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Abstract— In this article, we develop a systematic approach
to derive symmetric positive semi-definite (SPD) finite-difference
time-domain (FDTD) subgridding operators in both space and
time for analyzing general inhomogeneous problems in an accu-
rate fashion. The operators are SPD by construction and inde-
pendent of the grid ratio. The resultant explicit time marching is
guaranteed to be stable because such subgridding operators have
only nonnegative real eigenvalues. Furthermore, the use of a time
step local to the base grid and the subgrid is permitted without
sacrificing stability and accuracy. Moreover, the algorithm takes
the subgrid information into account to accurately analyze
inhomogeneous problems. In addition, we provide an interpre-
tation of the proposed subgridding operators and show how to
implement them in the original difference equation-based FDTD
framework. Extensive numerical experiments involving both
2- and 3-D subgrids with various grid ratios and inhomogeneities
have demonstrated the stability, accuracy, and efficiency of the
proposed new SPD subgridding algorithms.

Index Terms— Finite-difference time-domain (FDTD) method,
positive definite, positive semi-definite, spatial subgridding, sta-
bility, subgridding, subgridding in space and time, symmetric,
temporal subgridding.

I. INTRODUCTION

COMPARED with the conventional finite-difference time-
domain (FDTD) method [1], [2], FDTD subgridding

is an effective method to locally refine a grid for solving
multiscale problems. Ideally, when simulating a multiscale
problem, a subgridding method in both space and time not
only reduces the number of unknowns but also permits the use
of a local time step. In other words, the time step in a base
grid is not restricted by the time step in the subgrid for a stable
explicit time marching. Each grid can be simulated stably
using its own time step and hence greatly accelerating an
FDTD simulation. In literature, extensive work has been done
to tackle the FDTD subgridding problem. In [3], a variable
step size method (VSSM) was developed, providing a direct
interpolation scheme to update fields in both base grid and
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subgrid. A mesh refinement algorithm (MRA) was presented
in [4], requiring less computational memory and time. It has
been observed that the stability and accuracy have always
been two competing factors in developing FDTD subgridding
algorithms. Accurate interpolations can always be done to
obtain the field unknowns at the interface between a base
grid and a subgrid. However, instability has been observed in
the resulting time-domain simulation. Various methods have
been proposed to fix the instability issue [5]–[8]. In [9]–[11],
enforcing reciprocity of the fields has been proposed to ensure
stability but accuracy is compromised. In [12], the subgrid
was arranged in a special way in order to ensure the resultant
numerical system to be symmetric.

To preserve accuracy, the existing subgridding schemes
generally result in an unsymmetrical numerical system for
arbitrary subgrid settings, where the curl of electric field and
that of magnetic field do not transpose each other. The stability
of the resultant time-domain simulation cannot be guaran-
teed using conventional explicit schemes. This is because an
unsymmetrical matrix can support complex-valued and even
negative eigenvalues, which would make a traditional explicit
time marching absolutely unstable, a proof of which can
be found in [13] and [14]. Recently, in [14], an accurate
unsymmetrical FDTD subgridding method is developed to
break this barrier. A new time marching scheme different from
the traditional explicit time marching is developed to guarantee
stability. However, this scheme requires the computation of a
series expansion. Although the number of terms is small in the
series, it increases the computational cost in time marching.
Furthermore, the subgridding is only achieved in space, not in
time.

Symmetric positive semi-definite (SPD) subgridding algo-
rithms have also been developed to address the stability prob-
lem. In [15], a systematic approach is developed to make an
FDTD subgridding algorithm SPD regardless of the grid ratio
and the grid arrangement. As a result, only nonnegative real
eigenvalues exist, and the resultant time marching is ensured to
be stable. In [15], a 3-D subgridding operator is demonstrated
with a capability of local time stepping. However, the solution
of the base grid unknowns is decoupled from that of the
subgrid to make the resulting system matrix SPD. Such a
scheme suffers from inaccuracy when subgrid regions involve
strong inhomogeneity. The 2-D subgridding operator in [15]
can handle inhomogeneous problems accurately, however, it is
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only achieved in space, not in time. As a result, a local time
stepping is not permitted, and the time step in the base grid
is restricted by that in the subgrid, and vice versa.

In this article, we propose a systematic approach to develop
SPD FDTD subgridding operators in both space and time
regardless of the grid settings, and accurate for analyzing
both 2- and 3-D inhomogeneous problems. This approach
and resultant 2- and 3-D subgridding operators successfully
remove the problems encountered in the existing SPD FDTD
algorithms. The subgridding is achieved in both space and
time, and meanwhile it is accurate for solving inhomogeneous
problems. We also provide an explanation of the proposed
operators in the original difference equation-based FDTD and
show how to implement them in the original FDTD without
using matrix operators. This explanation provides many new
findings on the development of FDTD subgridding schemes,
which are difficult to conceive in the traditional FDTD. For
example, in the proposed temporal subgridding algorithm,
the electric field at the interface between the base grid and the
subgrid is split into two components. One is generated from
a partial curl of H operation using the H-fields in the base
grid with a base-grid time step for time marching. The other
is generated from the remaining curl of H operation using the
H-fields in the subgrid with a subgrid time step. The two are
then added to obtain the total interface field before proceeding
to the next time step. Extensive numerical experiments and
comparisons with the state-of-the-art subgridding algorithms
like [14] and [15] have been carried out. The new algorithms
are shown to outperform existing work, and its accuracy,
efficiency, and stability are demonstrated.

This article is organized as follows. In Section II, we briefly
review the background of this article, including a patch-based
single-grid FDTD formulation which facilitates an algebraic
derivation of subgridding operators, and the stability analysis
of an FDTD time marching scheme. In Section III, we develop
a systematic approach to develop SPD FDTD subgridding
operators in both space and time. In Section IV, we present the
details of the proposed 2-D SPD subgridding operator, with
accuracy taken into consideration. In Section V, we elaborate
on the 3-D SPD subgridding algorithms. In Section VI, numer-
ous examples are provided to demonstrate the performance
of the proposed algorithms. In Section VII, we draw our
conclusions.

II. PRELIMINARIES

First, we provide a brief review of the patch-based single-
grid FDTD formulation, which is developed in [17]. It is used
in this article to facilitate the development of a generic SPD
subgridding algorithm, as this formulation reveals clearly how
the submatrices in different regions are assembled in an FDTD
to build a global system matrix.

The formulation is valid for both 2- and 3-D grids. Let {e}
be a global electric field unknown vector of length Ne, and
{h} being a global magnetic field unknown vector of length
Nh . The FDTD can be written into the following form:

Se{e} = −Dμ{ḣ} (1)

Sh{h} = Dε{ė} + Dσ {e} + { j} (2)

where a dot above a letter denotes the first-order time deriva-
tive, { j} represents a current source vector, and Dμ, Dσ , and
Dε are diagonal matrices of permeability, conductivity, and
permittivity, respectively.

