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Abstract—The existing matrix-free time-domain (MFTD)
method, though free of a matrix solution in arbitrary unstruc-
tured meshes, is not explicit in time marching, as a backward
difference is utilized. The numerical system underlying the
MEFTD is unsymmetrical, and a traditional explicit simulation of
such a system is absolutely unstable. In this article, we overcome
this barrier and successfully develop a truly explicit MFTD
method. In this method, a new explicit time marching scheme
is created for simulating unsymmetrical systems, whose stability
is theoretically proved and shown to be guaranteed. Meanwhile,
the accuracy is not sacrificed; and the time step allowed by the
traditional explicit method is not reduced to ensure the stability.
As a result, we greatly improve the computational efficiency of the
MFTD method without compromising its accuracy. In addition
to the MFTD, the unsymmetrical systems are encountered in
other numerical methods and analyses, such as the subgridding
methods, the nonorthogonal FDTD methods, and the analysis
of nonreciprocal problems. In this article, we show that the
proposed new explicit method is a general method for stably
simulating unsymmetrical systems. Hence, it can be utilized in
other unsymmetrical methods to ensure the stability in an explicit
time-domain simulation. The accuracy, efficiency, and stability
of the proposed work have been demonstrated by extensive
numerical experiments.

Index Terms— Explicit time marching, finite-difference time-
domain (FDTD) method, matrix-free methods, stability, subgrid-
ding, time-domain methods, unstructured mesh, unsymmetrical
system.

I. INTRODUCTION

MONG the existing time-domain computational
electromagnetic methods, the explicit finite-difference
time-domain (FDTD) method [1], [2] requires a structured
orthogonal grid for space discretization. The finite-element
method in time domain (TDFEM) [3], [9], [10] has no
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difficulty in handling arbitrarily shaped irregular meshes, but
it requires the solution of a mass matrix even in its explicit
schemes. Recently, a matrix-free time-domain (MFTD)
method is developed for solving Maxwell’s equations and
other partial differential equations (PDEs) in unstructured
meshes [11]-[14]. It possesses the advantages of both the
FDTD and the TDFEM: having a naturally diagonal mass
matrix, which is achieved accurately, and also independent
of the element shape used for space discretization. However,
the underlying discretized curl-curl operator is highly
unsymmetrical. For an unsymmetrical matrix, a traditional
leap-frog or central-difference-based explicit time marching
is absolutely unstable, a proof of which can be found
in [11], [13], and [24]. This is because an unsymmetrical
matrix can support complex eigenvalues or even negative
eigenvalues; when these eigenvalues exist, no time step can be
found to make the explicit time marching stable. To overcome
the stability problem while retaining the advantage of a
diagonal mass matrix, in [11]-[13], a backward difference
scheme is employed for time marching. This results in a
system matrix to solve, which is an implicit scheme. Although
the inverse of the system matrix is made explicit in [11]-[13]
by using a series expansion, thus avoiding a matrix solution,
the computation of a k-term series expansion is still required,
which is equivalent to k sparse matrix-vector multiplications.
The value of k is small, and however, the computational cost
is higher than a true explicit scheme, which requires only
one matrix-vector multiplication.

The unsymmetrical numerical systems are also com-
monly encountered in other numerical methods, such as
nonorthogonal FDTD methods [8], [24], FDTD subgridding
schemes [4]-[7], [25]-[28], and FDTD with nonuniform grid-
ding. In an FDTD subgridding scheme, the fields at the
interface between a base grid and a subgrid are typically
obtained by an interpolation scheme using surrounding fields.
To ensure the accuracy, such an interpolation scheme often
results in an unsymmetrical numerical system, whose stability
is not guaranteed. To ensure stability, the reciprocity of the
fields has been enforced [25]-[27]. However, it is difficult to
preserve the symmetry of the original FDTD without compro-
mising accuracy and meshing flexibility. In a recent FDTD
subgridding method [28], an accurate interpolation scheme is
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developed to ensure the accuracy of the resulting subgridding
algorithm, and this scheme is applicable to arbitrary grid ratios
between the base grid and the subgrid, as well as allowing
for flexible subgrid arrangements and nonuniform gridding.
However, the resultant system matrix is also unsymmetrical.
As can be seen from [28], a special implicit scheme such as
the one in [11] is used to address the stability.

Various nonorthogonal FDTD methods [8], [15]-[22] have
also been developed to extend the capability of a standard
FDTD to handle irregular meshes. In unstructured meshes,
since the H loop cannot center the E-unknown and vice
versa, interpolation and projection are often employed in
the nonorthogonal FDTD methods to discretize Maxwell’s
equations. The resultant numerical system is, in general,
unsymmetrical, and late time instability has been reported [23].

The stability and accuracy of the aforementioned methods
have always been two competing factors. In order to ensure
the accuracy of these methods, the resultant system matrix,
in general, cannot be made symmetric. As a result, there
is no theoretical guarantee of the stability of the resultant
time-domain simulation. If the imaginary part of the eigen-
values of the unsymmetrical system matrix is negligible com-
pared with the real part, such as a subgridding with a few
interface unknowns or nonuniform gridding in small local
areas, an explicit time marching may manage to be stable
within a certain time window. However, this is not the case
when the system matrix is highly unsymmetrical. For example,
in the MFTD, we observe an immediate divergence after
starting the time marching if a traditional explicit scheme
is used. On the other hand, one can construct a symmetric
numerical system to guarantee stability, however, accuracy
and flexibility are often sacrificed in the space discretization
of the curl operators. If we can find a systematic way to
handle complex-valued eigenvalues and explicitly simulate
an unsymmetrical numerical system with guaranteed stability,
then not only the MFTD method can be made truly explicit,
but also other unsymmetrical time-domain methods can be
marched on in time explicitly without the need for concerning
about their stability. When analyzing the problems that are
unsymmetrical in nature such as nonreciprocal problems, being
able to stably simulate unsymmetrical problems becomes even
more critical.

The contribution of this article is such a method to over-
come the instability of explicitly simulating an unsymmet-
rical numerical system. With this method, we are able to
make the MFTD truly explicit, hence removing the need for
using the backward difference and the series expansion to
avoid a matrix solution. As a result, the advantage of the
diagonal mass matrix of the MFTD is accentuated, and the
matrix-free merit is strictly realized for unstructured meshes.
The basic idea of this article has been presented in our
conference article [30]. In this article, we provide a rigorous
theoretical proof on the stability of the proposed method in
addition to an accuracy analysis. We also extend the work to
other unsymmetrical methods. A state-of-the-art unsymmetri-
cal FDTD subgridding method [28] is made explicit without
sacrificing accuracy using the proposed method. In addition,
we have performed extensive numerical experiments on the
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new explicit unsymmetrical FDTD subgridding algorithm and
the explicit MFTD method using various examples. They
demonstrate the stability of the proposed explicit method in
simulating unsymmetrical systems, with greatly reduced CPU
run time and without sacrificing accuracy.

