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Abstract— A fast nested cross approximation (NCA) algorithm
is developed in this paper for solving large-scale electromagnetic
problems. Different from the existing NCA, the proposed method
does not rely on the projection of the basis functions onto
the dummy interpolation points to select pivots of each cluster.
Instead, a purely algebraic and kernel-independent algorithm is
developed to find the row and column pivots of all clusters in
O(N log N) complexity for constant-rank cases with controlled
accuracy. This algorithm is then further extended to an O(N)
NCA algorithm, which includes a bottom-up tree traversal for
finding the local pivots of each cluster, followed by a top-down
procedure to take into account the far field of each cluster.
The proposed method has a reduced complexity compared to
that reported in the mathematical literature. The resultant
nested representation constitutes an H2-matrix representation
of the original dense system of equations, whose solution can be
obtained in linear complexity in both iterative and direct solvers.
The method is also applicable to variable rank cases, but the
complexity therein depends on the rank’s relationship with N.
Various numerical experiments have demonstrated the accuracy
and computational performance of the proposed algorithms.

Index Terms—H2-matrix, kernel independent, linear complex-
ity, nested cross approximation (NCA).

I. INTRODUCTION

THE surface integral equations (SIEs) are among the most
compelling formulations [1] for the analysis of electro-

magnetic problems due to its reduced problem size. Neverthe-
less, the classical method of moments (MoM) discretization of
the SIEs is computationally prohibitive with a complexity of
O(N2) in CPU time and memory cost, where N is the number
of the basis functions used to discretize the integral equation.

Various fast algorithms have been developed to accelerate
the solution of SIEs. The fast multipole algorithm (FMA) and
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the multilevel FMA (MLFMA) accelerate the matrix-vector
product (MVP) in the framework of an iterative solution,
which is based on an analytical harmonic expansion of the
Green’s function [2]. Despite the nearly O(N) complexity
for solving electrically small problems [3], the FMA is ker-
nel dependent and becomes rather complicated once the
Green’s function cannot be analytically factorized, for exam-
ple, the multilayered Green’s function [4]. The fast Fourier
transform (FFT) based algorithms, such as the precorrected-
FFT [5], adaptive integral method (AIM) [6], and so on,
exploit the convolution form of the Green’s function to
approximate the system matrix by a block Toeplitz struc-
ture. The resultant solution time and memory cost scale as
O(N1.5 log N) and O(N1.5), respectively, for 3-D SIEs.

The low-rank approximation based methods exploit the
property that the subblocks representing a far-field interaction
are rank deficient. The H-matrix is one of the most represen-
tative frameworks [7], [8] for developing low-rank methods.
The admissible blocks in a system matrix, which correspond
to the far-field interactions, are approximated by low-rank
matrices with a controlled error. The low-rank approximation
can be obtained by several approaches, such as the Taylor
expansion, the polynomial interpolation, the adaptive cross
approximation (ACA) [9], [10], and the hybrid cross approx-
imation (HCA) [11], [12]. The ACA is one type of purely
algebraic methods, which constructs the approximation from
a small number of the original matrix elements. The HCA
combines the advantages of both the interpolation method
and the ACA, providing a reliable low-rank approximation,
as well as enhanced efficiency. Although an H-matrix algo-
rithm can be further accelerated [13], from ACA or HCA, one
cannot obtain a nested low-rank representation, which hinders
a complexity reduction. The Lagrange interpolation based
low-rank approximation exploits the nested property among
the Lagrange polynomials and leads to an H2-matrix [14].
The H2-matrix is a more efficient structure than the H-matrix
and it enables a rigorous linear complexity due to the nested
form of the cluster basis. The rank-minimized H2-matrix was
also developed to minimize the computational overhead and
optimize the cluster bases [15].

The property of being kernel-independent and, meanwhile,
nested is desired in developing fast algorithms. A straightfor-
ward approach is to convert an H-matrix to an H2-matrix
in a purely algebraic way [16]. However, this method still
suffers from the O(N log N) complexity during the assembly
of the H-matrix, as well as the algebraic conversion. Several
kernel-independent algorithms were developed to construct
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the H2-matrix directly. The nested equivalent source approx-
imation (NESA) represents the far-field interaction through
properly defined equivalent source distributions and multilevel
equivalence [17]. The nested skeletonization scheme (NSS)
features a similar idea but removes the inverse source
procedure by exploiting the samples on proxy surfaces,
which are auxiliary surfaces enclosing the clusters of basis
functions [18]. The nested cross approximation (NCA) was
first developed as a purely algebraic algorithm for static
problems [19]. The conventional NCA constructs the cluster
bases via only a small number of matrix entries without
the requirement of the auxiliary enclosing surfaces. However,
the overall procedure for matrix construction is of O(N log N)
complexity due to a geometry-projection based pivot selection.
This scheme first searches the basis functions closest to the
predefined Chebyshev nodes and then performs an ACA to
obtain the pivots. The overall CPU time cost is of O(N log N)
despite the memory cost of O(N).

The conventional NCA inspires us to develop new purely
algebraic methods to construct an H2-matrix representation.
In the proposed method, the geometrical projection from the
basis functions to the Chebyshev nodes is avoided. Instead,
an algebraic approach with well-controlled accuracy is devel-
oped, whose complexity is O(N log N). This method is then
further accelerated to achieve a reduced complexity of O(N).
The O(N) method is a two-stage approach, consisting of
a bottom-up and a top-down tree traversal, to locate the
row and column pivots of all clusters in O(N) complexity.
The accuracy and computational complexity of the proposed
methods are validated by a variety of numerical examples.

