
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 3, MARCH 2015 897

A Linear Complexity Direct Volume Integral
Equation Solver for Full-Wave 3-D Circuit
Extraction in Inhomogeneous Materials

Saad Omar, Member, IEEE, and Dan Jiao, Senior Member, IEEE

Abstract—An -matrix based linear complexity direct matrix
solution is developed for the volume integral equation (VIE) based
broadband full-wave extraction of general 3-D circuits. Such
circuits are in general electrically small or moderate, but contain
arbitrarily shaped lossy conductors immersed in inhomogeneous
dielectrics with ports located anywhere in the physical layout
of the circuit. In the proposed direct solver, we first develop a
well-conditioned VIE formulation without sacrificing the rigor and
the advantages of the prevailing formulations. This formulation
facilitates a robust direct solution of good accuracy even with a
rank-1 representation. We then overcome the numerical challenge
of solving the resultant highly unstructured system matrix mixed
with both square and rectangular dense and sparse matrices by
developing a fast linear complexity direct solution. This direct
solution is capable of inverting dense matrices involving over
2 million unknowns in less than 1 h on a single CPU core running
at 3 GHz. Numerical simulations of large-scale 3-D circuits and
comparisons with state-of-the-art linear complexity iterative VIE
solvers have demonstrated the accuracy, efficiency, and linear
complexity of the proposed direct VIE solver.
Index Terms—Circuit modeling, fast solvers, full-wave analysis,

impedance extraction, linear complexity solvers, S-parameter ex-
traction, 3-D structures, volume integral equations (VIEs).

I. INTRODUCTION

M ANY real-world problems are complicated in geom-
etry and inhomogeneous in materials, which are also

exposed to ambient conditions. The volume integral equation
(VIE) basedmethods [1]–[9] have a great flexibility inmodeling
both complicated geometry and inhomogeneous materials in
open-region settings. The new VIE formulation in [10]–[12] has
an added capability of permitting a simultaneous circuit-scat-
tering analysis of circuits exposed to external fields. It also al-
lows for voltage ports to be assigned at an arbitrary point in
the physical layout of the circuits. Notable applications of such
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a simultaneous circuit-scattering analysis include the design of
microwave and RF circuits in communication satellites and mil-
itary integrated circuits operating in the battlefield.
From a practical point of view, the advantages of the

VIE-based analyses can only be fully accentuated if they can
be performed with low computational complexity. Prevailing
fast integral-equation solvers are mainly iterative solvers [4],
[13]–[20] that accelerate dense matrix–vector multiplications.
The best complexity that can be achieved by an iterative solver
is , with being the number of right-hand
sides, the number of iterations, and the number of un-
knowns. This complexity can be high when the number of ports
of the circuit under analysis and/or the number of iterations are
large.
There have been significant contributions in fast direct

solvers [21]–[34] for the analysis of problems ranging from
circuits to scattering problems. A direct solver has a potential of
achieving the optimal complexity, which is linear complexity

for solving a problem of unknowns. This complexity
is independent of the number of right-hand sides. Such an
optimal complexity has been achieved in [24], [26]–[28], and
[30] for the surface IE based capacitance, as well as full-wave
extraction of arbitrarily shaped 3-D circuits. With such a linear
complexity direct solver, a dense matrix resulting from the
surface IE based circuit extraction involving over 3.71 million
unknowns has been inverted in fast CPU time (1.6 h) with
modest memory consumption (4.4 GB) [30]. Comparisons with
state-of-the-art fast solvers, including the fast multipole method
(FMM), have shown a clear advantage of the direct
surface-IE solvers in both CPU time and memory consumption
[24], [26]–[28], [30].
As compared to a surface IE solver, a VIE solver is flexible

in modeling arbitrary inhomogeneity. However, no direct
VIE solver has been accomplished for the full-wave extraction
of 3-D circuits with arbitrarily shaped nonideal conductors em-
bedded in inhomogeneous dielectrics. The contribution of this
paper is such a direct VIE solver. In this direct solver, in view
of the ill-conditioning issue of the full-wave analysis of circuits
from low to high frequencies [35], we first propose a well-con-
ditioned VIE formulation. This formulation is then cast into a
well-conditioned reduced form facilitating a linear complexity
numerical inverse. The proposed well-conditioned formulation
retains all the inherent advantages of the VIE formulation de-
veloped in [12]. It thus possesses first-principles based accu-
racy, and permits circuit parameter extraction at ports located
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anywhere in the physical structure of the circuit. More impor-
tantly, the new formulation reduces the condition number of the
VIE system matrix to be inverted by many orders of magnitude.
We then develop an direct solution to solve the resulting
unstructured system matrix composed of both square and rect-
angular matrices that among themselves can either be dense or
sparse. Numerical experiments validate the accuracy, superior
performance, and capability of the proposed new VIE solver.
The advantages of the proposed well-conditioned VIE formula-
tion and its fast linear complexity direct solution pay dividends
while inverting a dense VIE matrix of over 1 million unknowns
in as low as 5 GB of memory and 4 min on a single CPU run-
ning at 3 GHz. This paper is a significant theoretical and perfor-
mance enhancing extension of our conference paper [36]. An
engineering based explanation of the underlying mathematical

-matrix framework and the implementation details are also
presented to aid novice readers.
This paper is organized as follows. In Section II, we review

the mathematical background of the -matrix framework and
provide an engineering view to this framework. We also review
the direct matrix solutions we have developed in the past and
describe the research problems and challenges encountered in
this work. In Section III, we present our proposed well-condi-
tioned VIE formulation for broadband circuit modeling in inho-
mogeneous materials. In Section IV, we elaborate how to gen-
erate a well-conditioned numerical system from the proposed
formulation, which can also be readily represented in -ma-
trix format. In Section V, the proposed linear-complexity direct
matrix solution is described. In Section VI, a theoretical analysis
is presented on the complexity and accuracy of the proposed
direct solution. In Section VII, numerical results are given to
demonstrate the performance of the proposed direct solver for
circuit modeling. The solver demonstrates a clear linear com-
plexity in both CPU time and memory consumption with con-
trollable accuracy. Comparisons with linear complexity itera-
tive solvers have demonstrated a clear advantage of the pro-
posed direct solver. Section VIII concludes this paper.

