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Alternative Method for Making Explicit
FDTD Unconditionally Stable

Md. Gaffar and Dan Jiao, Senior Member, IEEE

Abstract—An alternative method is developed to make an ex-
plicit FDTD unconditionally stable. In this method, given any time
step, we find the modes that cannot be stably simulated by the given
time step, and deduct these modes directly from the system matrix
(discretized curl-curl operator) before the explicit time marching.
By doing so, the original FDTD numerical system is adapted based
on the desired time step to rule out the root cause of instability.
The resultant explicit FDTD marching is absolutely stable for the
given time step no matter how large it is, and irrespective of space
step. The accuracy is also guaranteed for time step chosen based
on accuracy. Numerical experiments have validated the accuracy,
efficiency, and unconditional stability of the proposed new method
for making an explicit FDTD unconditionally stable.

Index Terms—Explicit methods, finite-difference time-domain
method (FDTD), stability, unconditionally stable methods.

I. INTRODUCTION

INITE-DIFFERENCE TIME-DOMAIN (FDTD) method

[1], [2] is one of the most popular time domain methods
for electromagnetic analysis. This is largely attributed to its sim-
plicity and optimal computational complexity at each time step
gained by not solving a matrix. However, the time step of a tra-
ditional FDTD is restricted by space step for stability, as dictated
by the well-known Courant-Friedrichs-Lewy (CFL) condition.
When the space step can be chosen based on accuracy for sam-
pling the working wavelength, the time step dictated by the CFL
stability condition agrees well with the time step required by ac-
curacy. Hence, the dependence of time step on space step does
not become a concern. However, when the problem being sim-
ulated involves fine features relative to working wavelengths
such as an on-chip nanometer integrated circuit working at mi-
crowave frequencies, or a multiscaled system spanning a wide
range of geometrical scales, the time step determined by space
step for a stable FDTD simulation can become many orders
of magnitude smaller than the time step required by accuracy.
Due to such a small time step, a tremendous number of time
steps must be simulated to reach the time corresponding to the
working frequency, which is computationally prohibitive. From
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the accuracy point of view, such a choice of time step is not nec-
essary, and hence the time step’s dependence on space step is a
numerical problem that must be overcome.

Implicit unconditionally stable FDTD methods [3]-[13] have
been developed to overcome the dependence of time step on
space step. In these methods, the time integration technique is
changed to a different way such that the resulting time marching
scheme has an error amplification factor bounded by 1, thus en-
suring stability. However, the implicit methods require a ma-
trix solution, the efficiency of which is not desired when a large
problem size is encountered. In addition, it is observed that the
accuracy of the implicit methods can degrade greatly with the
increase of time step. Late-time instability has also been ob-
served among existing implicit unconditionally stable FDTD
methods.

Recently, advanced research [14]-[18] has been pursued to
address the time step problem in the framework of the original
explicit time-domain methods. In [15], [17], [18], the root cause
of instability is identified for explicit time-domain methods,
based on which an explicit and unconditionally stable time-do-
main finite-element method (TDFEM) is successfully devel-
oped in [15], [17] and the same capability is demonstrated for
FDTD in [18]. The root-cause analysis shown in [15], [17], [18]
is different from a conventional stability analysis [2], [19]. In
a conventional stability analysis, the time step required for a
stable time-domain simulation is derived and used to guide the
choice of time step. From such a stability analysis, apparently,
except for choosing the time step based on the stability crite-
rion, there is no other way forward to make an explicit method
stable. On the contrary, the root-cause analysis given in [17],
[18] reveals that when an explicit time-domain method becomes
unstable, not every eigenmode present in the field solution be-
comes unstable. Only a subset of eigenmodes is unstable, while
the rest of the eigenmodes are still stable. This subset of eigen-
modes is the root cause of instability, which are termed un-
stable modes. These modes have eigenvalues (characterizing the
rate of field variation in space) greater than that can be accu-
rately captured by the given time step, thus causing instability.
When the time step is chosen based on accuracy, the unstable
modes are not required by accuracy. Hence, they can be re-
moved without affecting the accuracy.

