0.1, 0.05) m and it is inside the coarse mesh.
The location of point 2 is (2.5, 2.5, 2.59) m and it is within
the subgridding mesh. Obviously, the electric field waveforms
at both points agree with the reference results very well.
To examine the solution accuracy in the entire computational
domain, in Fig. 6(b), we assess the entire solution error
measured by |{e} — {e}analll/||{€}analll, where {e} consists of
all 414240 E unknowns obtained from the proposed FDTD
subgridding method, while {e}anqa is from the analytical result.
As can be seen clearly, the proposed method is accurate
at all points and across the whole time window simulated.
The larger errors at early and late time are because the
denominator of the solution error is zero at those times.



4148

1.5 —Proposed
- - -Analytical

E
2
kel
2
Q
°©
8-
w
1.5 - - -
0 0.5 1 1.5
Time (s) x10™
(@)
—Proposed
- - -Analytical

1
E
2
o 0.5
2
Q
°©
o Qr
w

-0.5 !
1.4 1.45 1.5 1.55 1.6
Time (s) %1074
(b)

Fig. 7. Examination of late-time stability and accuracy of the subgridding
method. (a) Overall plot. (b) Details.

The proposed FDTD subgridding method takes 201.09 s to
finish the simulation. To demonstrate the efficiency of the
proposed method, we also discretize the same computational
domain into uniform fine grids and simulate the same wave
propagation problem in this domain using the conventional
FDTD method. This uniform fine mesh involves 50 135040 E
unknowns. The times step is the same as that used in the pro-
posed FDTD subgridding method, and it takes the conventional
FDTD method 29012.74 s. Therefore, the proposed FDTD
subgridding method is much faster than the conventional
FDTD method when fine features exist. This is because the
number of unknowns is reduced significantly.

We also simulated this example by using the proposed
unconditionally stable FDTD subgridding method. First of all,
the fine cells are identified, which involves 672 E unknowns
and 552 H unknowns, and then, 320 unstable eigenmodes
are extracted from C; assembled from fine cells only. After
the contribution of unstable eigenmodes is removed from the
system matrix, we are allowed to use A1 = 1.9x 10710 s that is
solely determined by accuracy for time marching. The entire
solution error compared with the analytical solution at each
time step is plotted in Fig. 6(c). It is evident that the accuracy
is preserved by comparing Fig. 6(b) with Fig. 6(c). Since the
proposed FDTD subgridding method can use a much larger
time step after the unconditionally stable method is applied,
it only takes 28.37 s to finish the simulation.

To investigate the late-time stability, we use a sinusoidal
source and simulate the same problem for a very long time
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Fig. 8. Simulation of a 3-D cavity excited by a current source. (a) Structure
details. (b) Simulated electric field at two observation points in comparison
with reference FDTD solutions.

using the proposed unsymmetric subgridding method. The
simulated electric field compared with the analytical solution
is plotted in Fig. 7 as a function of time. A good accuracy
is observed in the entire range, and no instability is observed.
The numerical phase velocity is extracted and its ratio to the
exact speed of light is found to be 1.0098.

C. 3-D Cavity With Current Probe Excitation

In this example, we simulate a 3-D cavity excited by a
current source, as shown in Fig. 8(a). The cavity is 1 cm
long in all directions and its six faces are all terminated by
the PEC boundary condition. The coarse grid size along each
direction is 1 mm except for the blue cube inside the cavity.
The blue cube is centered at (4.5, 4.5, 4.5) mm and 1 mm
long in all directions. It is filled with a conductive material
whose conductivity is 5.7 x 107 S/m. The blue cube is further
subdivided into fine mesh whose grid size is 0.2 mm, and
therefore, the contrast ratio CR for this problem is 5. Such
a subgridding mesh results in 4158 E unknowns. A current
probe is excited at (2, 2, 1.5) mm. The current is a Gaussian
pulse whose waveform is I = Zexp—(r —19)%/z%> with
r =2x 107" s and to = 47. As the reference, we also
simulate the same problem using the conventional FDTD
method with a uniform fine mesh. The total number of E
unknowns in this uniform fine mesh is 390 150. Since both
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Fig. 9. Simulation of a phantom head beside a wire antenna. (a) Relative
permittivity distribution in a cross section of the phantom head at z = 2.8 cm.
(b) Simulated electric field at two observation points in comparison with
reference FDTD solutions.

the subgridding mesh and the uniform fine mesh have fine
grids, the proposed FDTD subgridding method employs the
same time step as the conventional FDTD method, which is
At = 3.8 x 10713 s for comparison. In Fig. 8(b), the elec-
tric field sampled at point 1 (8, 8, 7.5) mm and point 2
(4, 4, 9.5) mm is plotted in comparison with the reference
solution. Overall, the accuracy of the sampled E-field is very
good. As for the CPU time, the proposed FDTD subgridding
method only takes 0.13 s to finish the entire simulation, while
the conventional FDTD method requires 38.68 s, and thus,
a significant speedup is achieved.