II. BACKGROUND AND PROBLEM DESCRIPTION

A. Mathematical Background

The (hierarchical)-matrix is a general mathematical frame-
work [37]–[40] for compact representation and efficient compu-
tation of dense matrices. The -matrix [41]–[44] is a special-
ized subclass of hierarchical matrices. It has a much reduced
computational complexity due to the use of a nested structure.
A basic overview of this framework can be found from [28, Sec.
II]. Here, for completeness of this paper, we provide a fewmath-
ematical definitions.
Consider two subsets and of the entire unknown set

. The two sets are said to be admissible if
they satisfy the following strong admissibility condition [37]

(1)

where is a positive parameter, , and are the supports of
and in space, denotes the Euclidean diameter of a

set, and stands for the Euclidean distance between two

sets. In an -matrix, an admissible block is represented
by the following factorized form:

(2)

where is called a cluster basis associated with ,
is called a coupling matrix, denotes the rank of ,
and denotes the cardinality of a set. The hierarchical depen-
dence of the unknowns is stored in a tree structure with each
node of the tree called a cluster, and the tree a cluster tree. In an

-matrix, the cluster basis is nested, which can be repre-
sented by its two children’s cluster bases as the following:

(3)

where and children are the two children clusters of ,
and and are transfer matrices.
It is shown in [44] that the -based storage, matrix–vector

multiplication, andmatrix–matrix multiplication are all of linear
complexity for constant-rank cases. However, no linear com-
plexity inversion exists in mathematical literature.

B. Engineering View of the -Based Mathematical
Framework
We view the -matrix as a mathematical framework rather

than one specific method. Many existing fast solvers can be
interpreted in this framework. This framework also provides
a flexible infrastructure for continuous algorithm innovations
to further accelerate the computation of dense matrices. For
example, many fast solvers share the following in common,
which is also one fundamental approach incorporated into the

-based framework—the off-diagonal blocks in the system
matrix, which characterize the far-field interaction between two
separated groups of unknowns, are compactly stored and effi-
ciently computed, whereas the near-field blocks keep their orig-
inal representations and computations. As can be seen from
(1), the blocks of far-field interactions are called admissible
blocks in an -matrix. Depending on the specific solver used,
the compact representation, or data-sparse representation, of
the original dense matrix can be generated either algebraically
[15], [16], [19], [22], [31] or in a kernel-dependent way [13],
[17], [18], [20], [21], resulting in different rank, storage require-
ments, and time complexity. Most of the existing fast methods
accelerate the matrix–vector multiplication used in an iterative
solver. In contrast, we study how to invert or factorize a dense
matrix fast by exploiting the nested low-rank representation in-
herent in the off-diagonal blocks.

C. Our Previous Work on Linear Complexity Direct
Matrix Solutions
The linear complexity of an -based direct matrix inver-

sion and LU-factorization does not exist in the mathematical
literature prior to the work developed in [24], [26], and [27], in
which we show that new algorithms can be developed to reduce
the complexity of both -based inverse and LU factorization
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to linear complexity for electrically small and moderate
problems. By the algorithms developed in [26, Sec. VI], each of
the admissible, inadmissible, and nonleaf blocks in the inverse
can be computed through a constant number of multiplications,
and each multiplication has an complexity, where is
the rank. As a result, we have complexity for inverse. As
compared to an LU factorization based direct matrix solution,
a single inverse provides the solutions for right-hand sides
comprising an identity matrix. For different right-hand sides of
interest, after the inverse is obtained, a single -based
matrix–matrix multiplication gives the solution for all right-
hand sides, and the solutions for all these right-hand sides can
also be compactly stored in units.

D. On the Rank of Integral Operators

For electrically small problems, a constant rank is sufficient to
achieve a desired order of accuracy irrespective of the problem
size in representing the original dense matrix, as well as its in-
verse. For electrically moderate problems, a rank function is
used to increase rank in a finite electric size range without com-
promising the linear complexity of the LU factorization and so-
lution, as shown in [27]. For electrically large problems, it is
proven in [45] that for any prescribed accuracy, the minimal
asymptotic rank, for capturing the interaction between two sep-
arated geometry blocks in an integral operator, is a constant for
1-D distributions of source and observation points, grows very
slowly with electrical size as square root of the logarithm for
2-D distributions, and scales linearly with the electrical size of
the block diameter for 3-D distributions. Since the number of
unknowns in a surface- and volume-IE based analysis scales
with electrical size in a quadratic, and cubic way, respectively,
the existence of an error-bounded low-rank representation is
proved for both surface- and volume-based integral operators
for electromagnetic analysis, irrespective of the electric size and
object shape.
Certainly, due to the rank’s growth with electric size, the

same linear complexity algorithm developed for constant-rank
cases would not achieve the same linear complexity for ana-
lyzing electrically large problems. However, the methods in an

-matrix framework should not be stereotyped to be static ap-
proaches. In fact, the FMM developed for electrodynamic prob-
lems can also be viewed in the -based mathematical frame-
work because the matrix structure resulting from an FMM based
algorithm is the same nested structure as that in an -ma-
trix, although the asymptotic rank of an FMM based represen-
tation is full rank. This full asymptotic rank in FMM is due to
a source–observer separated nonminimal rank representation of
the Green’s function. The work in [45] provides a theoretical
basis for developing more advanced algorithms to exploit the
nested low-rank structure of the IE operators, thereby further re-
ducing the complexity of electrically large computations. A re-
cent demonstration can be seen from [46]. However, the focus
of this paper is the integrated circuit extraction problem with
existing circuit operating frequencies. Such a problem is elec-
trically small, which permits a constant-rank representation for
achieving prescribed accuracy.

E. Problem Description
The fast direct solutions we have developed in the past are

for surface IE based solvers. The problem considered in this
work is how to develop a linear complexity direct matrix solu-
tion for the VIE based circuit-parameter extraction of arbitrarily
shaped 3-D lossy conductors embedded in inhomogeneous di-
electric materials. Compared to a surface integral operator, a
volume IE is structurally more complicated and computation-
ally more expensive [47]. Furthermore, for circuit extraction
problem, the VIE based system matrix is ill conditioned, which
will become clear in Section III-A. Without a well-conditioned
numerical system, it is difficult to achieve controlled accuracy
in a numerical inverse whose performance thrives on approxi-
mate representations. We thus propose a well-conditioned for-
mulation to address this problem. Though well-conditioned, the
resultant systemmatrix is mixed with both dense and sparse ma-
trix blocks that can also be either square or rectangular. The en-
tire system matrix cannot be represented as a single -matrix.
The existing -based algorithms are not directly applicable
to the rectangular matrices encountered in the VIE system for
matrix–matrix and matrix–vector multiplications. These chal-
lenges have been overcome by new algorithms developed in this
work.
It is also worth mentioning that although generally speaking

a VIE is an IE of the second kind, but the key difference here is
that in the presence of conductors, the diagonal-type total-field
contribution becomes negligibly small as compared to the other
terms. In essence, for problems involving conductors, the VIE
also approaches the IEs of first kind.