Based on the root-cause analysis, in [18], an explicit FDTD
that is unconditionally stable is developed. It has also been
extended to analyze general lossy problems in [21], [22]. In this
method, the field solution is expanded into stable eigenmodes,
and the numerical system is also projected onto the space of
stable eigenmodes. The resulting explicit time-marching is
absolutely stable for the given time step no matter how large it
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is. Comparisons with state-of-the-art implicit unconditionally
stable FDTD methods have also shown clear advantages of the
new explicit method in accuracy, dispersion error, and stability
in addition to computational efficiency [22]. This is mainly
because in an implicit unconditionally stable method, the root
cause of instability that makes an explicit method unstable is
not removed from the numerical system. When a large time step
beyond CFL condition is used, the root cause, which is unstable
modes, cannot be accurately simulated by the given time step.
Although they are suppressed to be stable, they can still neg-
atively affect the overall accuracy and stability of the implicit
method. To preserve the advantage of the explicit FDTD in
avoiding solving a matrix equation, a preprocessing algorithm
is developed in [18] to extract the stable eigenmodes from the
field solutions obtained from the traditional explicit FDTD.
The time window simulated in the preprocessing step is much
smaller than that of the entire time window to be simulated.
However, since the time step required by a traditional FDTD
method is used in the preprocessing step, the speedup of the
overall scheme can become limited by the preprocessing step.

In this work, we develop a new explicit and uncondition-
ally stable FDTD method. This new method eliminates the
traditional FDTD-based preprocessing in [18]. Meanwhile, it
permits the use of a large time step upfront in the explicit time
marching by deducting the unstable modes directly from the
FDTD system matrix. The unstable modes have the largest
eigenvalues of the system matrix, and hence they can be ef-
ficiently found in O(k%2N) complexity, with k& the number of
unstable modes. Using the proposed method, one only needs
to perform a very minor modification on the traditional FDTD
to make it unconditionally stable. Hence, the proposed method
is convenient for use. The basic idea of this work has been
presented in our IMS conference paper [20]. In this paper, we
expand [20] to address aspects that have not been addressed
before, including algorithm details, complexity and accuracy
analysis, open-region problems, how to efficiently find unstable
modes, and comparisons with the previous explicit and un-
conditionally stable FDTD method [18]. Extensive numerical
experiments and comparisons with existing methods have
demonstrated the unconditional stability, accuracy, and effi-
ciency of the proposed alternative explicit and unconditionally
stable method.

II. PRELIMINARIES

Before presenting the proposed work, it is necessary to review
the root cause of instability [17], [18]. Using a matrix notation,
we can rewrite the FDTD updating equations into the following
compact form:

H"': = "% — AtDpE" (1)
E™ = E" 4 AtDyH™ 2 — Atjte 2)

where F denotes the vector of electric field unknowns placed
along the edges of the primary grid, 7 denotes the vector of
magnetic field unknowns along the edges of the dual grid, j is
the vector of current sources whose entry is .JJ/e with .J being
current density, At is time step, superscripts such as n,n +
(1)/(2), and n + 1 denote the time instant, D and Dy are
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sparse matrices representing the discretized (1)/(1)Vx, and
(1)/(e)V x operators, respectively. As can be seen from (1)
and (2), the computations involved in the FDTD are sparse ma-
trix-vector multiplications.

Equations (1) and (2) solve both &/ and H. We can also elim-
inate one field unknown to see the root cause of instability more
easily. Rewriting (2) for £, we find

E"=E"' 4 AtDyH™ ¥ — Atj" 1. 3)
Subtracting (3) from (2), and using (1) to replace the term of
H»+ /) _ gr=(1)/(2) in the resultant, we arrive at

En+1 _9fn" + En—l

At?
where f? = —(§7tM/(2) _ jn=(1)/(2)) /A, which is actually
—(87)/(0t) at the n-th time instant. Equation (4) is nothing

but a central-difference based discretization of the following
second-order wave equation

+ DHDEE’I'L — fn (4)

d2F
~—_— +ME =
T f (5)
where
M =DyDg. (6)

The solution to (5) at any time is a time-dependent superposi-
tion of the eigenmodes of M. Performing a z-transform of (4),
it can be found the eigenmodes, whose eigenvalues £; satisfy
the following condition, can always be stably simulated by the
given time step At

& < 4/A (7)

The root cause of instability is thus the eigenmodes whose
eigenvalues ¢; are greater than 4/At*, which are termed un-
stable modes.