The rest of this paper is organized as follows. In Section II,
we introduce the theoretical and computational background
of this work. In Section III, we present the proposed algo-
rithms, which start from another interpretation of the NCA
in Section III-A, followed by an O(N log N) NCA algorithm
described in Section III-B, whose complexity is then further
reduced to O(N) in Section III-C. In Section IV, a number of
examples are simulated to verify the accuracy and complexity
of the proposed algorithms. Finally, our conclusions are drawn
in Section V.

II. BACKGROUND

In this section, we review the background of this
work, including the electric-field integral equation (EFIE),
the H2-matrix framework, and the ACA-based low-rank
approximation.

A. Method of Moments Based Solution of the EFIE

For perfect electric conductor (PEC) objects in free space,
the governing EFIE is

n̂ × jωμ0

∫
s

(
Ī − ∇∇

′

k2
0

)
G0(r, r ′)J s(r ′)ds′ = n̂ × Ei (1)

where G0(r, r ′) = ((e− j k0|r−r ′|)/(4π |r − r ′|)) is the Green’s
function, k0 is the wavenumber in free space, and Ei is the
incident electric field. Using the MoM, we expand the surface

current J s into N Rao–Wilton–Glisson (RWG) basis functions
as the following:

J s(r) =
N∑

i=1

Ii f i (r) (2)

where Ii is the coefficient of the i th RWG basis f i . Based on
a Galerkin discretization, (1) leads to a matrix equation of

ZI = b (3)

where b is the excitation vector and Z is the system matrix.

B. On H2-Matrix

Based on the method of H2-matrix [7], [14], the basis
functions discretizing J s in (2) are partitioned into multi-level
clusters. The resulting cluster tree is denoted by TI . The
interaction between two cluster trees, TI and TJ , is also
characterized by a tree structure, which is called a block cluster
tree denoted as TI×J . Assume that clusters t and s are at the
same level of TI , Xt , and Xs are the geometrical supports
of the basis functions contained in t and s, respectively. The
matrix block Zt,s is approximated by a low-rank matrix if the
block cluster b = t × s satisfies the following admissibility
condition [20]:
max{diam(Xt ), diam(Xs)} � ηdist(Xt , Xs)

diam(X) = sup{d(x, y)| x, y ∈ X}
dist(X, Y ) = inf{d(x, y)| x ∈ X, y ∈ Y } (4)

where η is a constant coefficient controlling the admissibility
condition, d(·, ·) is the Euclidean distance between two sets,
diam(·) is the supremum distance between any two points in
a cluster, and dist(·, ·) is the infimum distance between any
two points in different clusters [20].

For a block cluster b = t × s satisfying the admissibility
condition, the corresponding matrix block is represented in a
factorized form of

Zt,s = U t St,s V s
H (5)

where U t ∈ C#t×k1 and V s ∈ C#s×k2 are nested cluster bases
for row cluster t and column cluster s, respectively, and St,s ∈
Ck1×k2 is the coupling matrix. Only the leaf cluster bases need
to be stored. The nonleaf cluster bases can be obtained by
aggregating the children cluster bases using transfer matrices
as the following:

U t =
[

U t1 T t1,t

U t2 T t2,t

]
=

[
U t1

U t2

] [
T t1,t

T t2,t

]
(6)

where t = t1 ∪ t2, T t1,t and T t2,t are transfer matrices
associated with the nonleaf cluster t , which transfer the cluster
bases from the two children (t1 and t2) to the parent (t). If the
admissibility condition is not satisfied, the matrix block is
represented as a full matrix. The factorized form in (5) together
with the nested property of (6) constitutes an H2-matrix
representation of the system matrix Z.
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C. ACA Based Low-Rank Approximation

ACA is one type of purely algebraic approaches to generate
rank-k matrices [9], [10], [21]. Based on ACA, an admissible
block Zt,s is approximated by the expansion of a series of
rank-1 matrices [21], each of which is the multiplication of a
column vector and a row vector as the following:

Zt,s ≈ Z∗t,s = Zt,σ (Zτ,σ )−1 Zτ,s =
k∑

i=1

ai bT
i (7)

where Zt,s, Z∗t,s ∈ C#t×#s , τ ⊆ t , and σ ⊆ s are the row and
column index sets selected during a heuristic procedure and
called pivots, ai and bi are the vectors generated from each
step of the ACA, and k is the rank of Z∗t,s . The stopping
criterion is controlled by the ACA tolerance �AC A with the
following condition:

‖ak‖2‖bk‖2 � �ACA‖Z∗(k)
t,s ‖F (8)

where Z∗(k)
t,s is the kth update of the approximation of Zt,s ,

the L2-norm and Frobenius norm are used for vectors and
matrices, respectively.

The number of operations to construct the approximation
in (7) is of O(k2(#t + #s)), while the storage required is of
O(k(#t + #s)). Here, # denotes the cardinality of a set.

III. PROPOSED ALGORITHMS

In this section, we first present our view of the NCA
method. We then propose an O(N log N) algorithm to perform
the NCA. After that, we show how to further reduce the
complexity of NCA to O(N).