III. PROPOSED WELL-CONDITIONED
FULL-WAVE VIE FORMULATION

A. Brief Review of the VIE Formulation in [12] for Circuit
Analysis
Consider a general 3-D circuit with arbitrarily shaped

conductors of finite conductivity embedded in inhomoge-
neous dielectrics that can be lossless, lossy, and dispersive,
as depicted in Fig. 1. Both conductors and dielectrics are
characterized by space-dependent complex permittivity

, with being dielectric constant,
being free-space permittivity, being conductivity, being

angular frequency, and denoting an arbitrary point in a 3-D
space. The background material is assumed to be free space
having permittivity . It can also be another uniform material.
For the extraction of circuit parameters such as impedance -
and scattering -parameters at ports located anywhere in a
circuit, we developed a potential-based source model in [12] to
overcome the limitations of a commonly used delta-gap voltage
source model. With the potential-based source model, a port
can be flexibly assigned at an arbitrary point, either internal
or external to the circuit. In contrast, in a delta-gap voltage
source model, two conductors are needed to set up a port, the
gap between the two conductors is required to be small, and
the gap needs to be filled by a perfect conductor, each of which
imposes a limitation in port assignments.
Now consider an arbitrary 3-D circuit attached to a potential

source. In such a setting, the total potential is known at the
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Fig. 1. Generic problem setup and associated terminology.

contact points where the potential source is attached. The
total field at any point in space is given by

(4)

subject to

(5)

where is the applied potential. Equation (4) can further be
written as

(6)

where Green’s function , is
the free-space wavenumber, is the contrast ratio defined as

and is given by the relation

which is also related to the equivalent volume current by
. The in (6) is generated by equivalent

charges that include the equivalent volume charges (volume po-
larization charges) and the equivalent surface charges (surface
polarization charges) at the material discontinuity where is
discontinuous. As shown in [12], the density of the equivalent
surface charges on the contact surfaces, , is unknown due
to the source attachment, while the density of other surface
charges and the density of the equivalent volume
charges have a known relationship with as follows:

(7)
(8)

in which represents the contact surface where the potential
source is attached, superscripts and are the indices of the
two materials at a material discontinuity, and denotes a unit
vector normal to the material interface and pointing from mate-
rial to material . As a result, is the additional unknown
to be solved together with to analyze a circuit attached to a
potential source. The work in [12] solves and simulta-
neously to analyze circuits with an arbitrary port configuration.
Its first-principles-based formulation also allows for a simulta-
neous circuit-scattering analysis.
Despite the full-wave rigor and the modeling flexibility pro-

vided by the VIE formulation in [12], the formulation is ill con-
ditioned for analyzing realistic integrated circuits where con-

ductors have finite conductivity and the operating frequency
spans a wide range from zero to high frequencies. This is be-
cause, for relatively small electric sizes, the magnetic vector
potential term becomes negligible as compared to the scalar po-
tential term, and the scalar potential term is rank deficient [35].
Even though there is an additional term contributed by the total
electric field in the VIE formulation, for large conductivity as-
sociated with metals, this term can also be overwhelmed by
the scalar potential term. Although this is not a problem for a
brute-force direct solution as long as the condition number is
still within the machine precision, it can degrade the accuracy
greatly for a fast solution thriving on error-controllable approx-
imated numerical system and computations.

B. Proposed Well-Conditioned Full-Wave VIE Formulation
To build a well-conditioned VIE formulation, first, we explic-

itly enforce the following condition:

(9)

which states that the divergence of is zero in a source-free
region. This condition is not explicitly enforced, but implicitly
satisfied in the classical VIE formulations like [1], as well as
the formulation in [12]. The vector basis functions employed to
expand such as the Schaubert–Wilton–Glisson (SWG) bases
have a nonzero divergence too. Enforcing (9) has a direct impli-
cation on the equivalent volume charges in the system, making

in (7) and reducing the expression for total potential
to

(10)

such that

(11)

In other words, with the vanished in each volume element
filled by a single material, now the potential is only due to the
equivalent surface charges. Apparently, in (10) seems to be
an additional set of unknowns, but the relation is
utilized to eliminate it. As a result of explicitly enforcing (9),
we avoid the nullspace arising from the divergence of term
in the VIE formulation. From an eigenvalue perspective, this
nullspace has made the smallest eigenvalue modulus approach
zero for the VIE system involving lossy conductors, thus being
a major contributor to the ill-conditioning issue.
Secondly, we explicitly introduce as unknowns. This does

not mean we introduce approximations since we will let sat-
isfy the same -charge relationship as that satisfied in the orig-
inal full-wave VIE formulations. To explain, in the original VIE
formulations, the is directly represented in terms of by
using the relationship between and equivalent charges and
thereby , as shown in (8). Here, instead of doing so directly,
we introduce as an intermediate unknown, and write -charge
(and hence, ), relationship as a separate equation to be si-
multaneously solved with (6). In this way, on one hand, we do
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not lose the rigor of the original full-waveVIE formulation since
the new formulation is mathematically equivalent to the original
one. On the other hand, the new formulation provides an alter-
native way of solving the VIE system of equations, which is
well conditioned. To be more specific, the Gaussian elimination
can be performed to generate a well-conditioned matrix to solve
first, and then solve . In this procedure, we avoid inverting

a matrix mixed with both the magnetic vector potential term
and the term, thus avoid suffering from the ill-conditioning of
the VIE numerical system. The detailed procedure will become
clear in Section IV.
To summarize, the proposed well-conditioned VIE formula-

tion for circuits attached to a potential source is as follows:

(12)
(13)
(14)

(15)

The above formulation can also be readily modified to the
case when the structure being simulated is excited by an external
incident field such as a plane wave. In this case, (13) does
not exist, and the in (15), like , has a known relation-
ship with . Hence, we solve the following equations simulta-
neously:

(16)
(17)

(18)

As can be seen from the above derivation, the proposed well-
conditioned formulation is analytically equivalent to the orig-
inal VIE formulation. Numerically, however, the new formu-
lation can reduce the condition number of the underlying VIE
system matrix to be inverted by many orders of magnitude, thus
sustaining an accurate direct solution for circuit extraction with
even a rank-1 representation.