In a traditional explicit time-domain method, the underlying
numerical system and thereby the eigenmodes governing the
field solution are not changed, but the time step is adjusted
based on the CFL condition so that a time-domain simulation
can be made stable. The CFL condition essentially requires the
time step to be chosen based on the largest eigenvalue of M, so
that (7) is satisfied for all eigenmodes present in the numerical
system. In an explicit and unconditionally stable method like
[17], [18], the desired time step is not changed, but the numer-
ical system is changed so that only those eigenmodes that can
be stably simulated by the given time step are kept, while the
unstable modes are discarded. In this way, the dependence of
the time step on space step is removed, and an explicit method
can also be made unconditionally stable.

III. PROPOSED METHOD

From the root-cause analysis reviewed in the previous
section, it is evident that once a space discretization is done,
whether there exist unstable modes or not is known for a given
time step, regardless of time marching. Therefore, the source
of instability is inherent in the system matrix resulting from
the space discretization, rather than in the field solution. To
completely remove such a source, the system matrix has to be
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changed. In this section, we present proposed method, explain
how it works, and analyze its complexity and accuracy. In
addition, we also describe how to handle open-region problems
in the proposed method.

A. Method

Let V}, denote the matrix formed by all the unstable modes,
with each column being an eigenvector of M whose eigenvalue
is greater than 4/At?. How to efficiently find V;, will soon be
given in next section. Right now, assume V, has been gener-
ated.

In the proposed method, we use V, to directly change the
original system matrix M to a new system matrix M;

M; =M -V, VI M. @

For an M that is Hermitian and positive semi-definite, the above
is equal to

M, =M - MV, V! )

i.e., multiplying M by VhV?; from the right. We then perform
an explicit FDTD simulation on the new system matrix M;. If a
second-order based system shown in (4) is employed, we simply
modify it to
En+1 ¥ + Enfl
At?
and march on in time step by step. If the original FDTD-based

first-order system given in (1) and (2) is used, we update them
to

+M(I-V,VI)E" = f* (10

H" = H" % - AtDy (1- V,V}) E"

EMHl = E" 4 AtDy H' T — A3 (11)

which is the same as (10). This can be readily verified by elim-
inating H unknowns from (11).

One can also eliminate 2 unknowns to obtain an equation
for H, which is the H-based counterpart of (10). In this case,
M becomes DDy, and in (11), the (I — V,VE) term does
not exist in the first row, but appears in front of H in the second
row.

After obtaining the solution of £ from (10) or (11), we need
to add one more important step to make the solution correct,
which is

E=E - V,VIE. (12)

Obviously, the aforementioned method only requires a very
minor modification in the traditional FDTD, and hence the
method is convenient for use. Now, we shall explain how the
proposed method works.

B. How It Works?

The new system matrix M; consists of the stable eigenmodes
only, and hence the source of instability is completely removed.
To prove, we first utilize the property of the eigenvectors of M.
Since M is Hermitian positive semi-definite, its eigenvectors V
are orthogonal. Hence, the following property holds true:

viv =1L (13)
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Since MV = VA, where A is the diagonal matrix of eigen-
values, using (13), we obtain

M =VAV?T (14)
which can further be written as
M = V, AL VE + VA V] (15)

where V; is the eigenvector matrix of stable eigenmodes, A;
and Ay are diagonal matrices containing stable and unstable
eigenvalues, respectively.

Multiplying both sides of (15) by V;, V1, since M’s eigen-
vectors are orthogonal, we obtain

V,ViM = V,A, VL. (16)
Thus, substituting (16) into (8) and using (15), (8) is nothing but
M; = VA V] an

and hence the space of stable modes only.

Since M is symmetric as can be seen from (17), (8) is the
same as (9). However, for non-symmetric M such as the one
resulting from a lossy analysis [22], (8) is different from (9), and
(8) is the correct one to use since it is still made of V; modes
only, while (9) is not. In addition, in this case, the V}, should
be orthogonalized to satisfy V'V, =T before being removed
from M, and the V;, V¥ in (8) is replaced by V, V.