II. BACKGROUND AND ANALYSIS OF THE PROBLEM

In this section, we provide the background of this article
and also analyze the problem encountered in the transient
simulation of an unsymmetrical numerical system. We start
from the MFTD in unstructured meshes, then proceed to
the state-of-the-art unsymmetrical FDTD subgridding method,
and then to the general unsymmetrical methods for solving
Maxwell’s equations.

A. MFTD in Unstructured Meshes and Underlying
Unsymmetrical System

Given an irregular structure with inhomogeneous mate-
rials discretized into an arbitrary unstructured mesh, based
on [11]-[13], the electric field E in each element is expanded
into vector bases whose order is no less than one, such that
the resulting curl E is not a constant in the element. As a
result, the H field’s space dependence in a single element can
be captured, as its order would be higher than zero. If the
traditional zeroth-order bases are used to represent E such
as those in the FDTD, after taking a curl operation on E,
the resulting magnetic field H is a constant in each element.
As a result, H required for reversely finding E at the next time
step cannot be accurately obtained in an irregular mesh.

The expansion into vector bases yields E = z;-"zl e;N;,
where e; is the jth basis’s unknown coefficient and m is
the basis number in each element. Using the modified higher
order vector bases shown in [11], each e¢; denotes E(r;) - é;,
i.e., E field at point r,; along the direction of unit vector ¢é;.
Substituting the expansion of E into Faraday’s law, evaluating
H at a point ry;, and then taking the dot product of the resultant
with a unit vector I%,-, we obtain

oth
~diag(u) S =S, m

where {e} denotes a global E-unknown vector of length
N, consisting of all e; coefficients, S, is a sparse matrix
denoting a discretized curl operation on E, and % is a global
H-unknown vector of length Nj, whose ith entry is h; =
H(ry;) - h;. The diag({u}) in (1) denotes a diagonal matrix of
permeability .

Although (1) can be used to generate H-unknowns at any
point along any direction, we have to keep in mind that
they should be obtained at those locations and along those
directions that can reversely generate desired E-unknowns in
an accurate way. Hence, we choose the H-points, ry;, and
the H-directions, h;, along a rectangular loop perpendicular
to each E-unknown, and centering the E-unknown, as shown
in Fig. 1. In this way, the resultant H fields can, in turn,
generate E required in (1) accurately at the next time step,
via the discretization of Ampere’s law as follows:

0
diag ({e}) a{—f} +{j} = Su{n} (@)
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Fig. 1. Choice of H points and directions.

in which {j} denotes a current source vector, S;, is a sparse
matrix of size N, x Nj, representing a curl operation on H.
Based on the H fields shown in Fig. 1, each row of Sy
obviously has only four nonzero elements, whose column
index corresponds to the global index of the four H-points
associated with one E-unknown. In (2), the diag({€}) is a
diagonal matrix of permittivity. From (1) and (2), we can also
eliminate H and solve E as follows:

o aj
diag({e}) ag} +S(e) = —%

S:Shdiag({l]) Se. 4)
u

When S, = SZ, S is symmetrical and positive semidefinite,
thus having nonnegative real eigenvalues only. Here, since the
curl of E and the curl of H are carried out in a completely
different fashion, S, # Sg, and the resultant S is highly
unsymmetrical.

3)

where

B. Unsymmetrical FDTD Subgridding

In [28], an unsymmetrical FDTD subgridding method is
developed, which utilizes the strength of an unsymmetrical
discretization of curl operators in accuracy to build an accurate
and flexible subgridding method. In this method, the final
numerical system can also be cast into the form of (1) and (2),
but with different S, and S;, values.

In the method of [28], a row vector is generated for every
patch in the grid, regardless of a 2-D or 3-D grid. This row
vector represents a curl of E operation in the patch, which
produces the time derivative of the normal H field at the patch
center. This row vector is nothing but Sél), the ith row of S,
and the row index corresponds to the patch index. A column
vector, which is Sg), is also generated for every patch in the
grid. It represents how the normal H field at the patch center is
used to generate the electric fields. The product of Sfll) and Sgl)
makes a rank-1 matrix, the sum of which over all patches in
the grid makes the total S. In a regular grid, Sél) has only four
nonzero elements, and Sg) = (Sel))T. Hence, the symmetric
and positive semidefiniteness of S is ensured. However, when
the subgrids exist, as shown in [28], Sfll) = (ST is not
satisfied.

C. General Unsymmetrical Systems Arising
From Other Methods

The unsymmetrical system is also observed in many other
methods, such as the nonorthogonal FDTD methods and other
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subgridding methods different from [28]. Although their ways
of discretizing Maxwell’s equations are different, and hence,
the resultant S, and S;, are different from those in the MFTD,
they all can be cast into the format of (1) and (2). As long
as the two curl operations are not made reciprocal of each
other, which is the case to ensure the accuracy of the space
discretization in a nonorthogonal grid or a grid with subgrids,
the resultant numerical system is unsymmetrical.

In the second-order system where only one field unknown
is solved, and in a single-mesh setup, such as that in the
finite-element method, when the basis function for expanding
the field unknown is different from the testing function,
the resulting system matrix is also unsymmetrical.

The second-order system of equations for solving Maxwell’s
equations using various methods can be written into the
following form:

0% {e}
or?
where D, is associated with the permittivity, which can be
either diagonal or nondiagonal, symmetric or unsymmetrical,
depending on the method used for discretizing Maxwell’s
equations. S represents a discretized V.~V x operator. For an
unsymmetrical treatment of the curl of E and the curl of H, S is
unsymmetrical. Using different basis and testing functions, S is
also unsymmetrical. Certainly, there exist other scenarios such
as nonreciprocal materials, which can make S unsymmetrical

as well.