Based on the patch-based single-grid formulation, each row
of Se in (1) corresponds to one patch in the grid, and when
multiplied by {e}, it produces the magnetic field located at the
patch center and normal to the patch. Take the i th row of Se

as an example, it can be written as

S(i)
e =

{
− 1

Li
,

1

Li
,

1

Wi
,− 1

Wi

}
⊕ zeros(1, Ne) (3)

which has only four nonzero elements, and Li and Wi are the
two side lengths of the i th patch. A reference normal direction
is defined for every patch, which is also H’s reference direction
on the patch. Using the right-hand rule, with the right thumb
pointing to the reference normal direction, if the electric field
edge’s direction is along the direction encircling the normal
direction, then a plus sign is used; otherwise, a negative sign
appears in (3). The ⊕ denotes an extended addition by adding
the four nonzero elements upon a zero vector of length Ne ,
based on the global indexes of the four electric field unknowns
on the patch. Similarly, for the i th patch, we generate a column
vector

S(i)
h =

{
− 1

Li
,

1

Li
,

1

Wi
,− 1

Wi

}T

⊕ zeros(Ne, 1) (4)

which is nothing but the transpose of (3), thus

Sh = ST
e . (5)

As can be seen, a column i of Sh has also at most four nonzero
entries located at the rows corresponding to the four electric
fields of patch i .

Eliminating {h} from (1) and (2), we obtain

Dε{ë} + Dσ {ė} + S{e} = −{ j̇} (6)

where S can be represented as

S = ShDμ−1Se =
Nh∑

i=1

μ−1
i

(
S(i)

h

)
Ne×1

(
S(i)

e

)
1×Ne

(7)

which is a sum of the rank-1 matrix S(i)
h S(i)

e over all the
patches.

A leap-frog-based time marching of (1) and (2) is equivalent
to a central-difference-based explicit time marching of (6),
which can be readily proved. The stability of the resulting
explicit marching is guaranteed if the following condition is
satisfied:

�t ≤ 2√
λmax

(8)

where λmax stands for the largest eigenvalue of D−1
ε S [16].

In the conventional FDTD for a uniform grid, S is SPD
as evident from (7) and (5). Since Dε is also a symmetric
positive definite, the eigenvalues of D−1

ε S are nonnegative
real. As a result, a real-valued time step can always be found
to satisfy (8). However, in an FDTD subgridding scheme,
due to the mismatch between the base grid and the subgrid,
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various unsymmetrical interpolations are used to obtain the
unknown fields at the subgrid interface, making the resulting
rank-1 matrix of each patch not symmetric. As a result, S is
unsymmetrical in general, which involves complex or negative
eigenvalues in nature. When such eigenvalues exist, a tradi-
tional explicit time marching is absolutely unstable, which has
been proved in [13] and that is why many FDTD subgridding
algorithms cannot ensure stability.

III. SYSTEMATIC APPROACH FOR DEVELOPING SPD
SUBGRIDDING ALGORITHMS IN BOTH SPACE AND TIME

In this section, we present a systematic approach for devel-
oping SPD FDTD subgridding algorithms in both space and
time. This approach is also algebraic and suitable for general
subgridding settings in both 2- and 3-D problems.

From (6) and (7), we can analyze how the equations in
different domains are assembled in the FDTD to simulate the
entire problem. Consider two domains, (6) can be rewritten as

Dε{ë} + Dσ {ė} = −[Sh,1Dμ−1
1

Se,1 + Sh,2Dμ−1
2

Se,2]{e} (9)

where Sh,1(2) has all the column vectors generated from the
patches in domain 1 (2), and Se,1(2) comprises all the row
vectors from the patches in domain 1 (2). Here the source term
is omitted to focus on the assembling mechanism in the FDTD.
As can been seen, the total S is an addition of each domain’s
S, which is the same as the assembling procedure in a finite-
element method (FEM). Each patch’s S is assembled to obtain
a global S based on the index of a global unknown vector.
However, the Dε and Dσ are not added up from each domain’s
contribution. They are diagonal matrices, whose entries are the
permittivity or conductivity at the corresponding e’s location.
Shall they be assembled from each patch’s contribution like
that in an FEM, then the diagonal entry would be a multiple
of the permittivity or conductivity. This unique assembling
procedure in the FDTD, originated from the use of a dual
grid, also renders its SPD subgridding scheme more difficult to
develop, as compared to the FEM in handling a nonconformal
mesh.

Based on (9), we can express the electric filed unknown
as the addition of two contributions: one is from domain 1,
expressed by the first term of the right-hand side of (9); the
other is from domain 2 represented by the second term. Hence,
we can rewrite (9) as a two-row system

Dε{ë}1 + Dσ {ė}1 = −Sh,1Dμ−1
1

Se,1{e} (10)

Dε{ë}2 + Dσ {ė}2 = −Sh,2Dμ−1
2

Se,2{e} (11)

with

{e} = {e}1 + {e}2 (12)

which stitches the two domains together. Neither {e}1 nor {e}2
provides a complete solution of {e}. This is because for an
interface e unknown between domain 1 and domain 2, (10)
yields the curl of H from domain 1 patches, and (11) generates
the curl of H from domain 2 patches, and the addition shown
in (12) is required to complete the whole curl of H operation
to produce the electric field on the interface.

Fig. 1. Illustration of a subgrid embedded in a base grid and different kinds
of unknowns.

Fig. 2. Illustration of a subgrid embedded in a base grid in a 3-D grid.

If the two regions are a base grid and a subgrid, respectively,
the same principle applies to add the equations from each
region. In what follows, we denote the base-grid region by
c, as a coarse mesh is often used in the base grid; and the
subgrid region by f , standing for a f iner mesh in the subgrid.
As illustrated in Figs. 1 and 2, we use {e f b}, {e f i }, {ecb},
and {eci } to denote the electric field unknowns (edges) on
the subgrid boundary, inside the subgrid, on the base grid
boundary that overlaps with the subgrid boundary, and inside
the base grid, respectively. Obviously, one {ecb} overlaps with
multiple {e f b}.