A. Another View of NCA

When the rank of the admissible blocks is a bounded
constant, the matrix size of the factors Zt,σ and Zτ,s

in (7) depends linearly on the number of rows and
columns. This leads to a complexity of O(N log N) in an
H-matrix-based fast solver [13]. To achieve a lower com-
plexity, the NCA exploits the nestedness among the low-rank
blocks to build an H2-matrix by [19]

Zt,s ≈ Zt,σt (Zτt ,σt )
−1 Zτt ,σs (Zτs ,σs )

−1 Zτs ,s (9)

where τt ⊆ t and σt ⊆ F(t) are the pivots of t and F(t),
respectively, σs ⊆ s and τs ⊆ F(s) are the pivots of s and
F(s). Here, F(x) denotes the far field of cluster x , which
represents the union of all the clusters that form admissible
blocks with x at the same tree level of x , and the clusters
that form admissible blocks with x’s ancestors at higher tree
levels. We call the union of the clusters as the local far field
if the clusters form admissible blocks with x at x’s tree level.
Mathematically, F(x) can be written as

F(x) = ∪{y ∈ TI |∃x ′ ⊇ x, x ′ × y or y × x ′ ∈ Padm} (10)

where Padm represents the union of all admissible blocks.
The validity of the nested approximation (9) has been

proven in [19] by analyzing numerical errors. Here, we pro-
vide an intuitive interpretation of (9). Assume that t and s

Fig. 1. Iillustration of two approaches for representing Zt,s . (a) Using
Zt,F (t) (transpose is shown in brighter green). (b) Using ZF (s),s (transpose
is shown in darker blue).

are two clusters at the same tree level of TI , and t × s
is admissible. ACA can be applied directly to compress the
corresponding matrix Zt,s . Since the approximation is required
to be nested and reusable for the parent-level clusters, a low-
rank approximation should be performed with the superset of
t and s, instead of the local sets. Two possible approaches are
shown in Fig. 1 to represent Zt,s considering the entire F(t)
and F(s), respectively. If Zt,F(t) has been approximated by
ACA, Zt,s , which is just a submatrix of Zt,F(t), can be written
as

Zt,s ≈ Zt,σt (Zτt ,σt )
−1 Zτt ,s ∀ s ⊆ F(t) (11)

where τt ⊆ t ⊆ F(s), σt ⊆ F(t). Based on the same
procedure, if ZF(s),s is approximated by a low-rank matrix
via ACA as shown in Fig. 1(b), we have

Zt,s ≈ Zt,σs (Zτs ,σs )
−1 Zτs ,s ∀ t ⊆ F(s) (12)

where σs ⊆ s ⊆ F(t), τs ⊆ F(s). Taking into account the
pivots of the row and column clusters simultaneously, the
combination of (11) and (12) results in (9).

A form like (9) constitutes an H2-representation, from
which we can directly recognize the following row and column
cluster bases for t and s :

U t = Zt,σt (Zτt ,σt )
−1 (13)

V s =
(
(Zτs ,σs )

−1 Zτs ,s
)H (14)

which is only related to t and s, respectively, and independent
of the clusters being interacted. The coupling matrix for the
admissible block formed between t and s can also be readily
recognized as

St,s = Zτt ,σ s . (15)

Furthermore, the cluster bases shown in (13) and (14) are
nested. To see this point clearly, we consider a nonleaf row
cluster t = t1 ∪ t2 in which both t1 and t2 are the two children
clusters. Using (13), the cluster basis of t is

U t =
[

U t |t1
U t |t2

]
=

[
Zt1,σt (Zτt ,σt )

−1

Zt2,σt (Zτt ,σt )
−1

]
. (16)



3274 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 67, NO. 8, AUGUST 2019

Due to the nested relationship that σt ⊆ F(t) ⊆ F(t1) and
σt ⊆ F(t) ⊆ F(t2), using (11), we obtain

U t ≈
[

Zt1,σt1
(Zτt1 ,σt1

)−1 Zτt1 ,σt (Zτt ,σt )
−1

Zt2,σt2
(Zτt2 ,σt2

)−1 Zτt2 ,σt (Zτt ,σt )
−1

]

=
[

U t1
U t2

] [
TU

t1,t
TU

t2,t

]
(17)

where

TU
t ′,t = Zτt ′ ,σt (Zτt ,σt )

−1 (18)

is the transfer matrix for row cluster basis. A similar procedure
can also be applied to the column clusters to find the transfer
matrix T V

s ′,s for column cluster basis as the following:
T V

s ′,s = (Zτs′ ,σs (Zτs ,σs )
−1)H . (19)

For EFIE, the NCA procedure can be simplified by exploit-
ing the symmetry of the system matrix. As shown in Fig. 1,
t×F(t) is exactly the transpose of F(t)×t , and so are s×F(s)
and F(s) × s. Take a cluster x as an example. We denote
x = xr when x is the row cluster, and x = xc when x is the
column cluster. We have τxr = σxc, i.e., the row pivots of a
row cluster x are the same as the column pivots of a column
cluster x . As we will state in the next section, the symmetry
can also be utilized to reduce the cost to determine the pivots
for each row and column cluster. In addition, the construction
of V s can be omitted by using

V xc = U xr (20)

and the transfer matrices have a similar symmetric property.
From (13)–(15), and (18), it can be readily seen that the key

to develop a low complexity NCA algorithm is to efficiently
generate row and column pivots τt and σt of each cluster t .
After the pivots being obtained, the number of operations to
construct cluster basis U t (V s ) at the leaf level, the transfer
matrices T at the nonleaf levels, and the coupling matrices St,s

of each admissible block are all of the linear complexity [19].
Therefore, how to select the pivots representing the blocks
formed by each cluster at the same tree level, as well as those
at the parent levels, is the key to an efficient NCA algorithm.
In the next two sections, we detail the proposed algorithms
for locating the pivots.

B. Proposed O(N log N) NCA Algorithm

A straightforward implementation of the NCA algorithm
results in a complexity of O(N2). This is because the row (col-
umn) pivots of each cluster should be obtained by considering
the entire far field. Take the structure shown in Fig. 2 as an
example. To find the cluster t1’s row pivot set τt1 and its
column pivot set σt1 , the ACA must be performed on not only
the (t1, s1) block but also the (t1, s2), and (t1, s3) blocks. In
other words, the entire far field of t1, which consists of clusters
s1, s2, and s3 must be considered. In [19], the basis functions
were projected onto the Chebyshev nodes to shrink the matrix
size operated by the ACA, which led to a complexity of
O(N log N). However, the approach required the geometrical
information of clusters. In this section, we propose a purely

Fig. 2. Illustration of a matrix with the clusters and their far fields highlighted.

algebraic algorithm with O(N log N) complexity to perform
the NCA. In addition, it facilitates a new NCA algorithm of
a further reduced complexity of O(N), which is described in
Section III-C.