D, +S{e} = b(t) (5)

D. Stability Analysis of an Unsymmetrical System

The time marching of (1) and (2) is usually performed in a
leap-frog way, such as the one in the FDTD method. This
is, in fact, equivalent to a central-difference-based explicit
time marching of (3) or (5), which can be readily proved by
eliminating one field unknown from the leap-frog-based time
discretization of (1) and (2). Regardless of solving the first-
or second-order systems, when S # ST such an explicit time
marching is absolutely unstable. To see this clearly, we can
discretize (5) using a central-difference-based explicit time
marching and analyze its stability. The explicit discretization
yields

D ({e}"' = 2{e}" + {e}" 1) + A’S{e}" = A2{b}". (6)

Removing the source term since it has nothing to do with the
stability and performing a z transform of (6), we obtain

2—Q2—-AP)z4+1=0 (7)

where At is the time step and A is the eigenvalue of DE’IS.
If S is unsymmetrical, D;'S can have complex-valued and
even negative eigenvalues. From (7), it can be seen that the
two roots satisfy

|z1z2] = 1. (8)

Since neither |z1| = 1 nor |z2| = 1 is satisfied for complex 4,

because
2 — AP £ VAP A(ALR ) — 4)
2

©)

71,2 =
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one of the roots must be greater than 1 in magnitude. In addi-
tion, if the eigenvalue is negative, one root must be out of the
unit circle as well. As a result, the traditional explicit scheme
for simulating an unsymmetrical system is absolutely unstable.
To overcome this stability problem, in [11]-[13],
a backward-difference-based discretization of (5) is performed,
which requires a lower bound of the time step for stability

2[Im(v/7)]
s 2
V2

where Im(-) denotes the imaginary part of (-). To avoid solving
a matrix in time marching, a series expansion is used to derive
an explicit inverse of the system matrix. {e} at the (n + 1)th
time step is, hence, computed as

At (10)

et =X —M+M2— -+ (=NDN){f} (D)

where {f} = 2{e}" — {e)n1 APD-p"! and
M= AtzDgls. For the series expansion to converge, an
upper bound of the time step is imposed as follows:

1

VPD'S)

in which p(-) denotes the spectral radius, which is the largest
eigenvalue magnitude. This time step is similar to the time
step used in the Courant-Friedrichs—Lewy (CFL) condition.
Hence, using the traditional explicit time step, one can use (11)
to obtain a stable solution. However, such a series expansion
with k terms requires k sparse matrix-vector multiplications.
Although k is not large, which is, in general, no greater than
10, the resulting time marching is not as efficient as performing
only one matrix-vector multiplication in the right-hand side,
such as that in the traditional explicit FDTD method.

At < (12)

III. NEwW EXPLICIT METHOD FOR SIMULATING
UNSYMMETRICAL SYSTEMS WITH
GUARANTEED STABILITY

Based on the stability analysis in Section II-D, it appears
that there is no way forward to make an explicit time marching
stable for simulating an unsymmetrical system. However,
we found the following explicit method worked out.

The method can be used to solve both the first-order
Maxwell’s equation and the second-order one in a stable
fashion. Consider the first-order system. We discretize (1) in
the following way:

{hYy"+2 — (b2
At

where we change {e}" after S, used in the traditional explicit
method to 2{e}" — {e}*~!. Obviously, the discretization is
explicit since we use the field solution at the previous time
step to obtain the field at the current time step. As for the
discretization of Ampere’s law, we keep it the same as before
and, hence, obtain

S.(2fe)" — fe})"™") = —diag({u}) (13)

{e}" ™1 — {e})"

Sp{h)"+T = diag(le}) o T (4
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where the time instants for {e} and {h}, denoted by super-
scripts, are staggered by half.

Consider the second-order system shown in (5). We perform
the following time discretization:

D ({e}"! = 2{e}" + {e}" 1
+ APSQle)" — (e} H = (f}" (15)

where again {e}" after S used in the traditional explicit
method is replaced by (2{e}" —{e}""!). In the MFTD,
D, = diag ({€}).

Now, if we carry out a stability analysis, we find a totally
different result. Setting the excitation to be zero, as it is
irrelevant to stability, and performing a z transform of (15),
we obtain

22201 —=A*Dz+ (1= A*PA) =0 (16)

where 1 are the eigenvalues of DQIS. Since S is unsymmet-
rical, A can be either real or complex.
However, comparing (16) with (7), now, we have

lziz2] = |1 — A12A| (17)

which is not 1 any more, and it can be made less than 1 via an
appropriate choice of a time step. Hence, it becomes feasible
now to make the magnitude of both roots less than 1, thus
making the explicit time marching stable. In the following,
we quantitatively derive a stability criterion for (15) and,
thereby, (13) and (14).

Denoting Ar2) by
At*A =a+ jb (18)

where a is the real part and b denotes the imaginary part as
follows:

a = At’Re())
b = Ar’Im(1).

19)

The two roots of (16) can be found as

G=1—(a+jb)+y~@+jb)+@+jb? (0

©=1—(a+jb)—J—@+ jb)+ @+ jb)>. Q1)

Let
¢=—(a+jb)+(a+jby (22)
which is
E=(a*=b>—a)+ jQa—1)b. (23)

Using the following property [29] of the square root of a
complex number:

JEe /|§|+2Re(§) + sign(men 5 LG

we obtain

. (aﬂ.b)i( /|¢|+§e<¢)
+sign(Im(&)) j,/ W) (25)
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If the product of the two roots is greater than 1 in
magnitude, then at least one of the roots has a magnitude
greater than 1. Therefore, to ensure stability, the following
condition is necessary:

iz2l = 1= AP = |1 — (a+ jb)| < 1 (26)
which results in
2a —a* —b* > 0. (27)
Substituting (19) into it, we obtain
Ar < [2REA) (28)
|4
which provides an upper bound for the choice of Ar.
|z1]% can be evaluated as
+ Re
|21|2=1+2(1_a) w
— R
—20b|sign(2a — 1),/ w
+¢l = Qa—a® = b?). (29)
In deriving (29), we utilize the fact that
sign(Im(&)) = sign(2a — 1)sign(b). (30)
Similarly, we have
+ Re
ot = 120 — ), [ET RO
—R
+2|blsign(2a — 1),/ w
+ ¢ = Qa — a® — b?). (31)

To ensure stability, |z1|> < 1 and |z2|> < 1 should be satisfied.
Adding the two inequalities based on (29) and (31), we obtain
the following condition:

IE] < 2a —a®> — b? (32)

which is clearly another necessary condition in addition
to (27), and hence (28).