To maintain the field tangential continuity at the interface
between the base grid and the subgrid, we should use only
one set of E unknowns between {ecb} and {e f b}. If we use
{ecb} as the set, the global unknown E vector is composed of

{e}Ne×1 = {eci , e f i , ecb}T (13)

with a total number of E unknowns being

Ne = #eci + #e f i + #ecb. (14)

If we use {e f b}, we have the following {esub} being the global
E vector:

{esub}Ne,sub×1 = {eci , e f i , e f b}T (15)

whose length is

Ne,sub = #eci + #e f i + #e f b. (16)

If the vector in (13) is used as a global unknown vector,
the e’s solution contributed from the base grid, defined as {e}p,
can be expressed as

Dε{ë}p + Dσ {ė}p = −Sh,cDμ−1
c

Se,c{e} (17)

where Se,c is obtained from all of the patches in the base grid,
and Sh,c is the transpose of Se,c. Similarly, the e’s solution
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contributed from the subgrid, defined as {e}m , can be written
into

Dε,sub{ësub}m +Dσ,sub{ ˙esub}m =−Sh, f Dμ−1
f

Se, f {esub} (18)

where Se, f is obtained from all of the patches in the subgrid
and Sh, f is its transpose.

To combine (17) and (18), we can represent {esub} in terms
of {e}. Since only the subgrid boundary unknowns need such
a transformation, we can write

{e f b} = P f c{ecb} (19)

where P f c is used to interpolate {e f b} from {ecb}. Subse-
quently, we can write

{esub}Ne,sub×1 = P{e}Ne×1 (20)

and P, whose size is Ne,sub × Ne , has the following form:

P =
⎡
⎣ (I)#eci×#eci 0 0

0 (I)#e f i×#e f i 0
0 0 (P f c)#e f b×#ecb

⎤
⎦ (21)

in which I denotes an identity matrix, and the subscripts denote
matrix dimensions.

Using the above transformation, (18) can be rewritten as

Dε,subP{ë}m + Dσ,subP{ė}m = −Sh, f Dμ−1
f

Se, f P{e}. (22)

To obtain a symmetric system of equations, we multiply both
sides of (22) by PT , obtaining

PT Dε,subP{ë}m +PT Dσ,subP{ė}m =−PT Sh, f Dμ−1
f

Se, f P{e}.
(23)

Combining (17) and (23) with the following:

{e} = {e}p + {e}m (24)

we obtain the global system of equations for solving e when
subgrids are present.

In [15], the 2-D subgridding algorithm does not permit a
local time stepping, i.e., allowing for the use of a time step in
the base grid local to the base grid regardless of the subgrid.
As a result, one has to use a smaller time step restricted by
the finer space step in the subgrid for the time marching in
the base grid. To permit a local time stepping, in this article,
we propose to solve the following {e}p and {e}m systems of
equations instead of {e} directly:[

Dε 0
0 PT Dε,subP

] [
ëp

ëm

]
+

[
Dσ 0
0 PT Dσ,subP

] [
ėp

ėm

]

+
[

Scc Scc

PT S f f P PT S f f P

] [
ep

em

]
= b (25)

where

Scc = Sh,cDμ−1
c

Se,c

S f f = Sh, f Dμ−1
f

Se, f . (26)

If the new system (25) can be stably simulated, we can
prove the time step for simulating {e}p is determined by the

base grid, instead of the subgrid, as the following. Rewriting
(25) in frequency domain, we have[ −ω2Dε + Scc Scc

PT S f f P −ω2Dε + PT S f f P

] [
ep

em

]
= b(ω). (27)

Eliminating {e}m , the {e}p satisfies

[−ω2Dε + Scc(I − A−1
f f S f f )]ep = b (28)

where I is an identity matrix and A f f = −ω2Dε + PT S f f P.
The S part in (28) is Scc right multiplied by another matrix,
and hence the field solution ep is still spanned in the space
of Scc’s eigenvectors (from the base grid), which guarantees
that the base grid time step is not restricted by the subgrid
region. Similarly it can be proven that the subgrid can be
simulated using the time step allowed for stably simulating
the S f f modes, thus local to the subgrid.

In our conference paper [18], we prove that the S-related
matrix in (25) is positive semi-definite. This is because the
eigenvalues λ and the eigenvectors x of the S-related matrix
satisfy

Snewx =
[

Scc Scc

PT S f f P PT S f f P

]{
x1
x2

}
= λ

{
x1
x2

}
(29)

hence, λ(x1 + x2) = (Scc + PT S f f P)(x1 + x2). Since
both Scc and PT S f f P are SPD, the Snew’s eigenvalues are
also non-negative real. However, this proof does not lead
to the proof that the D−1

newSnew also has nonnegative real
eigenvalues, where Dnew is the block diagonal matrix in front
of the second-order time derivative of {e} in (25). Since Snew

is unsymmetrical now, even though it has nonnegative real
eigenvalues, it does not guarantee that D−1

newSnew has only
nonnegative real eigenvalues for arbitrary P and hence Dnew .
Thus, the resulting explicit time marching would not be stable.

To systematically develop a subgridding algorithm which is
SPD by construction, we carried out the following analysis.
First, we should realize that since e f b and ecb overlap, they
share the same material parameter, and hence

PT Dε,subP = PT PDε (30)

PT Dσ,subP = PT PDσ . (31)

As a result, (23) can be rewritten as

Dε{ë}m + Dσ {ė}m = −(PT P)−1PT Sh, f Dμ−1
f

Se, f P{e}. (32)

Adding the above upon (17), the whole system of equations
for solving {e} can be written as

Dε{ë} + Dσ {ė} = −[Scc + (PT P)−1PT S f f P]{e} (33)

which can be written in short as

Dε{ë} + Dσ {ė} = −Stotal{e} (34)

where

Stotal = Scc + (PT P)−1PT S f f P. (35)

The stability of (33), which is also that of (25), is governed
by the property of D−1

ε Stotal. Since Dε is symmetric and
positive definite, the stability is governed by the property
of Stotal. If Stotal is symmetric and positive semi-definite,
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then Dε and Stotal form an SPD eigenvalue problem, whose
eigenvalues are known to be nonnegative real. Unfortunately,
the Stotal shown in (35) is not symmetric for general P.
However, if P−1 = PT , then obviously Stotal would become
symmetric. Since P is not a square matrix because the subgrid
does not match the base grid, P−1 does not exist. Nevertheless,
if we can make PT P an identity matrix, or an identity matrix
scaled by a positive coefficient, then (35) is also symmetric
and positive semi-definite. Let PT P = dI, we have

Stotal = Scc + d−1PT S f f P (36)

which is symmetric and positive semi-definite.
The aforementioned provides a theoretical framework to

develop an FDTD subgridding algorithm that is SPD by
construction. The only thing left for consideration is accuracy,
i.e., we have to make sure the field solution obtained from
the resulting system is accurate. Based on the ideas presented
in this section, we successfully develop 2- and 3-D SPD
subgridding algorithms in both space and time, which are also
accurate, the details of which are presented in Section IV.

IV. SPD 2-D SUBGRIDDING ALGORITHM IN SPACE AND

TIME

In this section, we first present an accurate 2-D SPD
subgridding operator in space and time and then provide an
interpretation of the operator in the original FDTD framework.