IV. DISCRETIZATION AND SYSTEM MATRIX CONSTRUCTION

We discretize the computational domain into tetrahedral el-
ements. In each tetrahedral element, the unknown electric dis-
placement is expanded into SWG basis functions
[1], the coefficient of which is denoted by . The SWG basis
functions inherently have nonzero divergence. This introduces
nonphysical fictitious volume charges and a source of numerical
cancellation errors. It is also worth pointing out that with (17)
this numerical cancellation is also taken care of. The potential,
is expanded by pulse basis functions.

A. System Matrix

We test (12) using Galerkin’s method with vector basis
, while employing the Centroid Collocation method to

test (13)–(15). When the term in (12) is tested by vector
basis , we obtain the following:

(19)

where in the surface integral resides on the outermost
boundary of the computational domain, which is denoted by

; and the in the volume integral on the right-hand side of
(19) is denoted by in the following formulations.
The system of linear equations obtained after discretization

and testing can be written as

(20)

where is an identity matrix, and are dense, whereas ,
, and are sparse matrices. The first row of equations in (20)

is the discretized and tested equivalent of (12), the second row
is out of (14), whereas the last row is the discretized and tested
version of (15) subject to (13).
The expressions of the matrix elements in and are

given as

(21)

which are nonzero only in the th columns, where denotes the
index of the tetrahedron or boundary patch where the basis is
located. The contribution from all contact-surface patches goes
into the right-hand-side vector

(22)

since the potential on contact patches is known according to
(13). The sparse matrix has a dimension of , where

and are the number of tetrahedrons, and the total number
of SWG bases, respectively. The is nonzero only for those
four bases that constitute the th tetrahedron and given by

(23)

which is the same as the transpose of .
The dense matrix is of dimension and can be written

as a sum of a sparse matrix and a dense matrix as follows:

(24)
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where

(25)

Since the dense nature of the matrix is imparted by the
matrix, in the remainder of this paper, the dense matrix would
not be referred to, but rather would be implied by , and vice
versa.
The matrix is of dimension , where is

the number of outermost boundary patches. It has the following
form:

(26)

where the subscripts “ ,” “ ,” and “ ” denote the quanti-
ties on the outermost boundary, contact surfaces, and interfaces
between discontinuous media, respectively. The is the dis-
cretized equivalent of (15),

(27)

in which the first subscript describes the centroid of the
th observation surface, and includes both shown

in (8) and contact-surface charges . The shown in (26)
is the Schur complement corresponding to . It is obtained
by eliminating the contact-surface charges , based on (13),
from the based system of equations. Lastly, is the
contribution from the contact surfaces given as

(28)

For the incident field excitation case, is related to the in-
cident field , is 0, and is simply , while
other matrix blocks remain the same.

B. Derivation of a Well-Conditioned Reduced System Matrix
Suitable for -Matrix Representation
The system matrix as derived in Section IV-A involves both

sparse and dense blocks, which, as a whole, cannot be rep-
resented in an -matrix format. We thus propose to reduce
the original numerical system to the one involving ultimately
only as final unknowns by elimination. The elimination
order, i.e., which unknown to eliminate first and which next, is
not unique. To ensure a well-conditioned numerical system, we
choose an order such that we can invert in as much an orig-
inal form as possible, i.e., avoiding the inverse of a sum of the
and the matrix, which is ill conditioned. This is because

the term carries the contribution from the electric scalar
potential, which can dominate . This is especially true when
lossy conductors, with finitely large conductivity, are considered
since their presence diminishes the total electric field contribu-
tion. The detailed procedure is as follows.
Starting from the first equation of (20), we have

(29)

which is then substituted into the second row of (20). We obtain

which, in turn, gives us the expression of as

(30)

where

This expression for is then substituted alongside the expres-
sion of into the last row of (20), which helps to solve for

,

(31)

where

(32)

Now for the solution to the system given by (20), once (31) is
solved for , it is substituted into (30) to solve for , and
finally the solution is obtained from (29).
It can be seen from (29)–(31) that none involves an inver-

sion of a matrix comprising contributions from both magnetic
vector potential and electric scalar potential. In (29), we invert
, which only involves the magnetic vector potential matrix and

the sparse matrix representing the total field. It is well condi-
tioned, having a condition number orders of magnitude smaller
than the original VIE system matrix that includes the scalar po-
tential term. In (30), the computation of involves the inverse
of , which is well conditioned since the sparse
matrix and its transpose are well conditioned as well as
. In (32), and thereby are well-conditioned matrices.

As a result, is well conditioned. The identity matrix is
associated with the diagonal block, whose computation does not
involve any approximation. Regardless of the dominance of the
other term that is subtracted from or added upon the , its com-
putation is exact, and hence, accurate up to machine precision.
The above elimination order is essentially to solve first, and
next. For any other elimination order, we always run into the

issue of inverting a matrix that has contributions from both mag-
netic vector and electric scalar potentials. The concurrent pres-
ence of these contributions results in an ill-conditioned matrix
at relatively low frequencies, degrading the accuracy of the un-
derlying numerical inverse.
The elimination process discussed above, involving matrix

inversions and matrix–matrix multiplications, generally require
cubic operations with respect to the number of unknowns in-
volved. This work allows for the above elimination of the ,

, and finally unknowns to be performed in linear com-
plexity. It means to say that both matrix inversions and ma-
trix–matrix multiplications are performed in linear complexity,
rendering the complexity of the entire solution linear. The de-
tailed procedure is given in Section V.

V. LINEAR COMPLEXITY DIRECT SOLUTION
We describe each step in the proposed direct solution in this

section. First, we construct an -partition that is centered upon
making the computation efficient. We will detail the techniques
on how to tackle rectangular matrices present in (20). Based on
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the proposed efficient -partition, we construct -represen-
tations of the dense matrices and in linear complexity
with controlled accuracy. We also build -representations of
the sparse matrices , , and , which are exact involving
no approximation. Since some matrices in (20) do not have the
same cluster basis, we unify the cluster bases to facilitate an ef-
ficient computation. We then update the -representations of
the dense ( and ) and sparse matrices ( , and )
based on the new unified cluster basis. The linear complexity
inverses of the multiple matrices involved in (29)–(31) are then
performed to obtain the desired solution. The procedure of doing
a matrix–matrix multiplication with rectangular matrices is also
presented.