Since a is the product of the time step square and the real
part of the eigenvalue as shown in (19), for a given time step,
a can be an arbitrary nonnegative value. When 0 < a < 1/2,
clearly, between z; and z7, z1 has a larger magnitude because
the two terms having the square roots are both positive. When
a > 1, zo has a larger magnitude. For both cases, the largest
magnitude square can be written as

Izlzmax=1+(2|1_a| wﬂw w)

+|§I—(2a—a2—b2), O<a<1/20ra>1).
(33)
If we can prove that (33) is bounded by 1, then both roots are

bounded by 1 in magnitude, and hence, the explicit simulation
is stable. When 1/2 < a < 1, the signs of the two square root
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terms in (29) and (31) are opposite to each other, and the
magnitude square of the two roots can be written as follows:

|Z|2=1:|:(2|1—a| /I§|+2Re(§) o /Iél—zRe(é))

+ &= QRa—a’>—=bY, (1/2<a<1). (34

Next, we derive the stability condition for all three cases of a.

A. For the Cases of 0 <a < 1/2 and a > 1
To be stable, |z|%,, < 1. We, hence, obtain from (33) that

max

(2“ —al w +2/b| W)

< —|E+Qa—a*—b%, (0O<a<1/2ora>1). (35)

Since the left-hand side is positive, if the right-hand side is not
positive, the above-mentioned condition can never be satisfied.
However, as shown in (32), this condition is satisfied.

Performing a square operation on both the sides of (35) to
remove the square roots, we obtain

R —R
4(1_20+a2)|5|+ e(¢) +4b2|5| e(¢)
2 2
2 _ Re 2
811 — allb| <] |4 (@]
< 4a® — 4a|&| + &) + a* + b* + 24%D?
—2(a> +bH(2a — |&)). (36)
Substituting
IIm(&)| = /1¢]* = [Re(&)|? 37)
into (36), we have
—|E]7 +2I¢] + (2a* — 2b% — 4a + 2)Re(&)
+4[1 — a||b|[Im(S)]
< a* +b* —4a® — 4ab® + 24%b* + 44>, (38)
From (22), we obtain
€2 = (@® = b —a)" + b*(2a — D). (39)

Substituting (39) into (38), we find

2I¢] + 41 — al|b||Im($)]
—8a%b? +a® — 3b> — 2a + 12ab* < 0. (40)

Since, now, the cases of 0 < a < 1/2 and a > 1 are
considered, for either of the cases, we have

41 — a||b||Im(&)| = —4b*(1 — a)(2a — 1) 41
using which in (40), we obtain the following condition:
21E| < 2a —a® — b2 (42)

Comparing (42) with (32), (42) is a more stringent condition.
Hence, it overwrites the condition required in (32). This
also means although (32) is necessary for stability, it is not
sufficient.
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B. For the Case of 1/2 <a < 1

Since |z|* has the expression shown in (34) for this case,
let both roots be bounded by 1, we obtain

i(2|l —a|\/@_z|b|\/@)

< =&+ Qa—a*—b?*, (Forl/2<a<l1). (43)

Since the right-hand side of (43) is positive ensured by (32),
taking a square operation on both the sides of (43), we obtain

2
(21 - EEED - [0

< (—|El+ Qa —a*>—b%)%, (For1/2 <a <1). (44)

Following a derivation similar to the other two cases, which
are the steps from (36) to (40), we obtain the same inequality
as (40) except that the term having Im(¢) now becomes —4|
1 — a||b||Im(¢)|. This is equal to —4b*(1 — a)(2a — 1) as
well since 1/2 < a < 1. As a result, for all cases, (42) is the
condition to be satisfied.

Taking a square on both the sides of (42), we obtain

3a* 4+ 3b* — 44> + 6a%b* — dab* + 4b* < 0 (45)

which can be expressed in terms of the real part and the
imaginary part of 4 as

3(Re(A) + [Im(2)]3)° Ar* — 4Re (1) (|(Re(4) 2

+ [Im(A)|?)At? + 4Im(1)|? < 0. (46)

The above-mentioned inequality can be readily solved, yield-
ing the following condition:

\/2Re(/1) — 2/ Re(D) 2 = 3[Im(A)2
31412
< At

< \/2Re(/1) + 2V Re() P = 3Im() 2
31412 '

As can be seen, (47) provides a tighter upper bound, which
overwrites the upper bound in (28). In addition, if |Re(}L)|2 <
3|Im(2)|?, then no real-valued time step can be found to satisfy
the above-mentioned condition, and hence, a time marching
cannot be stable. Therefore, the following condition is required
as well for stability:

(47)

[Re(4)]
NE]

which is, in general, satisfied since the imaginary part of a
complex eigenvalue is small compared with the real part if the
method developed for solving Maxwell’s equations is accurate.
To summarize, (47) and (48) are the stability criteria of the
proposed explicit time-domain method.

When the imaginary part is zero or negligible, the lower
bound of (47) becomes zero, and thus, the condition is
naturally satisfied. However, when the imaginary part of S’s
eigenvalues cannot be ignored, there is a lower bound on
the time step. When the imaginary part does not exist or is

Tm(1)] < (48)
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negligible for the largest eigenvalue, the upper bound of (47)
becomes

4 1
At < \/j 4

3 A\ /Imax ( 9)
where Amax is the largest eigenvalue of D;ls. This upper
bound is, in fact, larger than (12). Hence, a larger time step
is allowed in the proposed method compared with [11]. More
importantly, this new time marching scheme is truly explicit.
No series expansion is required. Hence, the proposed method
is more efficient than the original MFTD method. Moreover,
as can be seen from the aforementioned analysis, the proposed
method is applicable to other unsymmetrical methods to make
them stable since the curl operations represented by S;, and
S, in (13) and (14) and S in (15) can be arbitrary.

Accuracy Analysis of the Proposed Scheme: One may won-
der why we made a choice of using 2{e}" — {e}"~! to replace
{e}", and whether this choice is accurate or not, although
it makes the time marching stable. In fact, 2{e}" — {e}"~!
constitutes an accurate approximation of {e}"*!, and {e}"*!
is the value used in a backward difference scheme for dis-
cretizing the second-order wave equations, which is known to
be accurate (see [3, Ch. 12]). To see this point clearly, if we
replace (2{e}" — {e}"~!) by ¢"t!, the left-hand side of (15) is
nothing but a backward-difference-based discretization of (5).
To derive it, we can perform a backward difference to dis-
cretize (0e/ot) at the nth time instant, obtaining

de " —e!
— (50)
ot At
upon which if we apply another backward difference,
we obtain
2 n n—1 n—2
2 _¢- 2"+ e ‘ 51)
or? At?
Using (51), we can write down a backward-difference-based
discretization of (5) as follows:
el — Zen—l + en—2
At?
for the nth time instant. Writing (52) for the (n + 1)th time
instant, we obtain
en+1 — e + 6"71
At?
which is the same as shown in the left-hand side of (15) if
"1 is replaced by (2{e}" — {e}"~!). The former (¢"*!) can
be accurately approximated as the latter ((2{e}* — {e}*" 1))
because

+ A*Se"

(52)

€

D, + Af?Set] (53)

fe)' —fey" ' {e)" —fe}"
At - At

that is, the slope in the nth segment is approximately equal to
that in the (n+ 1)th segment. This is an accurate approximation
since for a maximum frequency fmax, the time step is generally
chosen as 1/(10fmax) or even smaller so that the accuracy
is satisfactory. In such a time interval or two time intervals,
the field’s temporal dependence can be well approximated by
a linear function. Hence, the accuracy of (54) can be ensured
and also controlled by the choice of time step.