A. 2-D Subgridding Operator

For 2-D cases, let the grid ratio be n, then there are n subgrid
boundary unknowns e f b overlapping with the ecb from the
base grid, as illustrated in Fig. 1. We need to find a good choice
of P that can result in a system matrix shown in (36). The P
in [15] satisfies this requirement after certain modifications.
Specifically, the following P f c is employed:

P f c = [1 1 1 · · · 1]T
n×1. (37)

For such a choice of P f c, (PT P)−1 is a diagonal matrix of

(PT P)−1 =
⎡
⎣ I#eci 0 0

0 I#e f i 0
0 0 n−1I#ecb

⎤
⎦ (38)

where I denotes an identity matrix whose size is specified by
the subscript and # denotes the cardinality of a set.

Although (38) is diagonal, it cannot be written as an identity
matrix scaled by a constant. However, we can change the
diagonal block corresponding to the eci from I to n−1I. This
would not change (33) since the S f f term is zero in the
rows/columns corresponding to eci . In other words, S f f does
not involve unknowns in the base grid. We can also change
the diagonal block corresponding to the e f i from I to n−1I.
This will change the S f f term. However, we can scale the
left-hand side matrices corresponding to the e f i in the same
way. As a result, the solution would not be changed. After the
modifications, we obtain the following system of equations:

DDε{ë} + DDσ {ė} = −[Scc + n−1PT S f f P]{e} (39)

where D = diag{{1}#eci , {1/n}#e f i , {1}#ecb}, a diagonal matrix
made of the entries shown in the braces. The above system is
clearly SPD, whose solution is also the same as (33), thus not
changed.

Although (39) is SPD, we find it is not very accurate. This
is because the cell size is different for the subgrid patches and
the base grid patches. We need to use an average length to
calculate the electric field of ecb from the curl of H. To see
this point clearly, consider one ecb unknown whose global
index is i , its corresponding row of equation in (39) can be
written as

εi ecb,i + σi ecb,i = −
⎡
⎣ 1

Lc
ḣbase − 1

nL f

n∑
j=1

ḣs, j

⎤
⎦ (40)

in which εi and σi denote the permittivity and conductivity,
respectively, at the point of ecb,i , Lc denotes the base grid
cell size, and L f is the subgrid one, the hbase is the magnetic
field at the base grid patch that owns the ecb,i , whereas hs, j

denotes the j th subgrid patch with one edge falling onto the
ecb,i . Since Lc is different from L f , the above is inaccurate
in computing the curl of H to generate ecb,i .

For better accuracy, we use an average length L2D,ave of
the two patches along the direction perpendicular to the ecb to
evaluate the curl of H, which is

L2D,ave = Lc + L f

2
. (41)

To utilize the average length, the row entry of S(i)
h of the

patches involving ecb should be changed from the original
1/Li (Li being Lc or L f ) to 1/L2D,ave. We hence replace
1/Li by 1/L2D,ave for the rows corresponding to the ecb

unknowns, obtaining

Stotal = D1

(
Scc + L f

nLc
PT S f f P

)
(42)

where

D1 = diag{{1}#eci , {1}#e f i , {Lc/L2D,ave}#ecb}. (43)

In this way, (40) becomes

εi ecb,i +σi ecb,i =−
⎡
⎣ 1

L2D,ave
ḣbase− 1

nL2D,ave

n∑
j=1

ḣs, j

⎤
⎦ (44)

which is accurate. However, since S f f also involves e f i ,
the constant coefficient L f /nLc = 1/n2 in (42) scales the
right-hand side corresponding to the e f i as well, and hence
the equation is changed. Again, we can scale the left-hand side
of (39) in the same way to make the equation correct.

As a result, (39) becomes

DsDε{ë} + DsDσ {ė} = −Stotal{e} (45)

in which

Ds = diag{{1}#eci , {1/n2}#e f i , {1}#ecb} (46)

and

Stotal = D1St (47)
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where

St = Scc + (1/n2)PT S f f P. (48)

The stability of (45) is governed by the eigenvalues of
D−1

ε D−1
s D1St . Since D−1

ε D−1
s D1 is diagonal and symmet-

ric positive definite, and St is SPD, the eigenvalues of
D−1

ε D−1
s D1St are nonnegative real. As a result, the resultant

subgridding scheme is guaranteed to be stable. Meanwhile,
the accuracy is also ensured via the choice of P, and the use
of average length across the base grid and the subgrid.

To realize a local time stepping, we transform (45) to the
following system:[

Dε 0
0 DsDε

] [
ëp

ëm

]
+

[
Dσ 0
0 DsDσ

] [
ėp

ėm

]

+
[

D1Scc D1Scc

n−2D1PT S f f P n−2D1PT S f f P

] [
ep

em

]
=b. (49)

An explicit time marching is then performed on the ep and
em separately as follows:

Dε ëp + Dσ ėp + D1Scc{e} = bc (50)

D−1
1 DsDε ëm + D−1

1 DsDε ėm + n−2PT S f f P{e} = D−1
1 b f

(51)

{e} = ep + em

(52)

which allows for a local time stepping without affecting
stability.

B. Interpretation and Implementation in the Original FDTD
Difference Equation-Based Framework

The formulas provided in this section above may appear
abstract since matrix representations are used to derive the
algorithm. However, if we do not use matrix operators, one
cannot see a system-level picture clearly. Indeed, it is difficult
to see how the change of one row of equation affects the
stability of the whole numerical system, if one stays in
the original framework of the FDTD composed of many
differencing equations. In contrast, once the SPD operator is
developed, we can readily explain it using the language of the
original FDTD. Next, we provide an interpretation and show
the implementation of the proposed algorithm in the original
FDTD. We do so for both global time stepping, i.e., the same
time step (restricted by the finest grid) is used in the base
grid and the subgrid; and local time stepping, i.e., each grid
is stably simulated using its own local time step.

1) Global Time Stepping: The procedure is as follows.
1) For eci unknowns, which are inside the base grid, they

are solved in the same way as in the original FDTD.
In other words, each eci at the current time step is
obtained from the curl of H operation using the two
H fields at previous time step located at the two patches
that share the eci .

2) For magnetic field unknowns inside the base grid, they
are also solved in the same way as in the original FDTD.

3) For ecb unknowns, which reside on the interface between
the subgrid and the base grid, we use the average of the

H-fields at the n subgrid patches adjacent to the ecb, and
the H-field at the base grid patch having ecb, to perform a
curl of H operation. The length averaged from the base
grid cell size and subgrid cell size is used for better
accuracy.

4) The e f b unknowns are obtained from P f cecb, which is
nothing but to set them the same as the ecb where the
e f b unknowns reside.

5) The e f i and the magnetic field unknowns inside the
subgrid are solved in the same way as that in the original
FDTD.