After updating the system matrix from M to M, that is free
of the source of instability, we can perform the explicit FDTD
time-marching on M, with absolute stability. However, after
implementing (10) and (11), we found the result is indeed stable
but not accurate. Interestingly, if V3, is found by first obtaining
all eigenvectors of M, and then selecting Vj, from them, the
accuracy is good. However, if V, is found by computing the
unstable eigenvectors of M only, the results do not match the
reference data. Certainly, the first approach that finds all eigen-
vectors is not practical for use when problem size is large, and
the second approach is the one that can truly make the proposed
method useful in practice. To figure out the problem, we com-
pare the V;, modes found by the second approach with those
found by computing all eigenvectors of M. They show good
agreement with each other. Therefore, the accuracy of Vi, is not
aproblem. This has led to the finding that the updated matrix M;
has additional zero eigenvalues, the eigenvectors corresponding
to these additional zero eigenvalues are not the eigenvectors
of the original matrix M, and they make the result wrong. To
explain, the M; as shown in (17) has rank k;, where £; is the
number of stable eigenmodes of M. On the other hand, M; is a
matrix of size IV X V. Hence, the additional N — k; eigenvalues
are zero, whose eigenvectors make an additional nullspace. As
a result, when computing (10) or (11), the field solution is not
only the superposition of the V; modes, but also the additional
nullspace (V,,) modes as the following:

E= Vlyl + Voayoa (18)

where y; and y,,, are corresponding coefficient vectors. The true
solution should satisfy 2 = V;y;. Hence, the result of (18) is
wrong. When V7, is found by computing all the eigenvectors of
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V and from them choosing V,, (17) matches that in (15) very
well. Hence, the contribution of the additional nullspace in (17)
is almost zero. However, this is not the case when V7, is found
from computing only the eigenvectors of M that violate (7).

To solve this problem, after obtaining the solution of F
from (10) or (11), we need to add (12) to make the solution
correct. This treatment removes the second term in (18). This
is because V,, must be in the space of V, since it is not in V.
By deducting VthE' from F, all of the Vj,-components and
thereby V,,-components are removed, making E’s solution
correct. It is also worth mentioning that if nullspace, whose
eigenvectors are also termed DC modes, does not make an
important contribution in the field solution such as in the case
of an electrically large antenna, the step of (12) is not needed.

To use an infinitely large time step without making the FDTD
unstable, we simply remove all the eigenmodes of M whose
eigenvalues are nonzero. To use other time step sizes, we re-
move eigenmodes adaptively based on the given time step. As a
result, the proposed method flexibly permits the use of any time
step independent of space step, thus being explicit and uncon-
ditionally stable.

C. Complexity and Accuracy Analysis

1) Complexity Analysis: As compared to the original FDTD,
the only additional computation involved in the proposed
method is the computation of VhV,?E” at each time step, as
shown in (10) and (11). The VthE"’ can be efficiently eval-
uated by two matrix-vector multiplications: first, computing
VIE", the cost of which is kO(N); second, multiplying
the resultant by V,, the cost of which is also kO(N). If one
computes VhV,? first, the resultant matrix is a dense matrix
of size N x N. Multiplying such a dense matrix by E” would
cost O(N?) operations, which is expensive when N is large.
Therefore, the approach of doing two matrix-vector multiplica-
tions should be used to obtain V, V7 E™.

2) Accuracy Analysis: When the time step is chosen based
on accuracy, the unstable modes are not required by accuracy,
and hence they can be deducted from the system matrix without
affecting accuracy. To explain, in the proposed method, we ex-
pand the space dependence of the field solution using the eigen-
modes of M as follows:

E(r,t) =) Vil(t) (19)
i=1

where y;(t) is the time-dependent coefficient of the i-th eigen-
mode V. In a source-free problem, the y;(¢) is analytically
known as [18]

fit) + bi Sil’l( &t) (20)
with a;,b; arbitrary coefficients. Hence, the square root of
the eigenvalue is also the frequency of the field’s time vari-
ation, i.e., w = +/&;. This is, in fact, dispersion relation. In
free space, the \/£; is analytically known as 3¢, where 3 is
free-space wave number. In inhomogeneous problems, the
V& is not analytically known but can be numerically found.
When the time step is chosen based on accuracy such as
At < 1/(10 fmax). The unstable modes have &; > 4/A#?, and

yi (t) = a; cos(
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hence & > 4/At? > 400f2,., thus beyond the maximum
frequency required to be captured by accuracy. The above
accuracy analysis is for source-free problems. The same holds
true for problems with sources, as shown by the analysis given
in Section IV.B, and specifically (40) of [18].