A. Efficient -Partition of VIE Matrices
An -based partition is to separate amatrix into two kinds of

blocks: admissible blocks that have a factorized representation
shown in (1) and inadmissible blocks that keep their original
full-matrix form. The performance of the subsequent computa-
tional procedures relies heavily on this initial partitioning. Extra
efforts need to be made to promote efficient computations.
We recursively split the 3-D computational domain that is

composed of specific basis functions (e.g., the SWG basis func-
tions for , pulse basis functions for and ) into sub-do-
mains until the number of unknowns in each sub-domain be-
comes less than or equal to the leafsize . Typical values
of can be as small as 2 to as large as 100, and essentially

controls the depth of the tree. While doing the splitting op-
eration, special care is taken to adaptively make sure that at each
nonleaf tree level, every cluster has two children of similar size,
we call this partitioning as a balanced partition. Such a splitting
facilitates most efficient computational cases in the proceeding
numerical procedures.
For the VIE based numerical system shown in (20), in total,

we construct five different trees, namely, for SWG bases,
for pulse bases representing , for pulse bases ex-

panding , for pulse bases representing on the contact
surfaces denoted by , and for pulse bases representing

, the at the material discontinuity. For computational ef-
ficiency of the matrix–matrix multiplication, discussed later in
this paper, the structure of is kept the same as that of .
Now, we elaborate the VIE based construction of an admis-

sible block cluster tree from the cluster trees and (in
accordance with the admissibility condition). In a VIE based
formulation, is not necessarily the same as . Before we
explain the general procedure adopted, we would like to point
out that meanwhile the parameter “level” is numbered 0 from
the root of the tree, the parameter “height” is numbered 0
from the leaf level. “Level-consistent partitioning” is one in
which admissibility criterion is checked only for two clusters
at the same level number, whereas for “height-consistent parti-
tioning” it is done for two clusters at the same height. Due to
the missing exploitation of the adaptive balanced splitting pre-
viously, only level-consistent -partitioning was relied upon.
Though for square matrices, both level- and height-consistent
partitioning is essentially the same, for rectangular matrices,
performance-wise, height-consistent partitioning promotes
generation of more admissible blocks than its counterpart. This

TABLE I
HEIGHT-CONSISTENT RECTANGULAR MATRIX–MATRIX MULTIPLICATIONS

is because for a general setting, height-consistency guarantees
admissibility checking of geometrically and cardinally same
sized blocks, thereby increasing the admissibility block count.
Implementation-wise, however, -arithmetics demand novel
algorithms to deal with rectangular cases, which are not covered
in the open literature before and are shown in Table I.
In this VIE solver, the cluster tree is used

to construct the matrix , and the cluster tree
is used to construct the matrix . As for the rectangular
sparse matrices, and are used for ,
and and are used for . For the dense
rectangular matrices, and are used to
construct the matrix , and are
used to construct , while and
are employed for .

B. -Representation of Dense Matrices and
To generate an -representation of the dense matrices and
, for an admissible block , we replace the underlying

kernel function i.e., the Green’s function in (20) by a
degenerate approximation based on the Lagrange interpolation
method

(33)
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where
; is the number of interpolation points along each

dimension; is a family of interpolation points in ;
is a family of interpolation points in ; and

and are the corresponding Lagrange polynomials.
The sparse matrix component of the matrix, due to the total
field term, only appears in the inadmissible blocks, whereas the
admissible blocks after the degenerate approximation can
be written as

Similarly, the matrix after the degenerate approxi-
mation can be written as

(34)

from which we obtain the representations of the dense ma-
trices and written as

(35)

where the cluster bases in a given cluster are

(36)

A close inspection of (36) reveals that although is set to fit
in all the forms of row clusters ( and ) for the ma-
trices we need to represent, but is slightly complicated. For
example, it can be directly applied to the case of representing the
column cluster bases for contact surfaces in . But when
it comes to the case of representing the column cluster bases for
discontinuous surface patches in , in order to match
dimensions for proceeding matrix–matrix multiplications, the
column cluster bases dimension needs to be made the same as
the number of SWG bases. Special care has to be taken to make
sure that only those bases corresponding to the discontinuous
surfaces are filled according to (36). This also calls upon the
need for unification of SWG bases with this type of bases be-
fore doing the matrix–matrix multiplication. The details are dis-
cussed in Section V-D. The coupling matrices shown in (35) are
given by

(37)

In (35)–(37), , , , and
, and is the rank of the

cluster basis for or , determined by the number of interpo-
lation points in an interpolation based -representation. Since
the same space of Lagrange polynomials is used, each of the
cluster bases is a nested cluster basis. Another important obser-
vation that can be made regarding the cluster bases is that both
row and column cluster bases in the above -representations
are different. To make the computation efficient for such cases,
where we have multiple cluster bases for the same cluster, we
unify their contributions into one single cluster basis keeping
the nested property intact.

C. -Representation of Sparse Matrices , , and
Not only the dense matrices are needed to be represented in

an efficient format, but also the sparse matrices. This is because
these matrices are also involved in the computation when we
need to do matrix–matrix multiplications, for instance. Linear
complexity -matrix arithmetic would only come handy if
both the operands are represented in an -matrix format. An-
other important task is to form corresponding cluster bases for
these sparse matrices. It becomes of pivotal importance when
the target matrix (the result of a matrix–matrix multiplication)
shares the same structure as the sparse matrix, but is no longer
sparse, and thus needs a cluster basis for the representation
of admissible (i.e., off-diagonal) blocks. In the following, we
present the -matrix representation of each sparse matrix.
1) -Representation of and : The row cluster of is

from tetrahedral pulse bases and the column cluster is from the
SWG bases. We hence choose the column cluster bases to be
the same as used for representing the matrix. As for the row
cluster bases,

(38)

Therefore, we choose as its row tree and as its column
tree, and construct an partition. We then fill the matrix en-
tries by keeping in view that is nonzero only for those four
bases/patches that constitute the th tetrahedron, and all other

entries are zeros. Since for any tetrahedral element all of
its surface patches can never satisfy the admissibility condition,
all the admissible blocks are zeros. The presence of nonzero
cluster bases needs the coupling matrices to be made zero for
all the admissible blocks. For the full matrix blocks, only a few
of the entries are nonzero. The sparse matrix is simply the
transpose of .
2) -Representation of : The row cluster of is built

by the SWG bases and the column cluster is from the outer
boundary surface bases. We thus choose the column cluster
bases to be the same as (36), while for the row cluster bases,
we re-utilize our unified cluster bases used for representing the
matrix. Like sparse matrices and , all the admissible

blocks are zero, while inadmissible blocks are filled with the
nonzero elements of .