As can be seen, only the ecb and e f b are different from the
original FDTD in their generation. The time step of the above
scheme is restricted by the smallest space step in the grid,
which we term a global time step.

2) Local Time Stepping: For local time stepping, i.e., sub-
gridding in time, all the unknowns, except for ecb, are gener-
ated in the same way as above. For the ecb unknown, we should
do the following. At each time step of time marching, from the
base grid, we know the H-field at previous time instant at the
patch having ecb, we use it to perform only a partial curl of H
operation, which is hbase/L2D,ave. In other words, we do not
complete the curl of H operation using the H-fields from the
subgrid. The partial curl of H evaluated from the base grid
only provides one component of the ecb, denoted by ecb,p ,
but it allows all unknowns in the base grid to be generated
using a large time step. For the subgrid, we use the time step
restricted by the subgrid space step, and obtain the other half
of the curl of H operation by taking the average of the n
H-fields on the n subgrid patches adjacent to ecb. Let such an
average field be hsub, we perform −hsub/L2D,ave to obtain
the other component of ecb denoted by ecb,m . Then adding the
ecb,p and ecb,m makes the total ecb. Since two different time
steps are used, the addition is performed at the time instants
of the smaller time step, where ecb,p is interpolated to provide
a value at the desired time instants. Then the total ecb is also
known for the time instants of the larger time step. The time
step ratio is the grid ratio, hence for one time step marching
in the base grid, n steps of marching are performed in the
subgrid.

V. SPD 3-D SUBGRIDDING ALGORITHM IN

SPACE AND TIME

A. 3-D Subgridding Operator

Different from 2-D cases, in addition to {eci }, {ecb}, {e f i }
unknowns, there are two sets of {e f b} unknowns. One set is
located along the edges that overlap with {ecb}, which we
denote by {e f b,e}; and the other set is on the faces of the
interface between the base grid and the subgrid, which we
denote by {e f b, f }, as illustrated in Fig. 2. This set of {e f b, f }
unknowns is unique for 3-D cases, which does not appear in
2-D scenarios. Since {ecb} is tangential to the subgrid interface,
the 12 ecb unknowns on a subgrid interface make a complete
set to interpolate both {e f b,e} and {e f b, f } unknowns. Thus,
we have

e f b =
[

e f b, f

e f b,e

]
= P f cecb (53)
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where

P f c =
[

P f c, f

P f c,e

]
(54)

with the upper part used to interpolate {e f b, f } and the lower
part for interpolating {e f b,e}. If a linear interpolation is used,
for an arbitrary grid ratio n, the i th column of P f c has the
following nonzero entries located at the rows corresponding
to the {e f b, f } and the {e f b,e} unknowns interpolated from the
i th ecb:

P f c,i = [{(n − 1)/n}n, {(n − 2)/n}n, . . . , {1/n}n︸ ︷︷ ︸
e f b, f on face 1 of ecb and parallel to ecb

,

{(n − 1)/n}n, {(n − 2)/n}n, . . . , {1/n}n︸ ︷︷ ︸
e f b, f on face 2 of ecb and parallel to ecb

,

{1}n︸︷︷︸
e f b,e that overlaps with ecb

]T (55)

in which the subscript of each set denotes the number of entries
in the set. For example, the last set, {1}n, is a set having n
ones, each of which corresponds to one fine edge unknown
e f b,e located along the ecb edge. This set is, in fact, the P f c,e

in (54), which is the same as the P f c in the 2-D scheme. The
other two groups of entries of (55) make the part of P f c, f ,
yielding the e f b, f located on the two faces that share the ecb.
The first group from {(n − 1)/n}n to {1/n}n corresponds to
the e f b, f falling onto the first face and parallel to the ecb,
while the second group corresponds to the e f b, f falling onto
the second face and parallel to the ecb.

The P for 3-D problems is thus (21) but with the new 3-D
P f c shown in (55). Different from 2-D settings, (PT P)−1 is
not diagonal any more. In [15], we only use PT

f c,e instead
of a complete PT

f c to develop a 3-D subgridding algorithm.
Although the resulting PT

f c,eP f c,e is diagonal, the information
inside the subgrid cannot be utilized to solve the whole
problem. In other words, the base grid solution is decoupled
from the subgrid solution, which is inaccurate when strong
inhomogeneity exists in the subgrid. Although the subgrid
solution still depends on the base grid solution in the 3-D
scheme of [15], the base grid solution is the same regardless
of the content of the subgrid, which is its source of inaccuracy.

Based on the findings in 2-D cases, the (PT P)−1 plays a role
of averaging the contribution from the multiple subgrid patches
to produce an accurate curl of H to generate ecb. Therefore,
it is feasible that we modify (PT P)−1 to a diagonal matrix
that makes the final system matrix SPD, and meanwhile let it
perform an accurate operation of averaging. The details are as
follows.

For each ecb unknown, there is one column vector in P f c

to interpolate the e f b unknowns. Consider the i th ecb, thus,
the i th row of PT S f f P. It can be written as

PT
i S f f P = PT

i

[
SF1(i)

f f,g1 + SF1(i)
f f,g2 + SF2(i)

f f,g1 + SF2(i)
f f,g2

]
P (56)

where the superscripts F1(i) and F2(i) denote face 1 and face 2,
respectively, which share the i th ecb, as illustrated in Fig. 3.
Using the patch-based formulation, the S f f is nothing but the
summation of the rank-1 matrix of each patch in the subgrid

Fig. 3. Illustration of one ecb (black), the two faces sharing ecb , and the two
groups of subgrid patches whose magnetic fields are used to generate ecb .

region. Hence, when evaluating (56), we only need to identify
which patch is selected by the row vector PT

i , i.e., involved
in the multiplication with PT

i and hence contributing to the
product of PT

i S f f . Based on the expression of P f c,i shown
in (55), clearly, all patches that have an edge located on the
two faces that share ecb, and also parallel to the ecb, will be
selected. In addition, these patches can also be classified into
two groups: one group falls onto face 1 and face 2, while
the other group of patches are perpendicular to face 1, and
face 2, respectively. In Fig. 3, the first group that falls onto
face 2 (right face) of ecb is shown and colored in red; while
in the second group, the patches perpendicular to face 1 of
ecb are shown and colored in blue. The contribution from the
first group of patches is denoted by S f f,g1, while the other is
denoted by S f f,g2 in (56). For each of the two faces where
the ecb resides, both contributions exist.