D. Treatment of Open-Region Boundary Conditions

In open-region problems, the computational domain can be
truncated by various Absorbing Boundary Conditions (ABC)
such as Perfectly Matched Layers (PML). Since the field solu-
tion inside PML is fictitious, and there is no fine feature inside
the PML region either, we do not perform any special treatment
in the PML region, but to conduct the FDTD simulation as it
is. In the solution domain, we update the system matrix by de-
ducting the unstable modes from it. Basically, we divide the un-
known F into two groups, one inside the solution domain de-
noted by F's, and the other elsewhere such as boundary, PML
or other ABCs, denoted by . The same is done for unknown
H. Subsequently, the sparse matrices D g and Dy are cast into
the following form:

Dy — [DE,SS Dgso ]
Dros Dgoo
Dy ss Duso
Dy = ’ ' . 21
" |:DH,OS DH,OO:| @

With the above, rewriting (11) separately for Hg, Hp, Eg and
E o, we obtain

n

1 1

Hy'*=Hy * AtDpss (I-V,VE) EL — AtDg s0Ef
_1

o 2 —AtDg oo EA—ADg osEE.

n+i

Hy *=Hy

En+1 —E7 A n+i n+g nt L
s —Lg + tDH”gSHS +AtDH750HO 7At] 2

n+ i n+i
Eg+1 :Eg + AtDH,OOHO+2 +ADH,OSHS+2 : (22)

IV. FINDING UNSTABLE MODES

For any given time step At, the unstable modes are the eigen-
modes of M whose eigenvalues are greater than 4/A#%. Hence,
the unstable modes have the largest eigenvalues of M. Since M
is sparse, the computing task becomes how to find the largest
eigenpairs of a sparse matrix. The Arnoldi method is particu-
larly suited for this computing task [23]. In O(k) steps, it can
find a complete set of & largest eigenvalues and eigenvectors.
When the matrix is Hermitian, the Arnoldi process reduces to
Lanczos method. A k-step Arnoldi method on matrix M is to
carry out the following computation:

MQnxr = QHp i —|—ge£

where Q is a unitary matrix of size N x &k, H is a small upper
Hessenberg matrix of dimension & x &, ey, is the k-th column of
identity matrix I, and g is a column vector of length N yielding
gef an N x k matrix. When the norm of gef and hence the norm
of g goes to zero, the eigenvalues of H are the eigenvalues of
the original matrix M, and Q multiplied by the eigenvectors of
H are the eigenvectors of M. The detailed algorithm for real-
izing (23) can be found from Algorithm 3.7 of [23]. The overall
computational cost is simply % sparse matrix-vector multiplica-
tions, each of which is M multiplied by an intermediate vector

(23)
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Algorithm 1: Algorithm for Finding Unstable Modes
Data:
Matrix: M
Lower bound of the eigenvalue: (4/At?)
Random vector: v
kinitial: initial eigenpair number; kgiep: increment of k
p: number of unwanted eigenvalues to be shifted.
tol: accuracy of eigenvalue solution
Result: V},
k-step Arnoldi (Algorithm 3.7 of [23]) with initial vy and
k = Kinitial> obtaining MQy,j, = QHjx i, + gef
2 while ||g|| > tol do
3 Extend the k-step Arnoldi factorization to k + p steps
MQy o (k4p) = QH(k4p)x (k) + 9€4p
4 Find eigenvalues of H, with u1, uio, ..., up the
smallest p eigenvalues to be shifted

-

5 T = €k+p

6 for j=1—pdo

7 QR factorize H — p;I = QR.
8 H=0"HO

9 V=VQ

10 r=r2Q.

11 end

12 Update g, Q, and H as
g=QGk+1)H(k+1,k)+9f(k), Q=Q(:,1: k),

| and H=H(1:k,1:k).

13 Find eigenvalues of Hy«, check whether the smallest
eigenvalue is less than 4/At2. If not, extend the k-step
Arnoldi to k + kg¢ep, update k to k + Ksyep, go back to 2.

14 Vi = Qpy Vi, where Vp is the matrix formed by
eigenvectors of small matrix Hyx not satisfying (7).

generated during the k-step process, and the orthogonalization
of the resulting k& vectors. The complexity of the & sparse ma-
trix-vector multiplications is kO(N), while the complexity of
orthogonalization is O(k*N'), and hence the overall complexity
is O(k?N). This is much more efficient than a brute-force eigen-
value solution.