D. Inhomogeneous 3-D Phantom Head
Beside a Wire Antenna

The last example we study is a large-scale phantom
head [21] beside a wire antenna, which involves many
inhomogeneous materials. The size of the phantom head
is 28.16 cm x 28.16 cm x 17.92 cm. The permittivity
distribution of the head at z = 2.8 cm is shown in Fig. 9(a). All
the boundaries are truncated by perfect magnetic conducting.
The wire antenna is located at (3.52, 3.52, 2.52) cm, the current
on which has a pulse waveform of I = 2(z — to)e’(”t())z/f2
with 7 = 5.0x 10719 s and 7) = 4. The coarse step size along
the x-, y-, and z-direction is 4.4, 4.4, and 5.6 mm, respectively.
To capture fine tissues, two coarse cells at the center are

4149

subdivided into fine cells in all directions with contrast ratio
CR = 4, meaning that the fine grid size along the x-, y-,
and z-direction is 1.1, 1.1, and 1.4 mm, respectively. As a
result, the total number of E unknowns in this subgridding
mesh is 410300. In the conventional FDTD, if fine grids are
used everywhere, it would result in 25428 608 E unknowns.
Due to the existence of fine grids, both the proposed FDTD
subgridding method and conventional FDTD method use a
time step less than 2.2x 10712 s to ensure stability. In Fig. 9(b),
the electric field at two observation points whose locations
are (3.52, 3.52, 15.96) cm and (24.64, 3.52, 15.96) cm is
plotted in comparison with reference solution that is obtained
by simulating the same problem in a uniform fine grid using
the conventional FDTD method. It is clear that the result
from the proposed method agrees with the reference result.
Since the conventional FDTD method requires a uniform find
grid which has many more E unknowns than the proposed
FDTD subgridding method, the conventional FDTD method
takes 19222.16 s to finish the simulation.

The proposed unconditionally stable FDTD subgridding
method is also used to simulate this example. To do so,
the fine cells are first identified, which involve 724 electric
field unknowns and 594 magnetic field unknowns. Given
€ = 1072, 325 unstable eigenmodes are obtained accurately
from S;. With the unstable eigenmodes removed, the largest
time step that can be used is increased from 2.2 x 10712 s to
8.8 x 10712 s, which is also the time step solely deter-
mined by accuracy. As a result, the unconditionally stable
FDTD subgridding method only takes 159.23 s, including
the time for extracting unstable eigenmodes and explicit time
marching. However, without the unconditionally stable
method, the FDTD subgridding method needs 528.53 s to
finish the same simulation.

VII. CONCLUSION

In this paper, a novel unsymmetrical but stable FDTD
subgridding algorithm is developed for a general electromag-
netic analysis. We provide a theoretical analysis to show
that the explicit FDTD time marching can be made stable
if and only if all the eigenvalues of the governing system
matrix are nonnegative real. This is satisfied by the original
FDTD in a regular grid. However, in a subgridding algorithm,
the original FDTD discretization of the curl operators has to be
changed to ensure accuracy for field unknowns involved in the
subgridding. This change usually results in an unsymmetrical
system matrix supporting complex eigenvalues, and thus,
the resulting explicit FDTD time marching becomes definitely
unstable. Such an instability may not be observed at early
time, but it will appear at late time. To resolve this problem,
we propose a new time-marching scheme to stably simulate
the unsymmetrical system, in which the system matrix has an
explicit matrix inversion. As a result, the solution can also be
obtained explicitly without running into the stability problem.
This new time-marching scheme provides a flexibility to
develop interpolation schemes solely based on the accuracy
without concerning about the stability. It is also general for
use, applicable to other subgridding algorithms. Essentially,
this new scheme provides an effective means to explicitly
simulate an unsymmetrical numerical system with guaranteed
stability.
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In addition, in this paper, an accurate subgridding algorithm
is developed to generate the field unknowns on the subgrid
interfaces for both 2-D and 3-D grids. The algorithm allows
for an arbitrary grid contrast ratio. The time step allowed
for an explicit time marching can be analytically found by
analyzing the rank-1 matrices corresponding to the patches
adjacent to the subgrid interface. This subgridding algorithm is
then further made unconditionally stable. Extensive numerical
experiments involving both 2- and 3-D subgrids with various
contrast ratios have demonstrated the accuracy, stability, and
efficiency of the proposed general method and new subgrid-
ding algorithm.
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