The S f f,g1 term can be evaluated on each face as the
following:

PT
i S f f,g1P{e} = PT

i [(Sh,11ḣ11 + · · · + Sh,n1ḣn1)

+ (Sh,12ḣ12 + · · · + Sh,n2ḣn2)

+ · · · (Sh,1nḣ1n + · · · + Sh,nnḣnn)] (57)

in which the Sh are from the first group of patches, which are
those falling onto the face. For a grid ratio of n, it is evident
that there are n2 such patches, each of which is denoted by
a row and a column index of the patch using subscripts. For
example, hn1 denotes the magnetic field on the patch located
in the first column (closest to the ecb,i ) and the nth row. Based
on the expression of P f c,i , (57) can be readily evaluated and
found as

PT
i S f f,g1P{e} =

∑n
i=1

∑n
j=1 ḣi j

Lc
. (58)

Clearly, the numerator represents the sum of all of the normal
magnetic fields at the patches residing on the face. If we divide
the above by n2, then the numerator represents the average
magnetic field located at the center of the face, i.e., the red
point shown in Fig. 4. Thus, we have

PT
i S f f,g1P{e} = n2 ḣF

cnt

Lc
(59)

in which hF
cnt stands for the magnetic field at the face center

normal to the face and along the reference direction of the
face.
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Fig. 4. Illustration of the magnetic field point corresponding to each term,
and the average length for different patches.

Similarly, we can quantitatively evaluate the second group’s
contribution in (56), which is

PT
i S f f,g2P{e}

= PT
i

[(
S⊥

h,11ḣ⊥
11 + · · · + S⊥

h,n1ḣ⊥
n1

)
+ (

S⊥
h,12ḣ⊥

12 + · · · + S⊥
h,n2ḣ⊥

n2

)
+ · · · (S⊥

h,1,n−1ḣ⊥
1,n−1 + · · · + S⊥

h,n,n−1ḣ⊥
n,n−1

)]
. (60)

Here the S⊥
h is generated from patches that are perpendicular

to the face, as those colored in blue in Fig. 3. There are n − 1
columns of such patches on either of the two faces sharing the
ecb, and in each column there are n patches, and hence two
subscripts are used for h in the above to denote the patch’s,
thus h’s location. Again, based on the expressions of P f c,i

and Sh , we find the above to be

PT
i S f f,g2P{e} = n − 1

nL f

n∑
i=1

ḣ⊥
i1 + n − 2

nL f

n∑
i=1

ḣ⊥
i2

+ · · · + 1

nL f

n∑
i=1

ḣ⊥
i,n−1. (61)

If we divide the above by n(n − 1)/2, then the summation
can be viewed as an average magnetic field in the direction
perpendicular to the patches, thus parallel to the face where
the patches are attached. Since the patches involved in (61)
are immediately adjacent to the face, the resulting magnetic
field after averaging can be viewed as a field located at the
point whose distance to the ecb is L f /2, as shown by the blue
point in Fig. 4, and on the face parallel to the patch. Let this
field be hsub. We have

PT
i S f f,g2P{e} = n(n−1)

2L f
ḣsub. (62)

Take face 2, occupied by all red patches shown in Fig. 3,
as an example. On this face, the first group of patches’
contribution, as shown in (59), after averaging, produces a
magnetic field located at the center of the face and normal
to the face. This point is the red point shown in Fig. 4. The
magnetic field along the same direction is also produced by
the second group of patches on face 1, i.e., PT

i SF1(i)
f f,g2P{e}.

As shown in (62), this component, after averaging, can be
viewed as the magnetic field located at the point whose
distance to the ecb is L f /2, thus the blue point in Fig. 4.
We hence can use these two magnetic fields to do an average
to obtain the magnetic field located at the midpoint of the two
fields, whose distance to the ecb is L f

′ = (L f + Lc)/2. This
magnetic field together with the magnetic field at the center of

the adjacent base grid patch, marked as a green point in Fig. 4,
can then be used to generate an accurate curl of H to produce
ecb. Similar to the treatment in 2-D, we need to use the average
length of Lc and L f

′ to achieve a better accuracy in computing
the curl of H. Thus, the average length, Lave, is

Lave = Lc + L f
′

2
= 3Lc + L f

4
. (63)

Based on the aforementioned, we compute ecb in the fol-
lowing way:

εi ëcb,i + σi ėcb,i

= −[
αPT

i SccP + βPT
i S f f,g1P + γ PT

i S f f,g2P
]{e} (64)

where

α = Lc

Lave
(65)

β = Lc

2n2 Lave
(66)

and

γ = L f

n(n − 1)Lave
. (67)

Substituting (59) and (62) into (64), it can be seen that (64)
is nothing but to compute

εi ëcb,i + σi ėcb,i = ḣF1(i)
base − 0.5

(
ḣF1(i)

cnt + ḣF1(i)
sub

)
Lave

+ ḣF2(i)
base − 0.5

(
ḣF2(i)

cnt + ḣF2(i)
sub

)
Lave

(68)

where the hbase is the magnetic field at the center of the base
grid patch that has ecb, and its superscript denotes the subgrid
face that is on the same plane as the base grid patch. Hence,
(64) produces an accurate curl of H for generating ecb.

Based on (64), now we can write the whole system of
equations for solving all unknowns as

DsDε{ë} + DsDε{ė} = −Stotal{e} (69)

in which

Ds = diag{{1}#eci , {γ /α}#e f i , {1}#ecb} (70)

and

Stotal = D1

(
Sh,cDμ−1

c
Se,c + β

α
PT S f f,g1P

+ γ

α
PT (S f f,g2 + S f f,g3)P

)
(71)

with

D1 = diag{{1}#eci , {1}#e f i , {α}#ecb}. (72)

In (71), the subscript g3 denotes the third group of patches,
which are inside the subgrid. The Ds is used in (69), because
when S f f,g2 term is scaled by γ /α, the field internal to the
subgrid, i.e., e f i , is also scaled by this coefficient. Hence,
by left scaling the entire system by Ds , we keep the solution
of e f i the same as before. It is obvious that the matrix in the
big parenthesis of (71) is SPD, and hence the final numerical
system remains to have nonnegative real eigenvalues. Mean-
while, we have taken the accuracy into account in generating
the ecb unknowns.
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B. Interpretation and Implementation in the Original FDTD
Difference Equation-Based Framework

The proposed 3-D subgridding operator can be interpreted,
and implemented in the original FDTD as follows.

1) Global Time Stepping: The procedure is as follows.

1) For eci and magnetic field unknowns, which are inside
the base grid, they are solved in the same way as in the
original FDTD.

2) For an ecb unknown, we obtain the H-fields at the n2

subgrid patches on one face (for example, face 1) having
the ecb, and then take its average. Let this be hcnt .
We then obtain the weighted sum of the magnetic fields
shown in the right-hand side of (61) on the other face
(face 2) that has ecb. Dividing the sum by n(n − 1)/2,
we obtain hsub. Using the H-field at the base grid patch
that has the ecb on the same plane as face 1, denoted by
hbase, we can perform a curl of H operation as shown
in (68) to obtain ecb, together with the hcnt generated
on face 2, the hsub from face 1, and the hbase on the
other base grid patch.