A straightforward k-step Arnoldi process cannot ensure the
k largest eigenpairs to be found in O(k) steps. Spurious eigen-
values may also be produced. We hence employ the implic-
itly restarted Arnoldi method [23] to systematically drive the
residual of (23) to be zero. For completeness of this paper, we
give the algorithm of implicitly restarted Arnoldi method as
shown in Algorithm 1, which is modified to suit the need of this
work. In this algorithm, from Step 4 to 12 is to shift p unwanted
eigenvalues so that the next initial vector is rich in the wanted
eigenvectors. The computational cost from Step 4 to 12 is negli-
gible as compared to Step 3, since these steps are performed on
small matrices of size & + p. The computational complexity of
Step 3 is O(p®> N), where p is proportional to k. The cost of Step
13 is again negligible since it is performed on a small matrix of
size k x k. Overall, the complexity of Algorithm 1 is O(k?N)
for finding k largest eigenpairs of M.

One may wonder why we do not use the same procedure to
find the stable eigenmodes. The stable eigenmodes turn out to
have the smallest eigenvalues of M. To find them efficiently,
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one has to use a shift-invert technique to transform the eigen-
values of interest (now smallest eigenvalues) to the largest
eigenvalues of a new matrix. This new matrix can be written
as (M — aI) !, where « is a shift value chosen to be small
so that the smallest eigenvalues can become the largest ones
of the new matrix. It is evident that finding the eigenvalues of
(M — aI) ! is computationally much more expensive as com-
pared to finding the eigenvalues of M, since a matrix solution
is involved. Furthermore, in O(k) steps, we cannot guarantee
finding a complete set of k& smallest eigenvalues since a is
empirical. Moreover, M has a nullspace whose eigenvalues
are zero. The size of nullspace grows with N. In other words,
when matrix size increases, the number of eigenvectors whose
eigenvalues are zero also increases. This further increases the
computational cost. In contrast, the preprocessing algorithm
developed in [18] is an efficient and reliable algorithm for
finding a complete set of stable eigenmodes. The problem of
the increasing size of the nullspace is also well handled in
this preprocessing algorithm. This is because all the nullspace
eigenvectors share the same eigenvalue (zero) in common.
Given a right hand side (source) vector, the contributions from
the nullspace eigenvectors are grouped together and become a
single vector. Hence, the algorithm in [18] does not suffer from
the issue of increasing nullspace size.

V. COMPARISON WITH PREVIOUS METHOD

First, we prove the proposed new method is mathematically
equivalent to the previous method [18]. In previous method
[18], the fields are expanded in the space of stable modes,
and the numerical system is projected onto the space of stable
modes. Consider the solution of (4), the E(¢) is expanded as
E(t) = Vy(t), and the time-dependent unknown coefficient
vector y; (¢) is solved from the following equation:

AR T
INE

In the proposed method, we solve (10). Substituting (17) into it,
we obtain

En+1 _9F™ + En—l
At?

Here, let E = Vy(t), since in the new method we do not
explicitly expand the field solution in the V; space. Vector y
= [y1,yn]T hence consists of the coefficients corresponding
to both the V;, and the V), modes. Multiplying (25) by V;,
with (12), we obtain y, = 0, and y; satisfying the same equa-
tion as (24). Hence, the proposed new method is mathematically
equivalent to the previous method. Therefore, its accuracy and
stability are both ensured.

However, the two methods are computationally different. In
the previous method [18], a traditional FDTD-based prepro-
cessing is developed to find the space of stable modes. In the
proposed method, no such preprocessing is required, and hence
the method is not subject to the constraint of the traditional
FDTD's time step. In the previous method, the numerical system
is projected onto the space of stable modes; in the proposed
method, the unstable modes are directly deducted from the nu-
merical system to eradicate the root cause of instability. In the

+ A =V,

(24

+ VAV E" = [

(25)
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previous method, the explicit marching is performed on a re-
duced order system since the number of stable modes is smaller
than the original system size; in the proposed method, there is no
reduction in system order. In the previous method, if the number
of stable modes is large, the modes can be broken into bands and
found band by band independent of each other; in the proposed
method, if the number of unstable modes k& is many, the com-
putational cost for finding them remains to be O(k*N) and, in
general, cannot be made smaller.

Overall, when the number of unstable modes is not large, the
proposed method is efficient for use. This is typically true in
many problems solved by the FDTD: the fine features only oc-
cupy a small portion of the entire space discretization. The pro-
posed method is also much more convenient for implementa-
tion. In addition, by removing just one unstable mode whose
eigenvalue is the largest, one already can use a time step larger
than the CFL time step using the proposed method; by removing
the highest two unstable eigenmodes, one can use an even larger
time step; and so on. Hence, with negligible computational cost,
the proposed method allows for the use of a time step beyond
the stability criterion. In contrast, in the method of [18], the time
step in the preprocessing procedure is restricted by the time step
required by stability. The computational overhead is more for
one to use a time step beyond the CFL condition.