To efficiently account for the contribution of the far field of
a cluster, we develop a top-down tree traversal algorithm as
follows. We start from the root level l = 0 and descend along
the inverted tree. At the highest level (closest to the root) that
contains admissible blocks, the parent-level far field is null.
Therefore, the local column pivots σ of each cluster at this
level are also global ones. As shown in Fig. 2, cluster t3 is
such a cluster, of which the parent-level far field is null.

We then descend the cluster tree by one level. We denote σt p

as the column pivots of t’s parent cluster tp , and col_set(t) as
the column set of the local far field of t , which includes all
unknown indices contained in the column clusters that form
admissible blocks with t at t’s tree level. For each cluster t
at this level, the column pivots of the parent cluster tp are
appended to the column set of the local far field of t

col_set(t)← col_set(t)+ σt p . (21)

In this way, we are able to account for the admissible blocks
at t’s parent level so that the resultant pivots constitute a nested
representation of the original matrix. With σt determined,
we perform an ACA with all the indices in t as the row set and
the updated col_set(t) as the column set. Note that col_set(t)
in (21) is a largely reduced far field of F(t). This can be
done because the admissible blocks formed by parent cluster
tp have already been accurately represented by ACA using
column pivots σt p . After performing ACA in the reduced far
field shown in (21) for a prescribed accuracy, we determine
the final row and column pivots of t , which is (τt , σt ).

With the aforementioned process, we continue to descend
the cluster tree to one level down. For each cluster t at this
level, we append the column pivots of its one-level-up parent
cluster tp to the local column set of this cluster, as shown
in (21). Note that here tp is t’s immediate parent, as even
higher level parents’ pivots have already been taken into
account in σt p during the level-by-level procedure. Similarly,
new pivots (τt , σt ) for cluster t at this level are obtained. The
whole procedure is continued until we reach the leaf level.

To give an example, we use the matrix shown in Fig. 2
to illustrate the whole procedure. In this example, we have
t1 ⊆ t2 ⊆ t3 and F(t3) = s3, F(t2) = s2 ∪ F(t3), and
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F(t1) = s1 ∪ F(t2). We start from the highest level that has
admissible blocks, which is the level of t3. Since the block
t3 × s3 is an admissible block at the highest level, ACA is
directly adopted to obtain τt3 and σt3 . We then go one level
down and use col_set(t2) + σt3 instead of complete F(t2)
as the column set to perform an ACA to obtain t2’s pivots.
We then continue to descend the tree. At t1’s level, we use
col_set(t1) + σt2 as the column set to perform an ACA to
obtain t1’s pivots.

Algorithm 1 Top-Down Pivot Selection I
1: procedure TOP-DOWN-I(c)
2: row_set = c.all_indices
3: col_set = [ ]
4: for each temp that c × temp ∈ Padm do
5: col_set .append(temp.all_indices)
6: end for
7: if c.parent �= NUL & c.parent .σ .si ze �= 0 then
8: col_set .append(c.parent .σ )
9: end if

10: (c.τ , c.σ ) = ACA(row_set , col_set)
11: for each child of c do
12: TOP-DOWN-I(child)
13: end for
14: end procedure

The pseudocode of the top-down tree traversal for nested
pivots selection is shown in Algorithm 1. In this algorithm,
the argument c denotes a cluster, and the procedure should
be invoked from the root cluster. The local far field of c is
searched first to generate the column set (col_set), which is
described by lines 3–6. The row set (row_set) contains all the
indices of c, as shown by line 2. If the cluster has a parent
(not the root), and the parent’s column pivots are not null,
the column set col_set is appended by the column pivots of
the immediate parent cluster. After the ACA, the new pivots
(c.τ , c.σ ) of c are determined. The procedure recursively
proceeds to the children clusters until the leaf level is reached.

The complexity of the top-down pivot selection for
constant-rank cases shown in Algorithm 1 can be found as

#operations ≤
L∑

l=1

2lO
(

N

2l
+ Csp · N

2l
+ k

)
· k2

= O(N log N). (22)

Here, L ∝ log N is the height of the cluster tree, Csp is
the sparsity constant representing the maximum number of
admissible blocks formed by one cluster, 2l is the number of
clusters at level l, and (N/2l ) is the number of unknowns
contained in a cluster at level l. The Csp · (N/2l ) + k term
in (22) denotes the column dimension of the matrix block on
which ACA is performed, and here k is the additional column
number contributed by the parent cluster.

C. Proposed O(N) NCA Algorithm

From the Algorithm 1, it can be seen clearly that if we can
avoid operating on the complete row and column sets of each

admissible block, it is possible to obtain an O(N) algorithm.
In this section, we propose a two-stage algorithm to reach this
point. In the first stage, we propose a bottom-up tree traversal
algorithm to obtain the local pivots with linear complexity. In
the second stage, we exploit the top-down strategy similar to
Algorithm 1 to take into account the far field.

1) Stage I: Bottom-Up Tree Traversal for Local Choices
of Cluster Pivots: Considering an arbitrary nonleaf cluster t ,
we propose to choose the row pivots of t from the union of
the row pivots of its two children clusters t1 and t2. Assume
that t = t1 ∪ t2, τt1 and τt2 are the row pivots of t1 and t2
respectively. The row pivots τt can be chosen from

τt = τt1 ∪ τt2 . (23)

In this way, we shrink the size of the row set of an admissible
block, on which the ACA is performed, from #t to O(k).
This appears to be a heuristic choice without accuracy control.
In fact, (23) is accurate for choice because of the following
reason.