(54)
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TABLE I
ILLUSTRATION OF COMPLEX EIGENVALUES OF EXAMPLE A

1 2 3 4
Real 5.15e+27 1.31e+28 2.26e+28 4.78e+28
Imaginary | 41.24e+25 | £3.77e+25 | £1.28e+26 | +1.05e+27

The backward difference has been shown to be accurate
in simulating an unsymmetrical system [11], [28], and the
accuracy of the proposed explicit time marching is, thus, also
ensured. In a general differencing scheme, a backward or
forward difference appears to be less accurate than a central
difference since it is first-order accurate, with a truncation
accuracy of O(Atr). However, each of the three difference
schemes, in fact, produces the same result in a time interval
where the field variation is at most a linear function. This is
because they are all equal to the slope of the field line in
the time interval. This is indeed the case in our time-domain
simulations since the time step required by the sampling
theorem is 1/(2fmax), while what is used in practice is
1/(10 fmax) or even smaller for good accuracy. In such a time
interval, a backward difference is also accurate.

IV. NUMERICAL RESULTS

In this section, we first demonstrate the performance of the
proposed explicit MFTD for simulating unstructured meshes.
A number of irregular meshes are simulated, and the accuracy
and efficiency of the new method are compared with those
of the original MFTD. We then apply the proposed explicit
method to the recently developed unsymmetrical FDTD sub-
gridding method [28] to make its explicit simulation sta-
ble. All simulations are carried out on an Intel Xeon CPU
E5-2690 v2@3.00 GHz.

A. MFTD in a 2-D Irregular Triangular Mesh

The first example is a highly irregular 2-D mesh shown
in Fig. 2(a), the size of which is 0.22 mm in the x-direction
and 0.25 mm in the y-direction. The discretization results
in 2081 edges and 1325 triangular patches. To investigate the
accuracy of the proposed method in such a mesh, we set up
a free-space wave propagation problem so that an analytical
solution is available for comparison. The incident E is set to
be E = 5 f(t—x/c), where f(t) = 2(t—to)exp(—(t—10)*/7?),
with 7 = 2.0 ps, t9p = 47, and ¢ denotes the speed of light. This
is also the total E in a free-space wave propagation problem.
Specifically, since E is known, we impose an analytical
boundary condition, i.e., the known value of tangential E,
on the outermost boundary of the mesh. We then numerically
simulate the fields inside the mesh and correlate the results
with the analytical solution.

Due to the highly irregular mesh, S is highly unsymmetrical,
which has many complex eigenvalues whose imaginary parts
are not as small as compared with the real parts. In Table I,
we list some of the representative eigenvalues of S. As can
be seen, the imaginary part can be quite significant compared
with the real part. Because of this, when we tried to perform
a leap-frog scheme directly on the MFTD system of equa-
tions, the simulation immediately becomes unstable. Hence, a
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Fig. 2. Simulation of a 2-D triangular mesh. (a) Irregular triangular mesh.
(b) Simulated two electric fields. (c) Entire E-field solution error as a function
of time.

new explicit method like the proposed is necessary for simu-
lating this example.

The time step used in the proposed method is At = 0.242 fs,
which is determined by (49). Note that the S’s spectral radius
can be analytically estimated from the smallest space step,
and (49) has a good correlation with the CFL condition.
In Fig. 2(b), we plot the electric fields of the 6811th and
6812th entries randomly selected from the unknown {e} vector
and compare them with the analytical solutions as well as
those from the original MFTD method [11]. It can be clearly
seen that the electric fields solved from the proposed method
have excellent agreement with the analytical results and the
results of [11]. To verify the accuracy everywhere in the
computational domain, we evaluate the total solution error by
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calculating |[{e} — {e}anall/|l{e}anall, Where {e} contains all e;
unknowns solved from the proposed method, and {e}ana is
from the analytical solution. As can be seen from Fig. 2(b),
the proposed method is not only accurate at the selected
observation points as shown in Fig. 2(b) but also accurate at all
other points. The center peak error in Fig. 2(c) is due to the
comparison with close to zero fields. In addition, the error
plot of the proposed method is on the top of that of the
original MFTD method, and thus, the proposed method does
not sacrifice the accuracy of the original scheme. Furthermore,
it greatly shortens the CPU run time, as the method of [11]
takes 88.05 s to finish the simulation, while the proposed
method only costs 15.02 s.

B. MFTD in a 3-D Box Discretized Into Tetrahedral Mesh

The second example is a 3-D box discretized into tetrahedral
elements, as shown in Fig. 3(a). The structure size is 1.0 m
in the x-direction, 0.5 m in the y-direction, and 0.75 m in
the z-direction. The discretization results in 544 edges and
350 elements. We also set up a free-space wave propagation
problem in the given mesh to validate the accuracy of the
proposed method against the analytical results. The incident
E has the same form as that of the previous example, but
with 7 = 6.0 ns in accordance with the new 3-D structure’s
dimension. The time step used in the proposed method is
At = 27.7 ps, which is determined from (49). This also
correlates well with the traditional CFL condition. In Fig. 3(b),
we plot the electric fields of the 1st and 1832nd entries from
the unknown {e} vector and compare them with the analytical
solutions and the method of [11]. Excellent agreement can
be observed. We also plot the entire solution error shown
in Fig. 3(c) versus time. It is evident that the proposed
method is not only just accurate at certain points but also
accurate at all points in the computational domain for all time
instants simulated. The center peak in Fig. 3(c) is due to the
comparison with close to zero fields. The proposed method
takes 0.18 s only to finish the simulation without sacrificing
accuracy, as can be seen from Fig. 3(c), while the method
of [11] takes five times longer.