D. Unify and Orthogonalize Cluster Bases
The construction of an -representation of each matrix in-

volved in (20) is done based on the matrix’s expression. This can
lead to different row and column cluster bases (as in the case of
and ), a mismatch in the type of cluster bases while doing
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matrix–matrix multiplications (as in the case of ), and
the cluster bases by themselves can be vector based, thus af-
fecting efficiency. To address these issues, we propose to do an
orthogonalization based unification of the cluster bases so as to
get a unified cluster basis, e.g., with satisfied for
each cluster. A close inspection of the cluster bases constructed
in previous sections reveal that only those used to construct
and need to be unified and orthogonalized while all the rest
are just needed to be orthogonalized using [44]. We explain this
by taking the example of the cluster bases used in the construc-
tion of . In order to overcome the cluster basis mismatch that
can occur while doing the multiplication of the type ,
we introduce a new cluster basis

Given a cluster , we then assemble all the cluster bases as-
sociated with it as

where denotes the -component of basis shown in
(36), and other subscripts can be understood similarly. We then
orthogonalize , which results in the orthogonal cluster
basis that contains all the linearly independent columns
of the above unification. All this is done in linear complexity
using [44]. This orthogonalization should be proceeded in a
one-cluster-basis-at-a-time fashion if cluster bases of different
norms are to be unified.
Now based on this unified and orthogonal cluster basis ,

we update the matrix as follows:

(39)

It is worth appreciating the fact that, due to the nested prop-
erty, the cluster bases product given by square bracketed terms
can be calculated in operations where is the rank of
the cluster bases. Since is a constant for circuit applications,
overall, the update procedure also takes computational
resources. The row cluster basis and the column cluster
basis of matrix also needs to be unified and orthogo-
nalized to obtain . With , the representation of
can also be updated accurately.

E. Linear Complexity -Matrix Based Direct VIE Inverse
We now obtain an -matrix for each of the matrices in-

volved in the solution of the system given by (20). There are
in total four inverses involved to arrive at the final solution. For
each of these inverses, we perform an -inverse algo-
rithm developed in [26].
The main operation in the inversion is to perform block

matrix multiplications. There are a total of 27 cases that an
-arithmetics based block matrix multiplication can have.

Since we have three types of -matrix blocks (namely, admis-
sible, inadmissible, and nonleaf blocks), these combinatorially
possible 27 multiplication cases do practically occur if no
special care is taken. Not only do these include extra imple-
mentation cases, but also lead to computationally less efficient

cases and projection based approximations. A quick derivation
reflects that the balanced partitioning of Section V-A can shrink
these cases to 13. For example, with this partition, it is not
feasible to have an admissible block getting multiplied by an
inadmissible block with the target being a nonleaf block. By
allowing inadmissible blocks at the leaf-level only, we further
bring the 13 cases down to the most efficient seven cases. These
seven cases are: 1) admissible admissible admissible;
2) admissible nonleaf admissible; 3) nonleaf nonleaf
admissible; 4) inadmissible inadmissible inadmissible;
5) admissible nonleaf nonleaf; 6) nonleaf nonleaf
nonleaf; and 7) admissible admissible nonleaf. Cases 1)
and 4)–7) are done without any approximation, while Cases
2) and 3) involve a collect operation, the accuracy of which is
controlled by the rank of cluster bases. These seven cases of
multiplications also benefit the matrix–matrix multiplications
involved in the proposed direct solver.

F. Updated Matrix–Vector and Matrix–Matrix Multiplication
For a single excitation, the right-hand sides and are

vectors. When doing the final evaluations to find , and fi-
nally , one can use an based matrix–vector multi-
plication. However, special care needs to be taken to accommo-
date all possible cases involving the rectangular -matrices.
For general -rectangular matrices, the difference is in re-
cursively going down the block cluster tree until the level
consistency is approached. For multiple-port excitations, the
right-hand sides and take the form of matrices. These
matrices due to their inherent data-sparse nature can be cast
into -matrices. In addition, during the elimination procedure,
we have a number of matrix–matrix multiplications to perform.
While performing these multiplications, we need to take care of
the general cases one might confront while dealing with gen-
eral height-consistent rectangular matrices. As mentioned
before, while height-consistent matrices offer better per-
formance; from the implementation point of view, novel algo-
rithms need to be developed, as the open literature relies only on
level-consistent matrices. A pseudo-code is given in Table I,
summarizing all the possible scenarios alongside the basic case
(RecursiveMultiply ) of the -matrix multi-
plications in [44].

VI. COMPLEXITY AND ACCURACY ANALYSIS

A. Complexity Analysis
The storage of all the matrices involved is done in the -ma-

trix format, which has complexity. The total computa-
tional cost for solving the VIE based system (20) includes the
following three parts.
1) The based construction of the matrices, the complexity

of which has already been analyzed to be linear.
2) Direct -matrix based recursive inverses of four ma-

trices, each of which is performed in linear complexity.
3) Matrix–vector and matrix–matrix multiplications involved

in the elimination process, all of which have a linear com-
plexity as shown in [28].

As a result, the total complexity of the proposed solver is
linear.
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B. Accuracy Analysis

The accuracy of the proposed direct solver in each step is
analyzed as follows.
The -representation of dense matrices and is ob-

tained from (33). It is shown in [26] that the error of (33) can
be controlled to any desired order by the number of interpo-
lation points and parameter used for the -partition. For
full-wave circuit extraction concerned in this work, the electric
size of the underlying problem is not large, and hence, a very
small is sufficient for achieving good accuracy. The -rep-
resentation of , , and is exact, as they are sparse ma-
trices.
Unification of the cluster bases is achieved by orthogonaliza-

tion, during which the rank of the cluster basis is not reduced,
and hence, no additional error is introduced.
To compute , we first obtain by the inverse al-

gorithm developed in [26]. The next steps involve pre-multi-
plication by and post multiplication by .
These matrix–matrix multiplications are error-controlled to the
same accuracy as used in representing them [44]. Next we add

to obtain the desired . The addition does not in-
troduce new errors since both the operands and the target share
the same cluster bases and -partition.
Similarly, we approach at finding the inverse of the matrix.