Consider an arbitrary matrix Zt,s , whose row/column rank
is k for a prescribed accuracy. If using ACA to find it, we have

Zt,s ≈ Zt,σ (Zτ,σ )−1 Zτ,s (24)

where Zt,σ denotes k columns of Z, whose column pivots
are contained in σ , and Zτ,s represents k rows of Z, whose
row pivots are contained in τ . As can be seen from this
representation, any column of Z is a linear superposition of the
k columns in Zt,σ . If one does not choose the k columns in σ ,
but choosing another set of linearly independent k columns,
whose column pivots are contained in σ ∗, we can find the
following relationship between Zt,σ ∗ and Zt,σ :

Zt,σ ∗ ≈ Zt,σ Ak×k (25)

where Ak×k = (Zτ,σ )−1 Zτ,σ ∗ , which can be readily obtained
using (24). Similarly, any row of Z is a linear superposition
of the k rows in Zτ,s , and any k linearly independent rows
of Z can be used to build a rank-k model of (24) with the
same accuracy. In other words, the choice of row pivots is
not unique either. Specifically, if we choose row pivots as τ ∗,
we have

Zτ∗,s ≈ Bk×k Zτ,s (26)

where Bk×k = Zτ∗,σ (Zτ,σ )−1. Therefore, if one does not
happen to choose σ as the column pivot, and τ as the
row pivot; but randomly select a column pivot of σ ∗, and
a row pivot of τ ∗, a rank-k model of this matrix can be
obtained with the same accuracy, because using (25) and (26),
the original (24) can be rewritten as

Zt,s ≈ Zt,σ ∗(A−1 Zτ,σ
−1 B−1)Zτ∗,s . (27)

Hence, choosing another column pivot and row pivot can
also yield an accurate representation of the matrix. The only
difference between (27) and (24) is that the coupling matrix
(the center matrix) now is different.

If the rank at children’s level, l, is k, then the rank of the
admissible blocks at the parent’s level, which is l − 1, cannot
be greater than 2k. This is because, for SIE, the electrical
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Fig. 3. Cluster link for each level of the cluster tree.

size increases from one level to the other by
√

2, as unknown
number doubles. Using a full-rank’s growth rate, which is
electrical size square, we at most get a rank of 2k at parent’s
level. Therefore, in terms of the number of the row pivots we
select for parent cluster t , (23) is sufficient. As for which
rows to select out of the #t rows in cluster t , as can be
seen from the analysis in the paragraph above, any linearly
independent k ′ rows are accurate for choice, where k ′ is the
rank at t’s level, and k ′ < 2k. In addition, given any set
of rows, the final rows selected using an ACA procedure
are linearly independent because of the nature of the ACA
algorithm. Therefore, out of the 2k rows, the rows selected
by ACA are linearly independent. As a result, (23) is a rich
set to determine the low-rank model for t’s admissible blocks
formed at t’s level. In the rare case where the number of rows
selected from ACA is smaller than the target rank, i.e., the
number of the linearly independent rows in τt is smaller than
the actual rank of the admissible blocks formed by t , more
rows can be chosen from the children row pivots by increasing
the accuracy via decreasing �ACA.

Using (23), we proceed from the leaf level all the way up to
the highest level that contains admissible blocks. At each level,
after choosing the row set from (23), we perform an ACA on
the admissible blocks formed by t in such a reduced row set.
After the ACA, the final pivots τt of t are obtained. Since
the column clusters play the same role as the row clusters in
the construction of the H2-matrix, the column pivots σs can
also be determined in the same way from the two children’s
column pivot sets. For the symmetric matrices, the column
pivots can be chosen the same as the corresponding row pivots,
thus avoiding additional computation.

The pseudocode of the bottom-up local pivot selection
is depicted in Algorithm 2. Before invoking the bottom-up
procedure, the cluster link (c_link) that stores all the pointers
to clusters at each level is built by traversing the cluster tree.
Each pointer in c_link acts as the head of the link for clusters
at the corresponding level, as shown in Fig. 3. We start from
the bottom (l = L) and ascend level by level along the cluster
tree. For a leaf cluster, the row index set contains all the
indices in the cluster, and the column index set contains all the
indices in the union of the local far field. This is described by
lines 6–11. Once ACA is performed (line 21 of Algorithm 2),
the row pivots for each leaf cluster are determined and stored

Algorithm 2 Bottom-Up Local Pivot Selection
1: procedure BOTTOM-UP(c_link)
2: l = L
3: while l > 0 do
4: link = c_link[l]
5: for each c in link do
6: if c is leaf cluster then
7: row_set = c.all_indices
8: col_set = [ ]
9: for each temp that c × temp ∈ Padm do

10: col_set .append(temp.all_indices)
11: end for
12: else
13: row_set = [ ], col_set = [ ]
14: for each child of c do
15: row_set .append(child.τ )
16: end for
17: for each temp that c × temp ∈ Padm do
18: col_set .append(temp.τ )
19: end for
20: end if
21: (c.τ , c.σ ) = ACA(row_set , col_set)
22: end for
23: l = l − 1
24: end while
25: end procedure

in c.τ and they are ready to replace the complete index set
of c for the local low-rank approximation. By exploiting the
symmetry of system matrix mentioned in (20), the pivot sets
σtc for column clusters are directly copied from τtr . As the
procedure moves upward, at each nonleaf level, the pivots of
its two children are employed to replace the original indices
in the nonleaf clusters before performing ACA. This can be
seen from lines 13 to 20.