C. MFTD in a 3-D Sphere Discretized Into
a Tetrahedral Mesh

The third MFTD example is a sphere discretized into
tetrahedral elements in free space with a radius of 0.1 m,
whose 3-D mesh is shown in Fig. 4(a). The discretization
results in 3183 edges and 1987 tetrahedrons. The structure
is illuminated by a plane wave having the same form as that
in the first example but with 7 = 2.0 ns.

Similar to the previous examples, S is highly unsymmetrical
having many complex eigenvalues. The imaginary part of some
eigenvalues is even similar to the real part such as 9.672¢21 +
j1.923e21. The traditional leap-frog scheme is found to be
absolutely unstable in simulating this example no matter how
the time step is chosen. The time step used in the proposed
method is A7 = 3.12 ps, which is selected to satisfy (49). Two
electric fields, whose indices in vector {e} are 1 and 2942,
respectively, are plotted in Fig. 4(b) in comparison with the
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Fig. 3. Simulation of a 3-D box discretized into tetrahedral elements.
(a) Tetrahedron mesh of a 3-D box. (b) Simulated two electric fields in
comparison with the analytical results. (c) Entire E-field solution error as a
function of time.

analytical data. In Fig. 4(c), we plot the entire solution error
versus time, where the accuracy of the proposed method is
demonstrated.

We also simulate this example using the method in [11],
whose At = 2.70 ps, which is restricted by (12). It takes
16.58 s to finish the simulation. In contrast, the proposed
method only takes 3.37 s while achieving the same accuracy
as can be seen from Fig. 4(c). The original number of time
steps simulated with the proposed time marching scheme is
5132. We also simulate to a very late time where the number
of time steps is more than 1026400. No late time instability
is observed.
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Fig. 4. Simulation of a 3-D sphere. (a) Tetrahedron mesh of a sphere.
(b) Simulated two electric fields. (c) Entire E-field solution error as a function
of time.

D. Unsymmetrical FDTD Subgridding: 2-D Grid With
Multiple Subgrids

A 2-D wave propagation problem involving multiple sub-
grids is considered, whose space discretization is shown
in Fig. 5(a). The size of the simulation domain in each
direction is 1.0 m, the coarse grid size is L, = 0.1 m, and the
blue regions are subgrids where the grid ratio L./L y = 3. E"
is $2(r —tg — x /c)el ~10— x/e/2% ¢ — 20 ns, and 1o = 4z. All
the boundaries are terminated by an exact absorbing boundary
condition. The time step used is At = 1//[|S]] = 44 ps,
which satisfies the stability criterion of the traditional explicit
method. In Fig. 5(b), we plot the electric fields at the 1st and
340th entries in comparison with the analytical data. It can
be seen that both the traditional explicit method, denoted by

4829

NS-asssss

~ 06

Y (m

04

fE= m

0 0.2 04 0.6 0.8

X{(m)
(@
20
15
£ 10
>
£ 5
S
© 04 E A LA B
= Point 1 (Proposed)
(8]
= -5 Point 2 (Proposed)
§ 10 : : :Po?nﬂ Central)
] Point 2 (Central)
15 *  Point 1 (Analytical)
E O Point 2 (Analytical)
-20 ' i ‘
0 0.05 0.1 0.15
Time (us)
(b)
600 "
—Point 1 (Central)
£ 400 — Point 2 (Central)
S 200 - = -Point 1 (Analytical)
= - - - Point 2 (Analytical)
°
© 0
Q
5 -200
LY
H 400
-600 ' ' ‘
0 20 40 60 80
Time (us)
(©
20
15 —Point 1 (Proposed)
€ — Point 2 (Proposed)
s 10 - - -Point 1 (Analytical) | |
£ 5 - - -Point 2 (Analytical)
ke]
o 0
£ 5
[&]
Q10
w
-15
-20 ' ' ‘
0 20 40 60 80
Time (us)
(d)

Fig. 5. Simulation of a 2-D subgridding problem. (a) Illustration of the grid.
(b) Simulated two electric fields in comparison with the traditional explicit
scheme and the analytical results. (c) Late time simulation using the traditional
explicit scheme versus analytical results. (d) Late time simulation using the
proposed method versus analytical results.
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central in Fig. 5(b), and the proposed new explicit method
generate accurate results.

However, when we elongate the time for simulation, the late
time instability is observed from the traditional explicit time
marching, as shown in Fig. 5(c). This is because of the
existence of complex eigenvalues. For example, the 102th
eigenvalue of the system matrix is found to be 1.5018¢20 £
2.1538e16, making |z| = 1.00004. Although different from
the MFTD, in the subgridding method, the imaginary part
of the eigenvalue is smaller compared with the real part,
as long as such a complex eigenvalue exists, the traditional
explicit simulation cannot be made stable. The instability can
be clearly observed when 1818000 time steps are simulated,
using 68.58-s CPU time. In contrast, using the proposed
explicit method and a similar CPU time of 69.57 s, no such
instabilities are observed in the same late time simulation,
which can be clearly seen from Fig. 5(d). After the early time
response, the fields are stably simulated as zero in the late time.

E. Unsymmetrical FDTD Subgridding: 3-D Cube With
Two Subgridding Cells

The second subgridding example is a free-space wave
propagation problem in a 3-D cube. The size of the simulation
domain in each direction is 1.0 m with a coarse grid size of
L. = 0.1 m. Two cells, which are centered at (0.15, 0.15,
0.15) and (0.45, 0.45, 0.45) m, respectively, are subdivided
into fine grids with a grid ratio of L./L s = 3. The base grid
is shown with the blue subgrids in Fig. 6(a). We apply the same
incident field and boundary condition as those in the previous
example. The time step used is At = 1/4/[IS]| = 35 ps.
In Fig. 6(b), we plot the electric fields at the 1st and 2694th
entries versus the analytical data. It can be seen that both
the proposed new explicit method and the traditional explicit
method agree very well with the analytical solution. However,
similar to the previous example, when we run the simulation to
a late time, the traditional explicit method becomes unstable,
as shown in Fig. 6(c), where the instability is observed after
1142750 time steps with a CPU time of 345.01 s. The
complex eigenvalue pairs are observed from the unsymmet-
rical system matrix of the subgridding method. For example,
the 965th eigenvalue is 5.4851e21 4 2.0377e16j, making
|z] = 1.00005. In contrast, despite the complex eigenvalues,
using the proposed new method and a similar CPU time
of 348.25 s, no such instabilities are observed in the late time,
as can be seen from Fig. 6(d).