Certainly, the two methods can be combined to accentuate
the advantages of both methods. For example, when the number
of unstable modes is many, from the proposed method, we can
still remove a certain number of unstable modes within feasible
run time, based on which the time step can be immediately en-
larged although it has not been enlarged to the time step allowed
by accuracy yet. Using the resulting updated system matrix, and
hence a much increased time step, the preprocessing step in [18]
can be accelerated greatly to identify the stable modes. The pro-
posed method hence does not need to finish the simulation of
the entire time window, but a small window simulated in the
preprocessing step. The previous method can then be used to
carry out explicit marching efficiently: the system has a much
reduced order and is diagonal, in addition, the computation of
the VhV?;E term in the proposed method is also avoided.

VI. NUMERICAL RESULTS

A. Demonstration of Unconditional Stability

First, we demonstrate the unconditional stability of the pro-
posed method using an example that has an analytical solution.
It is a 3-D parallel plate structure whose dimension is 900 pm,
6 pm, and 1 pm along z-, y-, and z-direction, respectively. The
space step is 0.2 pym, 0.85714 pm, and 90 pm, respectively
along z-, y-, and z-direction. This structure is excited at the near
end by a current source that has a very low frequency pulse of
I(t) = 2(t —to) exp(—(t — tg)?/7%) with 7 = 2 x 10*** s, and
typ = 47 s. The time step required by sampling accuracy thereby
is at the level of 10 s, while that dictated by the CFL condi-
tion for stability is 6.8221 x 10~ 1% s. Hence, there is a more than
160 orders of magnitude difference in the two time steps. With a
time step of 6.6667 x 104 s, the proposed method stably simu-
lated the structure with excellent accuracy. As can be seen from
Fig. 1(a), the voltages generated from the proposed method and
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Fig. 1. Demonstration of unconditional stability. (a) Voltage waveforms. (b)
Entire solution error as a function of time.

the analytical solution are on top of each other. Notice that the
structure behaves as a capacitor at very low frequencies, and
hence the near- and far-end voltages are identical to each other.
The 6.6667 x 10'%* s appears to be already an extremely large
time step. In fact, the proposed method allows for a time step of
infinity. The V4 includes all the eigenmodes whose eigenvalues
are nonzero, leaving zero eigenvalues only, and hence permit-
ting an infinitely large time step. The number of Vj, modes is
561. In addition to examining the solution accuracy at selected
points, we have also assessed the entire solution error by mea-
suring || E — Eyet||/|| Eret||, where E consists of all electric field
unknowns in the computational domain solved from the pro-
posed method, whereas E..¢ is obtained from the analytical so-
lution. The entire solution error is shown in Fig. 1(b) as a func-
tion of time, verifying the accuracy of the proposed method at
all points in the computational domain at each time instant. No-
tice that the error is plotted as it is instead of a percentage error.
It takes the proposed method 2.99 s to finish the entire simu-
lation including the time for finding unstable modes. To finish
the same simulation, the FDTD would have to take more than
5 x 1017 s (the expanding universe time). This example appears
to be dramatic, however, it is necessary to examine whether a
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Fig. 2. Simulation of a 3-D parallel plate structure. (a) Voltage waveforms. (b)
Entire solution error as a function of time. (c¢) The ratio of the unstable modes
component to the entire field solution.

method is truly unconditionally stable. This example also shows
clearly that the dependence of time step on space step is a nu-
merical problem, instead of a fundamental physical law one has

to obey.
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Fig. 3. Simulation of a mm-level cavity. (a) Electric fields obtained from the
proposed method at two points using different tme steps. (b) Comparison with
the ADI and HIE methods for the electric field simulated.

B. Parallel Plate Excited by a Current Source at Higher
Frequencies
Next example is the same structure but with a fast Gaussian

derivative pulse having a maximum input frequency 34 GHz.

Since the space discretization remains the same, the time step
required by a stable FDTD simulation remains to be 6.8221 x

1015 s, while the time step required by sampling accuracy is
2.9412 x 10712 5. The proposed method is able to generate ac-
curate and stable results using the time step of 2.9412 x 10~ 12
s. As shown in Fig. 2(a), the voltage waveforms simulated by
the proposed method are in excellent agreement with those from
the conventional explicit FDTD. The accuracy is further demon-
strated by the entire solution error plotted in Fig. 2(b) as a func-
tion of time. The CPU time cost by the proposed method is ap-
proximately 6.013 s with 3.251 s for time marching, and the
rest for finding the unstable modes. Compared with 6875.4 s re-
quired by the conventional explicit FDTD, the speedup of the
proposed method is 1145.9.