2) Stage II: Global Choice of Pivots by a Top-Down Tree
Traversal to Take Into Account the Far Field of Each Cluster:
The pivot sets τ and σ resulted from the bottom-up stage
contain only the local pivots. In Stage II, we use the top-down
approach developed in Algorithm 1 to account for the far field
of each cluster by appending the pivots from higher levels
(levels closer to the root). However, the pivots of each cluster
have been reduced to a small set of O(k) size due to Stage I.
The detailed algorithm of the top-down pivot selection II is
shown in Algorithm 3.

The procedure still starts from the root of the cluster tree and
performed in a top-down manner. If the cluster t has a parent
cluster and the parent cluster has a nonempty pivot set, then
the computation is performed. Different from (21), the col_set
in Algorithm 3 denotes the union of t’s local column pivots σt

from Stage I and t’s parent column pivots

col_set(t) = σt + σt p . (28)

The generation of the row set is also revised. In Algorithm 1,
the row set contains all the indices of c. Here in Algorithm 3,
we use a reduced row pivot set c.τ . However, the ACA
generated pivot sets c.τ and c.σ from Stage I have an equal
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Algorithm 3 Top-Down Pivot Selection II
1: procedure TOP-DOWN-II(c)
2: if c.parent �= NUL & c.parent .σ .si ze �= 0 then
3: row_set = [ ]
4: col_set = c.σ + c.parent .σ
5: bound=col_set .si ze
6: if c is leaf cluster or c.si ze < bound then
7: row_set = c.all_indices
8: else
9: des_clusters=FIND-OFFSPRING(c, bound)

10: for each i tem of des_clusters do
11: row_set .append(i tem.τ )
12: end for
13: end if
14: (c.τ , c.σ ) = ACA(row_set, col_set)
15: end if
16: for each child of c do
17: TOP-DOWN-II(child)
18: end for
19: end procedure

size. The row_set must be augmented as the col_set has been
augmented by the parent cluster’s column pivots. We first use
the size of the col_set as the bound to determine the size of the
row_set. If c is a leaf cluster or the number of all the indices
in c is less than the size of the col_set, we directly use all the
indices of c to generate the row_set. Otherwise, we call another
subroutine FIND-OFFSPRING to search for the highest level
of c’s descendant clusters (des_clusters), of which the union
of all the row pivot sets has a sufficiently large size to match
bound. This step is shown in line 9 in Algorithm 3. The row
pivot set of each cluster in des_clusters is then appended to the
row_set as can be seen from line 10 to 12. After augmenting
the row_set, the ACA is performed to determine the final
row and column pivot set for c, as shown by line 14. The
subroutine FIND-OFFSPRING to find the abundant offspring
clusters to augment the local row pivot set is depicted in detail
in Algorithm 4 shown in the Appendix.

It should be noted that the pivots τt and σs selected from
Stage I, the bottom-up stage, are not complete for representing
all admissible blocks since they are from the local far field
instead of the entire far field. However, the local pivots are
sufficient to feed Stage II, top-down procedure, as the premise.
Therefore, the complete pivot selection in the proposed algo-
rithm has the following two steps.

1) Bottom-up local pivot selection.
2) Top-down pivot selection.

In the bottom-up local pivot selection, only the local far
field for each cluster is considered. Furthermore, the pivots
for a row cluster are chosen from its two children clusters,
which bound the matrix size to O(k), upon which the ACA is
performed. At an arbitrary lth level, the number of operations
of the proposed algorithm is bounded by

O Pl ≤ 2l(2k + Csp · 2k) · k2. (29)

Taking all of the L levels into account, the total number of
the operations is bounded by

#operations ≤
L∑

l=1

2lO(2k + Csp · 2k) · k2 (30)

which is O(N), when rank k is a bounded constant. If k grows
with tree level, but in a small growth rate, like that in cases
where the electrical size is less than 5 wavelengths, the k’s
growth can be bounded by a rank function given in [14].
In such a case, the complexity of (30) can also be found to
be linear.

In the top-down pivot selection II, the indices for the row
cluster and the corresponding far field are substituted by the
local pivots chosen in the first step, whose size is O(k). The
number of operations, therefore, becomes

#operations ≤
L∑

l=1

2l ·O(2(k + k)+ k + k) · k2 (31)

which is also O(N) for problems whose electrical size is not
large, with the same reasoning given above.

D. Iterative and Direct Solutions

The nested structure is explicitly constructed and repre-
sented by an H2-matrix, thus both the iterative and the
direct solutions are feasible. The iterative solution with a fast
matrix-vector multiplication operation using the H2-matrix
provides a linear complexity for each iteration [14]. The direct
solutions with linear complexity, including both inversion
and factorization, have also been developed for general H2-
matrices [15], [23]. We can choose an appropriate solution
based on specific applications.

IV. NUMERICAL RESULTS

In this section, several numerical examples are studied to
demonstrate the performance of the proposed methods. In
the first example, the radar cross section (RCS) of a PEC
sphere is shown to validate the accuracy of the proposed
method against the analytical Mie Series solution. Large-scale
interconnects, PEC cubes, and the inductor array are then
simulated to examine the accuracy, efficiency, and complexity
of the proposed method. The Koch Snowflake fractal structure
is studied to demonstrate the capability of the proposed method
in handling inhomogeneous meshes and multiscaled problems.
Finally, the performance of the proposed method in solving
electrically larger problems is also examined.