3) The e f b unknowns are obtained from P f cecb .
4) The e f i and the magnetic field unknowns inside the

subgrid are solved in the same way as that in the original
FDTD.

Similar to 2-D, only the ecb and e f b are generated differently.
2) Local Time Stepping: For local time stepping, i.e., sub-

gridding in time, all the unknowns, except for ecb, is generated
in the same way as above. For the ecb unknown, we do the
following. At each time step of time marching, from the base
grid, we know the H-field at previous time step at the two
patches having ecb, we use it to perform only a partial curl of
H operation, which is (h1

base + h2
base)/Lave. In other words,

we do not complete the curl of H operation using the H-fields
from the subgrid. The partial curl of H evaluated from the base
grid only provides one component of the ecb , denoted by ecb,p,
but it allows all unknowns in the base grid to be generated
using a large time step. For the subgrid, we use the time step
restricted by the subgrid space step and obtain the other half
of the curl of H operation by evaluating the H-fields in every
subgrid patch and then obtaining hsub and hcnt on both faces
inside the subgrid that has ecb, using which we obtain the
other component of ecb, ecb,m , which correspond to the right-
hand side of (68) with the two base-grid fields excluded. Then
adding the ecb,p and ecb,m makes the total ecb.

VI. NUMERICAL RESULTS

In this section, we simulate a variety of 2- and 3-D examples
with uniform or highly inhomogeneous materials to examine
the performance of the proposed subgridding algorithms in
stability, accuracy, and efficiency.

A. 2-D Free-Space Wave Propagation

We first simulate a free-space wave propagation problem
in a 2-D region of size 0.5 m × 0.5 m. The base grid size
is Lc = 0.1 m, and the subgrid is located at the center of
the base grid. The grid ratio n ranges from 2, 5, 20, to 100.

Fig. 5. Simulation of a 2-D wave propagation problem. (a) Grid (for the
case of n = 5). (b) Entire solution error versus time for different grid ratios
(n = 2, 5, 20, 100) generated using the local time stepping.

In Fig. 5(a), the grid for a grid ratio of n = 5 is shown.
The time step used in the base grid is dtc = 1.9 × 10−10 s,
which is determined by Lc, and the time step for the subgrid
region allowed by the stability condition is dt f = dtc/n. The
Einc is ŷ2(t − t0 − x/c)e(t−t0−x/c)2/τ 2

with c = 3 × 108 m/s,
τ = 2×10−8 s, and t0 = 4τ . All the boundaries are terminated
by exact absorbing boundary conditions, i.e., known fields for
the given problem. The entire solution error at each time step
as compared to the analytical solution is assessed by

Entire Solution Error = ‖{e} − {e}anal‖
‖{e}anal‖ (73)

where ‖ · ‖ denotes the norm of the vector, and 2-norm is
used. In addition, the vector {e} is of length Ne , i.e., including
all electric field unknowns in the computational domain.
In Fig. 5(b), we plot (73) for different grid ratios, where
{e} denotes the vector of all electric field unknowns in the
grid. It is clear to see that the simulated fields agree with the
analytical solution very well. The center peak error is due to
a comparison with zero. We also simulate the same problem
using the conventional FDTD method and compare the CPU
run time of the two methods in Table I for different grid ratios.
It is obvious that the proposed method is more efficient since
the number of unknowns to solve is greatly reduced, and the
time step used in the base grid is also significantly enlarged.
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TABLE I

CPU TIME COMPARISON OF AN EXAMPLE FOR DIFFERENT GRID RATIOS
USING LOCAL TIME STEPPING

Fig. 6. Simulation of a PEC cavity with conducting fins separated by a thin
gap. (a) Structure. (b) Simulated electric fields using local time stepping.

B. 2-D PEC Cavity With Conducting Fins

Next, a PEC cavity with two conducting fins separated
by a thin gap, as illustrated in Fig. 6(a), is simulated. The
conductivity of the fins is 5.8 × 107 S/m. A current source
is launched at the middle of the fin gap vertically, and with a
Gaussian derivative pulse of −τ 2exp(−(t − t0)2/τ 2), with τ =
2×10−12 s, and t0 = 4τ . The coarse grid size is Lc = 0.1 mm,
and the subgrid region, having a grid ratio of Lc/L f = 4,
is located between the two fins. The time step used in the
subgrid is dt f = 4.2 × 10−14 s, which is determined by
L f . The fields simulated from this method at two points,
(1, 1.05) and (2.85, 1.5) mm, are plotted in Fig. 6(b) and
compared with the conventional FDTD results. Very good
agreement is observed. The conventional FDTD method, using
a uniform grid, takes 6.68 s to finish the simulation while the
proposed subgridding method only takes 0.84 s.

C. 3-D Free-Space Wave Propagation

The third example is a free-space wave propagation problem
in a 3-D box. The size of the computational domain in each

Fig. 7. Simulated electric fields at two observation points in comparison
with reference analytical solutions of a 3-D wave propagation problem.

Fig. 8. Entire solution error versus time for different grid ratios of a 3-D
wave propagation problem using the global time stepping.

direction is 0.5 m. Along all directions, the coarse space step
is Lc = 0.1 m. The subgrid is located at the center having a
grid ratio n ranging from 2, 4, 10, to 20, making the fine space
step L f = Lc/n. The Einc is ŷ2(t − t0 − x/c)e(t−t0−x/c)2/τ 2

with c = 3 × 108 m/s, τ = 2 × 10−8 s, and t0 = 4τ .
Again, all of the boundaries are terminated by exact absorbing
boundary conditions. In Fig. 7, we first plot the simulated
electric fields at two observation points in comparison with
the analytical solution for grid ratio n = 4. Point 1 is at
(0.1, 0.05, 0.1) m and it is inside the base grid, while Point
2 is at (0.225, 0.225, 0.2125) m, which is inside the subgrid.
As can be seen, the electric fields solved from the proposed
method have an excellent agreement with analytical results.
We also plot the entire solution error at each time step as
compared to the analytical solution, ‖{e}−{e}anal‖/‖{e}anal‖,
versus time in Fig. 8 for different grid ratios. As can be
observed, the proposed method is not only accurate at selected
observation points but also accurate at all other points. The
center peak error is again due to a comparison with zero.
In Fig. 9, we compare the accuracy of the proposed local time
stepping with that of the global one. A grid ratio of 4 is consid-
ered. Instead of using the smallest time step dt f everywhere,
we use dtc in the base grid, which is chosen to be 2, 3, and
up to n times as large as the dt f . As can be seen from Fig. 9,
the stability is maintained, and the accuracy is not sacrificed.