The to be inverted in this VIE solver only consists of the total
field term and the magnetic vector potential term, as shown in
(24). It can be compactly written as

(40)

where denotes the matrix associated with the total field term.
The solution of is governed by the eigenvectors of the fol-
lowing generalized eigenvalue problem [35]

(41)

where denotes an eigenvector, and denotes an eigenvalue.
To solve

(42)

with being an arbitrary right-hand side, we can expand in
the space of , the column space formed by all the eigenvec-
tors. Thus, , where is the unknown coefficient vector.
Substituting into (42), and multiplying both sides by

, we obtain

(43)

From (41), we have , where is the diag-
onal matrix containing all the eigenvalues. Using this fact, (43)
becomes

(44)

from which we obtain

(45)

Therefore, the solution of (42) is

(46)

When in (42) is an identity matrix, we obtain the inverse of
as the following:

(47)

which can further be compactly written as . As can be
seen, the weight of the th mode in the inverse is propor-
tional to . For any frequency , only those eigen-
vectors whose eigenvalues are close to have a large weight,
while those that are far away from the given frequency can be
truncated based on a prescribed accuracy. Therefore, ’s in-
verse has a low-rank representation. For electrically small cases,
i.e., low-frequency cases, the rank is a bounded constant for
achieving any prescribed accuracy. Now consider an arbitrary
off-diagonal block of the inverse formed by arbitrarily selected

rows and columns. From (47), this block can be written as
, where is the matrix containing the

rows of , and contains the columns of . As a
result, it is low rank, and hence, the -representation of the
inverse of exists, and we can apply the algorithm in [26] to
obtain .
Next, we evaluate the matrix , which needs an inverse of the

matrix to be found out. Since there exists an
-representation of , , and , respectively, the product

of the three matrices also has an error-controlled -matrix rep-
resentation based on which an -inverse can be performed.
The last major step is to find an inverse of the matrix .

It is worth noting that the computation of involves
sparse operations and dense matrix–matrix multiplications.
All these operations are performed accurately. The associated
matrix–vector operation required to evaluate and
all other elimination steps are again accurately performed [26].

VII. NUMERICAL RESULTS
The first two of the four examples are presented in order to

validate the proposed VIE direct solver and its formulation. The
last two examples, which include a suite of large-scale on-chip
bus structures (involving over 1 million unknowns) and
large-scale irregularly shaped spiral inductor arrays (involving
over 2 million unknowns) demonstrate the performance
benefits that can be achieved with the proposed direct solver.
Both these large-scale examples show a clear linear scaling
of memory and time utilization for inverting and solving the
proposed VIE system matrix.

A. Impedance Extraction of a 1 5 On-Chip Bus
The first example is a 1 5 bus structure having typical

on-chip dimensions in a single material (air). As illustrated in
Fig. 2, each bus has a dimension of 2 m 2 m 20 m,
while the spacing between two adjacent buses is 5 m. The
metal conductivity is 5.8 10 S/m, and the frequency for ex-
traction is 10 GHz resulting in .
The discretization results in 6000 tetrahedrons. The rank used in
the -representation is 1 obtained from an interpolation based
method. The impedance parameter matrix extracted from the
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Fig. 2. Geometrical details of a 1 5 bus structure.

Fig. 3. Cross-sectional view of a multiple-dielectric package interconnect.

proposed well-conditioned VIE formulation is given as follows
at the bottom of this page. All impedances are in 10 . The
relative difference of the above impedance matrix is shown to
be 0.29%, computed from , where
is obtained from FastHenry [3] with 12 000 filaments, is from
the proposed full-wave VIE direct solver, and Frobenius norm
is used. FastHenry is a fast-multipole accelerated iterative IE
solver, which performs a dense matrix–vector multiplication in
linear complexity. In contrast, the proposed direct solver com-
putes a dense matrix inverse in linear complexity. The solution
time for the proposed direct solver is 84.8 s as compared to
458.3 s taken by FastHenry [28].
We also used this example to examine the condition number

of the traditional VIE system matrix as compared to the pro-
posed one. For the 1 5 bus structure, the condition number
of the original VIE matrix including the scalar potential contri-
bution is 2.863748 10 , whereas the condition number of the
proposed one is 3.775967, a reduction of seven orders of mag-
nitude.

B. S-Parameter Extraction of a Package Interconnect With
Multiple Dielectrics

A 3-D package interconnect with multiple dielectrics, whose
detailed geometrical and material data are shown in Fig. 3, is
extracted in a broad band of frequencies from 1 to 30 GHz. The
length of the structure is 1 cm. The conductivity of the metal is
5.8 10 S/m.

In Fig. 4, we plot the S-parameters extracted from the pro-
posed well-conditioned VIE direct solver in comparison with
the reference data provided by the Intel Corporation. Good
agreement is observed in the entire frequency band for all
S-parameters.

C. Large-Scale On-chip Bus Structures
A suite of large-scale on-chip bus structures from a 4 4

array to a 64 64 array is then simulated at 10 GHz. The sim-
ulated scenario for a 16 16 array is illustrated in Fig. 5. The
dimensions of each bus are 2 m 2 m 20 m. The distance
between the centers of two neighboring buses on the same hori-
zontal axis is 20 m, while on the vertical axis it is 40 m. The
conductivity of the metal is 5.8 10 S/m. Each of the bus ele-
ment is discretized into unknowns.
The cluster trees , , , , and are built with

leafsizes 80, 40, 30, 10, and 80, respectively. For the -parti-
tion, the admissibility parameter is set as , and for com-
putational efficiency, once the leaf level is reached the admis-
sibility is not checked and the blocks are allowed to remain as
full matrices. The performance of the proposed solver is demon-
strated by simulating arrays of 4 4 to 64 64 resulting in