A. Accuracy Validation

We first compute the RCS of a PEC sphere of radius 3 m
at 300 MHz. The discretization results in 29 802 unknowns.
The incident electric field is a plane wave propagating along
−z direction (θ = 0◦). The RCS at the φ = 0◦ plane from
the proposed method is compared with the analytical Mie
Series solution using an expansion of 100 modes [24]. In this
example, we set the maximum leaf size to be nmax = 200, the
admissibility condition coefficient η = 1, and �ACA = 10−3,



3278 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 67, NO. 8, AUGUST 2019

Fig. 4. RCS of a PEC sphere of radius 3 m at 300 MHz.

Fig. 5. (a) Matrix error with respect to varying ACA tolerance of the sphere
example. (b) Current error with respect to �AC A .

10−4, respectively, for different accuracy requirements. The
conjugate gradient (CG) method is employed as the iterative
solver with an error tolerance of 10−4.

It can be observed from Fig. 4, the accuracy resulting
from �ACA = 10−4 is better than that of �ACA = 10−3 and
both agree well with the Mie series solution. In addition,
we examine the entire matrix error and the surface current
error with respect to different choices of �ACA. The matrix
error is assessed by ‖Z∗ − Z‖F/‖Z‖F , in which Z is the
original system matrix, Z∗ is the H2-matrix representation
from the proposed algorithm, and F denotes the Frobenius
norm. To compute this error, only the admissible blocks are
involved since inadmissible ones are not approximated. The
matrix entries of each admissible block are computed out and
their differences with the full-matrix entries are calculated
based on the Frobenius norm to evaluate the matrix error. The
surface current error is evaluated by ‖I ∗− I‖2/‖I‖2, in which
I denotes the current from a direct LU solution of MoM, I ∗
is the current obtained from the proposed method, and norm 2

Fig. 6. Large-scale 3-D on-chip interconnects.

Fig. 7. Computational performance for simulating the interconnects. (a) CPU
time cost for matrix construction. (b) Memory cost.

is used. As shown in Fig. 5, for the same choice of η, both the
entire matrix error and the current distribution error decrease
nearly linearly with �ACA. Furthermore, as expected, for the
same choice of �ACA, the errors from a more stringent choice
of admissibility condition (η = 1) are smaller than those from
a less stringent one (η = 2).

B. Large-Scale 3-D On-Chip Interconnects

The second example is a large-scale 3-D interconnect
structure [25] as shown in Fig. 6. Each conductor has the same
length. We simulate a suite of such structures at 10 GHz with
the absence of the dielectrics. The number of the conductors
increases from 48, 96, 192 to 384, with the number of
unknowns ranging from 18 468 to 1 159 656.

We test the performance of both the proposed O(N log N)
and the O(N) method. In both settings, the maximum leaf
size is nmax = 200, the ACA tolerance is �ACA = 10−3, and
the admissibility condition coefficient is η = 1. The CPU time
cost of the construction of the H2-matrix is shown in Fig. 7(a)
for both methods. The complexity is shown to agree with our
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Fig. 8. Error measurements for simulating the interconnects. (a) Matrix error.
(b) MVP error. (c) Maximum rank.

theoretical expectations. Since the matrix is represented as
an H2-matrix, the memory cost for both methods are linear,
as can be observed from Fig. 7(b).

The matrix error and the MVP error with respect to MoM
are shown in Fig. 8. The O(N log N) method is shown to
have higher accuracy than the O(N) method using the same
choice of accuracy parameters. This can be attributed to the
fact that in the proposed O(N) algorithm, the accuracy of
ACA is assessed in the reduced set of rows and columns for
each admissible block. Although the number of these rows and
columns is sufficient for determining the cluster bases, using
the same choice of �ACA, the final matrix error would not be
the same. However, good accuracy is achieved in the proposed
O(N) algorithm as well.

C. Large-Scale Array of Spiral Inductors

A suite of large-scale spiral inductor arrays, which contains
1, 4, 16, 64, and 256 elements, is then computed at 10 GHz.

Fig. 9. Computational performance for simulating inductor arrays. (a) CPU
time cost for matrix construction. (b) Memory cost. (c) CPU time cost for
each iteration.

The inductor array is formed by extending a unit spiral
inductor along both x- and y-axes. The 3-D view and the
geometric structure of the inductor array are shown in [26].
The settings of η, nmax, and �ACA are the same as those in
the second example. The CG iterative solution is adopted with
a threshold of 10−6.

The CPU time and memory cost for the matrix construction
of the inductor array are both linear with respect to the number
of unknowns, as shown in Fig. 9. The average time cost for
MVP in each iteration is shown in Fig. 9(c). The matrix error
and the solution error are shown in Fig. 10. It can be observed
that the accuracy remains constant as the number of unknowns
increases.

D. Koch Snowflake Fractal Structure

The Koch Snowflake fractal structure is simulated to demon-
strate the feasibility of the proposed method for handling
multi-scale problems. We also discretize the structure using
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Fig. 10. Error measurements for simulating inductor arrays. (a) Matrix error.
(b) Solution error.

inhomogeneous meshes to examine whether the proposed
algorithms require a uniform mesh. The snowflake fractals are
planar structures. They are constructed by starting from an
equilateral triangle and altering each line segment recursively.
The detailed process is depicted in [27].

The sequence of the fractal snowflake is shown in Fig. 11.
The side length of the starting triangle is 1 m. Inhomogeneous
meshes are generated to adjust to different iterations. Since the
structure becomes finer as the iteration increases, we fix the
largest mesh size (hmax) to be 1/12 m, and the finest mesh size
(hmin) to be the side length of the fractal equilateral triangles
in each iteration. The simulation is performed from iterations 3
to 6, with hmin/hmax ranging from 0.44 to 0.016. The resulting
number of unknowns is from 618, 1176, 3474 to 12 696. The
solving frequency is fixed at 300 MHz. The maximum leaf
size is nmax = 40, the admissibility coefficient η = 1, and the
ACA threshold is �ACA = 10−3. The error estimations of the
proposed method are shown in Fig. 12. As can be noticed,
both the matrix and current errors can be kept at the same
scale for different iterations.