In addition, in this example, we compare the difference
between the proposed SPD operator shown in (69) which has
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Fig. 9. Entire solution error versus time of a 3-D wave propagation problem,
using local time stepping, with different time steps in the base grid.

Fig. 10. Accuracy comparison between using (69) and using (33) of a 3-D
wave propagation problem.

accuracy taken into account, and the preliminary one shown
in (33), where (PT P)−1 is kept as it is without modifications.
We find complex eigenvalues such as 3.9384e19 ± 1.6543e4i
from (33), thus the stability cannot be guaranteed although in
this case the imaginary part is small. Meanwhile, the accuracy
is not as good as (69), where (PT P)−1 is modified to perform
an accurate averaging for mismatched grid sizes. The accuracy
comparison can be seen from Fig. 10.

We also simulate this 3-D wave propagation problem to a
very late time when the number of time steps is more than
1 000 000, the result of which is shown in Fig. 11. As can
be seen, after the early time response, the fields are stably
simulated as zero in the late time.

D. 3-D PEC Cavity With an Inhomogeneous Subgrid Region

Next we simulate a 3-D cavity excited by a current source,
which has an inhomogeneous subgrid region, to examine the
accuracy of the proposed algorithms in such a setting. The
cavity is 1 cm long in all directions and terminated by a PEC
boundary condition. The base grid size along each direction
is 1 mm, except for the small cube centered at (4.5, 4.5, 4.5)
mm, which is illustrated in Fig. 12. This center cube is 1 mm
long in all directions and filled with inhomogeneous materials,
while the base grid has a dielectric constant of 3. The center
cube is further subdivided with a grid size of 0.2 mm, resulting
in 125 fine cells. To examine the capability of the proposed
work in handling inhomogeneity, each subgrid cell’s dielectric
constant is set as a random number in the range of 1–125.

Fig. 11. Late-time simulation result from the proposed method versus
analytical result of a 3-D wave propagation problem.

Fig. 12. Structure details of a 3-D cavity excited by a current source.

Fig. 13. Electric fields at two observation points using the proposed method
versus reference results of a 3-D cavity example.

A current probe is placed at (3, 3, 3.5) mm. The current
has a Gaussian pulse whose waveform is ẑτe−(t−t0)2/τ 2

with
τ = 2.0 × 10−11 s and t0 = 4τ . As a reference, we also
simulate the same problem using the method in [14], which
is an unsymmetrical subgridding method but can handle such
inhomogeneous problems accurately. The time step allowed
by the method in [14] is dt = 3.8 × 10−13 s. In Fig. 13,
the electric fields sampled at Point 1 (2, 2, 1.5) mm and Point
2 (8, 8, 7.5) mm are plotted in comparison with the reference
solution generated using the method of [14] (labeled as
Ref1 in Fig. 13). It can be seen that the accuracy of the
proposed method is very good. This shows the proposed
new SPD method is able to handle inhomogeneous problems
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Fig. 14. Electric fields at two observation points using method in [15] versus
reference results of a 3-D cavity example.

Fig. 15. Simulated electric fields at two observation points in comparison
with reference results of a 3-D inhomogeneous phantom head example.
(a) Global time stepping is used. (b) Local time stepping is used.

accurately. For comparison, the symmetric semi-definite
method in [15] is used to simulate the same problem. As can
be seen from Fig. 14, the results of [15] (labeled as Ref2) are
not as accurate as the proposed method when compared to
the reference solution. This is due to the fact that the electric
fields shared by the base grid and the subgrid are solved
from the base grid only in [15] to build an SPD system. This
scheme cannot capture the variation in fields resulting from
the inhomogeneous subgrid region.

Fig. 16. Electric fields simulated over one million time steps of a 3-D
inhomogeneous phantom head example.

E. Inhomogeneous 3-D Phantom Head Beside a Wire
Antenna

In this example, we simulate a large-scale phantom
head beside a wire antenna, which involves many
inhomogeneous materials [14]. The size of the phantom
head is 28.16 × 28.16 × 17.92 cm. All the boundaries are
truncated by perfect magnetic conducting conditions. The wire
antenna is located at (3.52, 3.52, 2.52) cm, with a current pulse
of ẑ2(t − t0)e−(t−t0)2/τ 2

with τ = 5.0 × 10−10 s and t0 = 4τ .
The base grid size along x-, y-, and z-directions is 4.4, 4.4,
and 5.6 mm, respectively. To capture fine tissues, the base
grid cell centered at (14.3, 14.3, 9.24) cm is subdivided
into subgrid cells in all directions with a grid ratio of 4,
making the subgrid grid size along x-, y-, and z-directions
as 1.1, 1.1, and 1.4 mm, respectively. Again, we use the
unsymmetrical subgridding method [14] as our reference. Due
to the existence of the subgrid, the unsymmetrical subgridding
method [14] must use a time step of 2.2 × 10−12 s across the
whole grid to ensure stability. In contrast, the proposed new
method allows for a larger time step dtc = 8.8 × 10−12 s
in the base grid. In Fig. 15(a), the electric fields at two
observation points whose locations are (3.52, 3.52, 15.96) and
(24.64, 3.52, 15.96) cm are plotted in comparison with the ref-
erence results obtained using a global time step. In Fig. 15(b),
the electric fields obtained from a local time stepping at the
same observation points are plotted. It is clear that the two
sets of results agree well. The unsymmetrical subgridding
method [14] uses 549 s to finish the simulation. In contrast,
the proposed subgridding method only costs 345 s using a
global time step, and 209 s when using a local time step.

The original number of time steps simulated is 5455 with the
proposed method. We also simulate this example to a very late
time when the number of time steps is more than 1 091 000.
As shown in Fig. 16, no late time instability is observed.

VII. CONCLUSION

In this article, an SPD FDTD subgridding method in both
space and time is developed for fast FDTD simulations. First,
we provide an algebraic method to systematically derive an
SPD subgridding operator for the FDTD in both space and
time. This method yields a framework for developing a series
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of SPD subgridding operators. We then take the accuracy into
account and develop 2- and 3-D subgridding algorithms which
are not only SPD for arbitrary grid ratios but also accurate
for analyzing general inhomogeneous problems. The stability
is guaranteed by construction, because the eigenvalues of the
resulting SPD system matrix are nonnegative real. Further-
more, the time step of each grid for stability is determined by
the time step local to the grid. Thus, the base grid time step
is not restricted by the subgrid region, further accelerating the
simulation. We also provide an interpretation of the proposed
algorithms in the original FDTD framework and show how to
implement them easily. Numerous numerical experiments have
been carried out. Comparisons with both analytical solutions
and state-of-the-art subgridding algorithms have demonstrated
the accuracy, efficiency, and stability of the proposed new
subgridding algorithms.
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