F. Inhomogeneous 3-D Phantom Head Beside
a Wire Antenna

In this example, we simulate a large-scale phantom head
beside a wire antenna [28], which involves many inho-
mogeneous materials. The size of the phantom head is
28.16 x 28.16 x 17.92 cm. All the boundaries are truncated by
the perfect magnetic conducting conditions. The wire antenna
is located at (3.52,3.52,2.52) cm, with a current pulse of
22(t — t9)e~ /7> with £ = 0.5 ns and 7y = 47. The base
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grid size along the x-, y-, and z-directions is 4.4, 4.4, and
5.6 mm, respectively. To capture fine tissues, the base grid cell
centered at (14.3, 14.3,9.24) cm is subdivided into subgrid
cells in all directions with a grid ratio of 4, making that the
subgrid grid size along the x-, y-, and z-directions is 1.1, 1.1,
and 1.4 mm, respectively. We use the unsymmetrical subgrid-
ding method [28] as our reference with a time step of 1.1 ps.
Due to the unsymmetrical property, the reference subgridding
method [28] has to use (11) to obtain a stable solution with a
series expansion of ten terms. In contrast, the proposed new
method allows for a truly explicit time marching. In Fig. 7,
the electric fields at two observation points whose locations are
(3.52,3.52,15.96) and (24.64, 3.52, 15.96) cm are plotted in
comparison with the reference results obtained using the same
time step. It is clear that the two sets of results agree well.
The unsymmetrical subgridding method [28] uses 1050.53 s
to finish the simulation. In contrast, the proposed subgridding
method only costs 539.03 s. The original number of time steps
simulated with the proposed time marching scheme is 10909.
We also simulate to a very late time where the number of time
steps is 1090900. No late time instability is observed.

V. CONCLUSION

In this article, we develop a truly explicit time marching
scheme for solving unsymmetrical numerical systems in the
time domain. The proposed method is theoretically proved
to be stable despite the unsymmetrical system matrix. Mean-
while, the accuracy of the time marching is not sacrificed,
and the time step size is not reduced. As a result, we make
the MFTD method truly matrix-free, hence accentuating its
advantage of having a diagonal mass matrix irrespective of
the element shape used for discretization. We also successfully
apply the proposed method to make the explicit time marching
of an unsymmetrical FDTD subgridding method stable. Exten-
sive numerical results are provided to demonstrate its validity
and performance. The proposed method is generic, and hence,
it can be used in the other unsymmetrical methods to guarantee
their stability in an explicit time-domain simulation.

REFERENCES

[1] K. Yee, “Numerical solution of initial boundary value problems involv-
ing Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propag., vol. AP-14, no. 3, pp. 302-307, May 1966.

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

4831

A. Taflove and S. C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method. Boston, MA, USA:
Artech House, 2000.

J.-M. Jin, The Finite Element Method in Electromagnetics. New York,
NY, USA: Wiley, 2002.

R. A. Chilton and R. Lee, “Conservative and provably stable
FDTD subgridding,” IEEE Trans. Antennas Propag., vol. 55, no. 9,
pp. 2537-2549, Sep. 2007.

A. Van Londersele, D. De Zutter, and D. V. Ginste, “A new hybrid
implicit—explicit FDTD method for local subgridding in multiscale 2-D
TE scattering problems,” IEEE Trans. Antennas Propag., vol. 64, no. 8,
pp. 3509-3520, Aug. 2016.

F. Bekmambetova, X. Zhang, and P. Triverio, “A dissipation the-
ory for three-dimensional FDTD with application to stability analysis
and subgridding,” IEEE Trans. Antennas Propag., vol. 66, no. 12,
pp. 7156-7170, Dec. 2018.

M. R. Cabello et al., “A hybrid Crank—Nicolson FDTD subgridding
boundary condition for lossy thin-layer modeling,” IEEE Trans. Microw.
Theory Techn., vol. 65, no. 5, pp. 1397-1406, May 2017.

L. Codecasa, B. Kapidani, R. Specogna, and F. Trevisan, “Novel FDTD
technique over tetrahedral grids for conductive media,” IEEE Trans.
Antennas Propag., vol. 66, no. 10, pp. 5387-5396, Oct. 2018.

M. Abbaszadeh and M. Dehghan, “The two-grid interpolating element
free Galerkin (TG-IEFG) method for solving Rosenau-regularized long
wave (RRLW) equation with error analysis,” Appl. Anal., vol. 97, no. 7,
pp. 1129-1153, 2018.

M. Movahhedi, A. Abdipour, A. Nentchev, M. Dehghan, and
S. Selberherr, “Alternating-direction implicit formulation of the finite-
element time-domain method,” [EEE Trans. Microw. Theory Techn.,
vol. 55, no. 6, pp. 1322-1331, Jun. 2007.

J. Yan and D. Jiao, “Accurate and stable matrix-free time-domain method
in 3-D unstructured meshes for general electromagnetic analysis,”
IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4201-4214,
Dec. 2015.

J. Yan and D. Jiao, “Matrix-free time-domain method for general
electromagnetic analysis in 3-D unstructured meshes—Modified-basis
formulation,” [EEE Trans. Microw. Theory Techn., vol. 64, no. 8,
pp. 2371-2382, Aug. 2016.

J. Yan and D. Jiao, “Time-domain method having a naturally diagonal
mass matrix independent of element shape for general electromagnetic
analysis—2-D formulations,” IEEE Trans. Antennas Propag., vol. 65,
no. 3, pp. 1202-1214, Mar. 2017.

K. Zeng and D. Jiao, “Matrix-free method for transient Maxwell-thermal
cosimulation in arbitrary unstructured meshes,” IEEE Trans. Microw.
Theory Techn., vol. 66, no. 12, pp. 5439-5448, Dec. 2018.

R. Holland, “Finite-difference solution of Maxwell’s equations in gener-
alized nonorthogonal coordinates,” IEEE Trans. Nucl. Sci., vol. NS-30,
no. 6, pp. 4589-4593, Dec. 1983.

M. Fusco, “FDTD algorithm in curvilinear coordinates (EM scattering),”
IEEE Trans. Antennas Propag., vol. 38, no. 1, pp. 76-89, Jan. 1990.
J.-F. Lee, R. Palandech, and R. Mittra, “Modeling three-dimensional
discontinuities in waveguides using nonorthogonal FDTD algorithm,”
IEEE Trans. Microw. Theory Techn., vol. 40, no. 2, pp. 346-352,
Feb. 1992.

N. K. Madsen, “Divergence preserving discrete surface integral methods
for Maxwell’s curl equations using non-orthogonal unstructured grids,”
J. Comput. Phys., vol. 119, no. 1, pp. 3445, Jun. 1995.