E. PEC Cubes

In this example, we consider a series of PEC cubes whose
side length ranges from 0.25λ to 2λ, which have been studied
in [17]. For each cube, we fix the mesh size to be h/λ = 10−2.
It is worth mentioning that the rank’s growth rate with N is
independent of the mesh size as can be seen from [22]. The
number of unknowns ranges from 12 708, 51 462, 206 820 to
829 332 for discretizing these cubes. The admissibility con-

Fig. 11. Koch Snowflake fractal structure. (a) Zeroth iteration. (b) First
iteration. (c) Second iteration. (d) Third iteration. (e) Illustration of the
irregular mesh.

Fig. 12. Error measurement for simulating the Koch Snowflake fractal
structure. (a) Matrix error. (b) Current distribution error.

dition coefficient is chosen as η = 1, the maximum leaf size
is 100, and the ACA tolerance is chosen as 10−4. The iterative
solution settings are the same as those in the first example.

The computational performance of the proposed method
under the aforementioned setting is shown in Fig. 13. It can be
observed that the CPU time and memory cost increase linearly
with the number of unknowns, and the overall performance is
no worse than that of [17]. Furthermore, different from [17],
the proposed method does not require the predefined auxiliary
equivalent basis functions on the sphere surfaces, which pro-
vides more flexibility and enables purely algebraic operations.
Due to the difficulty in obtaining a full-matrix-based MoM
solution, the solution errors are measured by relative residual,
which is the relative difference between ZI ∗ and excitation
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Fig. 13. Computational performance for simulating PEC cubes. (a) CPU
time cost for matrix construction and MVP. (b) Memory cost. (c) Maximum
rank.

Fig. 14. Solution error for simulating PEC cubes.

vector b, as shown in Fig. 14. It is evident that the solution
errors are kept as nearly constant, and the maximum rank
shown in Fig. 13(c) increases slowly with the increasing
number of unknowns.

Fig. 15. Computational performance for simulating PEC sphere with
increasing radius. (a) CPU time cost for matrix construction. (b) Memory
cost.

F. Electrically Large Analysis

The computational complexity presented in previous sec-
tions requires that the rank of the admissible blocks be
bounded by constant, or grows slowly with electrical size. This
is not the case for electrically large problems when using an
ACA-based method to generate a rank-k model. Here we use
a PEC sphere with an increasing radius to illustrate this point.
The radius of the sphere increases linearly from 0.5 to 4 m,
therefore the corresponding electrical size increases linearly
from 1 to 8. The solving frequency is fixed at 300 MHz, and
the mesh size is chosen to be 0.04 m. The number of unknowns
ranges from 2934 to 187 143. In this setting, η = 1, nmax = 50,
and �ACA = 10−3.

The CPU time and memory cost are shown in Fig. 15. It
can be observed that the memory cost for the inadmissible
blocks is always linear with the number of unknowns due to
the basic property of the H2-matrix. The CPU time cost and
the memory cost of the admissible blocks, which are related to
the low-rank compressions, can only keep its linear growth to
a certain electrical size, which is about 6 wavelengths in this
specific example. However, even in this regime, the method is
more efficient than ACA-based methods, as can be seen from
the following example.

In this example, we simulate a PEC cube of side length 5 m.
The solving frequency ranges from 100 MHz to 1.6 GHz. The
mesh size is fixed to be h/λ = 1/8.

Here, we use the H-matrix as the reference to illustrate the
performance of the proposed method in the high-frequency
regime. The ACA and the reduced SVD algorithms are
adopted to obtain the H-matrix. In Fig. 16, we plot the
memory and time cost as a function of N , and also reference
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Fig. 16. Computational performance for simulating electrically larger cube.
(a) CPU time cost for matrix construction. (b) Memory complexity.

complexity lines for comparison. As can be seen from Fig. 16,
the proposed NCA algorithm is more efficient than ACA due
to the nested property.

V. CONCLUSION

In this work, a fast NCA algorithm is developed for solving
electromagnetics problems. The overall procedure is made
purely algebraic without the use of any auxiliary surfaces or
geometric projection. Hence, the proposed algorithm can be
integrated into the IE solvers for different types of Green’s
functions with great ease. For constant rank problems, for
instance, the circuit simulation or electrically small scattering
problems, the proposed method has a complexity of O(N).
Numerical results have demonstrated the accuracy, efficiency,
and complexity of the proposed algorithm. It is also worth
mentioning that the proposed method is equally applicable
to electrically large problems. Although in its current form,
the resulting complexity would be higher than O(N), it is
more efficient than ACA-based methods.

APPENDIX

A. Finding Abundant Offspring Clusters

The union of the clusters (clts) is initialized by the cluster c.
The breadth-first search technique is adopted to generate all the
offspring clusters of c at one level in each loop. The function
count_pivots(clts) sums up the size of the row pivot set of each
cluster in clts. The FIND-OFFSPRING subroutine returns the
cls when either all the leaves are included or the bound is
reached.

Algorithm 4 Finding Abundant Offspring Clusters
1: procedure FIND-OFFSPRING(c, bound)
2: clts = [ ], temp = [ ]
3: clts.append(c)
4: while count_pivots(clts) < bound do
5: swap(clts, temp)
6: for each i tem of temp do
7: if i tem is leaf cluster then
8: clts.append(i tem)
9: else

10: for each child of i tem do
11: clts.append(child)
12: end for
13: end if
14: end for
15: if clts.size()==temp.size() then
16: break
17: end if
18: temp.clear()
19: end while
20: return clts
21: end procedure
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