unknowns from 3968 to 1 015 808, where at each simulation
point the number of buses along each dimension is doubled. The
total number of unknowns including both and unknowns
ranges from 6528 to 1 671 168. The percentage of the admis-
sible blocks, calculated as the ratio of the number of matrix ele-
ments in the admissible blocks to the total matrix elements,
ranges from 75% to 99% in this example. The performance re-
sults obtained from these simulations are summarized in Fig. 5,
where the horizontal axis denotes the number of , and hence,
equivalent current unknowns, . We can see that the error of
representing the matrix of the VIE formulations remains well
controlled even with a single point interpolation scheme, thus
rank-1 representation. The relative inverse error with respect to
identity, for all four matrices involved in the VIE system ma-
trix, is also well controlled in and below the 10 range. The
relative inverse error for the final matrix is shown to be in
the 10 range. The CPU cost of the most expensive operation,
i.e., the inversion of the matrix, the total solution time, and
the memory cost are shown in Fig. 5, each of which exhibits a
clear linear scaling with respect to the number of unknowns.
We also simulated the same bus structure of 1 015 808 un-

knowns when the horizontal spacing between adjacent buses is
enlarged to 40 m. Since more admissible blocks are involved
in this case, we are able to finish the inversion of of 1 015 808
unknowns in 4 min using less than 5-GB memory.
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Fig. 4. S-parameters of a 3-D package interconnect with nonuniform materials simulated by the proposed well-conditioned VIE solver in comparison with refer-
ence data. (a) . (b) . (c) . (d) .

In addition, we simulated the same arrays of 4 4 to 64
64 buses, but with a smaller spacing of 10 m between the adja-
cent buses. For -partitioning, the admissibility parameter of
1.5, leaf-size of 80 for SWG bases, and the interpolation scheme
to achieve an accuracy of 10 for both and is chosen.
The resultant average rank is 11 for all the admissible blocks.
In Fig. 6(a), we plot the matrix representation errors and the
inverse errors as a function of unknowns. We can see that
both errors are small. It is worth pointing out that as compared
to the previously simulated examples with larger inter-element
spacing, the inter-element spacing has reduced significantly in
this example, resulting in much stronger coupling in the off-di-
agonal blocks not only in the original matrices, but also in the
inverse matrices. As a result, the rank required to achieve a
good accuracy has increased. From a practical stand-point of ex-
tracted parameters, thresholds of 10 produce accurate results.
For better accuracy, it is obvious that one needs to increase the
rank of the initial representation.
The CPU cost of the most expensive operations, i.e., the in-

version of the matrix, the total solution time, and the memory
cost are shown in Fig. 6(b) in comparison with that of the previ-
ously simulated example having inter-element spacing of 20 m
along horizontal and 40 m along the vertical direction. The
solid lines for each of the three plots are for the case of 10- m
spacing while the dotted lines are for the 20- m case. It is ev-
ident that each of the plot again exhibits a clear linear scaling
with respect to the number of unknowns and that for lesser ad-

missible blocks, i.e., for the 10- m spacing case, the total cost
is larger than that of the previously simulated example. It is also
worth mentioning here that this would not be an issue if we have
a procedure that allows the same level of admissible blocks as
in the previous case. The increase in the interpolation rank can
then be compressed to achieve performance benefits, which can
be seen from [48].

D. Large-Scale Arrays of Irregularly Shaped Spiral Inductors
A suite of large-scale arrays of irregularly shaped inductors

is then simulated at 10 GHz. This large-scale structure is simu-
lated to demonstrate the flexibility of the proposed VIE solver
in geometrical modeling while keeping the same order of per-
formance irrespective of the shape of the structures being sim-
ulated. The geometrical details of each of the array element are
illustrated in Fig. 7. The outer radius of each inductor is 10 m.
The thickness of the metallic wire, the via height , and the
port length are all 1 m. The conductivity of the metal is
5.8 10 S/m. Port 1 is located from to at
the lower layer, where denotes the azimuthal angle. Port 2 is
located from to in the upper layer. The
distance between the centers of two neighboring inductors is
100 m. Each of the array element is discretized into
unknowns.
The cluster trees , , , , and are built

with leafsizes 80, 30, 30, 4, and 80, respectively. For par-
titioning, the admissibility parameter is set as , and
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Fig. 5. Simulation results for large scale bus arrays of 4 4 to 64 64 elements. (a) 3-D view of a 16 16 array. (b) -matrix representation errors.
(c) -matrix inverse errors. (d) CPU time and memory.

Fig. 6. Simulation results for large scale bus arrays of 4 4 to 64 64 elements with a smaller inter-element spacing of 10 m. (a) -matrix representation
and inverse errors. (b) CPU time and memory.

again for performance reasons, once the leaf level is reached,
the admissibility is not checked and the blocks are allowed
to remain as full matrices. The performance of the proposed
solver is demonstrated by simulating arrays of 2 2 to 64
64, resulting in unknowns from 1992 to 2 039 808. The total
number of unknowns including both and unknowns in-
creases from 3744 to 3 833 856. The performance results ob-

tained from these simulations are summarized in Fig. 7. Again,
we can see that the error of representing the matrix of the VIE
formulations remains small even with a single-point interpola-
tion scheme. The relative inverse error with respect to identity
is also in the 4 10 range. The total memory requirement for
the complete solve, the cost of the most expensive operation,
i.e., the inversion of the matrix, as well as the total solution



910 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 3, MARCH 2015

Fig. 7. Simulation results for a suite of larg-scale arrays of irregularly shaped inductors from 2 2 to 64 64 elements. (a) Top view of an 8 8 array. (b) 3-D
view of a single irregularly shaped inductor . (c) VIE -matrix and inverse errors. (d) CPU time and memory.

time show a clear linear scaling with respect to the number of
unknowns.

VIII. CONCLUSIONS
An -matrix based linear complexity direct inverse for the

VIE has been developed for the broadband full-wave extraction
of general 3-D circuits, containing arbitrarily shaped lossy con-
ductors immersed in inhomogeneous dielectrics, with ports lo-
cated anywhere in the physical layout of the circuit. A well-con-
ditioned VIE formulation has been proposed, which is then cast
into a well-conditioned reduced form, facilitating a fast linear
complexity inverse of good accuracy. An efficient -partition
and modified algorithms for the resulting highly irregular ma-
trices are also presented, which successfully solve the VIE ir-
regular system in complexity. The well-conditioned VIE
formulation has been presented for both potential source and in-
cident field based excitations. Numerical experiments have val-
idated the accuracy, performance, and linear complexity of the
proposed direct VIE solver. Recently, this work has also been
extended to a rank-minimized direct VIE solver [48].
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