C. H. Chan, J. T. Elson, and H. Sangani, “An explicit finite-difference
time-domain method using Whitney elements,” presented at the IEEE
Int. Symp. Antennas Propag., Jun. 1994, pp. 1768-1771.

S. Gedney, F. S. Lansing, and D. L. Rascoe, “Full wave analysis of
microwave monolithic circuit devices using a generalized Yee-algorithm
based on an unstructured grid,” IEEE Trans. Microw. Theory Techn.,
vol. 44, no. 8, pp. 1393-1400, Aug. 1996.

C. F. Lee, B. J. McCartin, R. T. Shin, and J. A. Kong, “A triangular-
grid finite-difference time-domain method for electromagnetic scattering
problems,” J. Electromagn. Waves Appl., vol. 8, no. 4, pp. 449-470,
Aug. 1994.

M. Hano and T. Itoh, “Three-dimensional time-domain method for
solving Maxwell’s equations based on circumcenters of elements,” /[EEE
Trans. Magn., vol. 32, no. 3, pp. 946-949, May 1996.

J. A. Roden, “Broadband electromagnetic analysis of complex structures
with the finite-difference time-domain techniques in general curvilinear
coordinates,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Kentucky,
Lexington, KY, USA, 1997.

Authorized licensed use limited to: Purdue University. Downloaded on December 07,2020 at 03:02:19 UTC from IEEE Xplore. Restrictions apply.



4832

[24] S. D. Gedney and J. A. Roden, “Numerical stability of nonorthogo-
nal FDTD methods,” IEEE Trans. Antennas Propag., vol. 48, no. 2,
pp. 231-239, Feb. 2000.

[25] P. Thoma and T. Weiland, “A consistent subgridding scheme for the
finite difference time domain method,” Int. J. Numer. Model., Electron.
Netw., Devices Fields, vol. 9, no. 5, pp. 359-374, Sep. 1996.

[26] O. Podebrad, M. Clemens, and T. Weiland, “New flexible subgridding
scheme for the finite integration technique,” IEEE Trans. Magn., vol. 39,
no. 3, pp. 1662-1665, May 2003.

[27] L. Kulas and M. Mrozowski, “Reciprocity principle for stable subgrid-
ding in the finite difference time domain method,” presented at the Int.
Conf. ‘Comput. Tool’ (EUROCON), Sep. 2007, pp. 106-111.

[28] J. Yan and D. Jiao, “An unsymmetric FDTD subgridding algorithm with
unconditional stability,” IEEE Trans. Antennas Propag., vol. 66, no. 8,
pp. 4137-4150, Aug. 2018.

[29] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. New York, NY, USA:
Dover, 1964.

[30] K. Zeng and D. Jiao, “Explicit matrix-free time-domain method in
unstructured meshes,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston,
MA, USA, Jun. 2019, pp. 132-135, Paper Tu2B-7.

Kaiyuan Zeng (S’13-M’19) received the B.S.
degree in electronic engineering and information
science from the University of Science and Tech-
nology of China, Hefei, China, in 2012, and the
Ph.D. degree in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 2019.

He is currently with Intel Corporation, Chandler,
AZ, USA. His current research interests include
signal and power integrity analysis, RF design, and
computational electromagnetics.

Dr. Zeng was a recipient of the Honorable Mention
Award of the IEEE International Symposium on Antennas and Propagation
in 2018 and the Best Student Paper Award from the IEEE Wireless and
Microwave Technology Conference in 2015.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 67, NO. 12, DECEMBER 2019

Dan Jiao (M’02-SM’06-F’16) received the Ph.D.
degree in electrical engineering from the University
of Illinois at Urbana—Champaign, Champaign, IL,
USA, in 2001.

She was with the Technology Computer-Aided
Design (CAD) Division, Intel Corporation, until
September 2005, as a Senior CAD Engineer,
a Staff Engineer, and a Senior Staff Engineer.
In September 2005, she joined Purdue University,
West Lafayette, IN, USA, as an Assistant Professor
with the School of Electrical and Computer Engi-
neering, where she is currently a Professor. She has authored three book chap-
ters and over 260 articles in refereed journals and international conferences.
Her current research interests include computational electromagnetics, high-
frequency digital, analog, mixed-signal, and RF integrated circuit (IC) design
and analysis, high-performance VLSI CAD, modeling of microscale and
nanoscale circuits, applied electromagnetics, fast and high-capacity numer-
ical methods, fast time-domain analysis, scattering and antenna analysis,
RF, microwave, and millimeter-wave circuits, wireless communication, and
bioelectromagnetics.

Dr. Jiao received the 2013 S. A. Schelkunoff Prize Paper Award from the
IEEE Antennas and Propagation Society, which recognizes the best paper pub-
lished in the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION dur-
ing the previous year. She was among the 21 women faculty selected across the
country as the 2014-2015 Fellow of Executive Leadership in Academic Tech-
nology and Engineering (ELATE) at Drexel, a national leadership program
for women in the academic STEM fields. She has been named a University
Faculty Scholar by Purdue University since 2013. She was among the 85 engi-
neers selected throughout the nation for the National Academy of Engineer-
ing’s 2011 U.S. Frontiers of Engineering Symposium. She was a recipient of
the 2010 Ruth and Joel Spira Outstanding Teaching Award, the 2008 National
Science Foundation (NSF) CAREER Award, the 2006 Jack and Cathie Kozik
Faculty Start-up Award (which recognizes an outstanding new faculty member
of the School of Electrical and Computer Engineering, Purdue University),
the 2006 Office of Naval Research (ONR) Award under the Young Investigator
Program, the 2004 Best Paper Award presented at the Intel Corporation’s
annual corporate-wide technology conference (Design and Test Technology
Conference) for her work on generic broadband model of high-speed circuits,
the 2003 Intel Corporations Logic Technology Development (LTD) Divisional
Achievement Award, the Intel Corporations Technology CAD Divisional
Achievement Award, the 2002 Intel Corporations Components Research
the Intel Hero Award (Intel-wide she was the tenth recipient), the Intel
Corporation’s LTD Team Quality Award, and the 2000 Raj Mittra Outstanding
Research Award presented by the University of Illinois at Urbana—Champaign.
She has served as a reviewer for many IEEE journals and conferences.
She is an Associate Editor of the IEEE TRANSACTIONS ON COMPONENTS,
PACKAGING, AND MANUFACTURING TECHNOLOGY and the IEEE JOURNAL
ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES.

Authorized licensed use limited to: Purdue University. Downloaded on December 07,2020 at 03:02:19 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