In this example, we have also examined the weights of the
unstable modes V, in the field solution. Let the weights be de-
noted by 4. It can be computed at each time step from V3 u(t),
where u(t) is the reference FDTD solution. As can be seen



4222

15.7 mm

Perfect Matching layer

Current source
s

@100 pm Fine mesh

@100pm

Observing @ 100 pm Fine mesh
point Dielectric cylinders

Fine mesh

_Perfect Matching layer
~Joke| Bulyole| 1081184

“Perfect Matching layer

(a)

= Proposed method
1r == Traditional method ||

(V/m)
o
o

o

Electric field

-15 I I I
0 0.5 o1 15 2
Time (sec) -10
x 10
(b)
-1
10
13
£
)
=
S
5107 1
@
£
=
=
10_3 L L L L L L L
2 4 6 8 10 12 14
Time (sec) <107
(©)

Fig. 4. Simulation of an open-region problem. (a) Structure. (b) Electric field
at the observation point. (c) Entire solution error.

clearly from Fig. 2(c), the weights of the discarded unstable
modes are small as compared to the entire field solution.

C. Millimeter-Level Cavity

Previous structures have very fine features relative to working
wavelengths. Next, we consider a millimeter cavity whose space
discretization is comparable to that required by the input spec-
trum. The overall dimension is 19.4 mm X 12.4 mm % 0.14118
mm. The space step along z-, -, and z-direction is respectively
1.8 mm, 1.8 mm, and 0.03529 mm. A current element of length
0.0334 mm is located in middle of the cavity along z-direc-
tion. The proposed method uses a time step of 9.8039 x 10713
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Fig. 5. Entire solution error for simulating a 3-D on-chip bus structure.

s solely determined by accuracy, whereas the time step used
by the conventional FDTD is 1.176 x 10~!% s. The number
of V; modes removed is 288. In Fig. 3(a), we plot the elec-
tric fields at two points, P1 = (3.5,7.1,0.70588) mm, and
P2 =(9.7,7.1,0.70588) mm, respectively, in comparison with
the FDTD solutions. Excellent agreement can be observed. The
total simulation time of the proposed method is 5.74 s including
the time for finding V7, and that for performing (11)-(12), in
contrast to the 27.37 s cost by FDTD. The average entire so-
lution error is found to be less than 3%. We have also sim-
ulated this example using the ADI and the HIE method [24]
using the time step of 9.8039 x 10713 s. In Fig. 3(b), we com-
pare the voltages at point P1 simulated by the three methods,
which further verifies the accuracy of the proposed method.
The proposed method flexibly adapts the eigensystem based
on the required time step. For example, if the required time
step is 3.0712 x 10713 s instead of 9.8039 x 10~ s, the
eigenvalues are accordingly removed from the largest down to
4.2907 x 10?°. The results are equally accurate as can be seen
from Fig. 3(a). The CPU time for this case is 19.03 s.

D. Open-Region Radiation

Next, we simulate an open-region problem with a dipole an-
tenna radiating in presence of multiple dielectric cylinders, as
illustrated in Fig. 4(a). The solution domain is 15.7 mm by
10.3 mm, surrounded by a 10-layer PML region. The maximum
space step size is 1.428 x 10~* m. The smallest space step is
7.1429 x 106 m. There are three cylinders situated on the left
side of the solution domain and a current source along z-di-
rection located on the upper right corner. The pulse of the cur-
rent source is a Gaussian derivative with a maximum input fre-
quency of 1.05 x 10! Hz. The cylinders have relative permit-
tivity €, = 2. The time step required by stability is 1.6836 x
101 s, whereas the time step used by the proposed method is
3.3672 x 10712 5. The proposed method takes 1.2493 x 10 s to
finish the entire simulation, while the FDTD costs 1.9873 x 104
s. The electric field at the observation point shown in Fig. 4(a) is
plotted and compared with that of traditional explicit FDTD in
Fig. 4(b). The entire solution error is shown in Fig. 4(c). Excel-
lent accuracy is observed.
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Fig. 6. Simulation of an EMI problem. (a) [llustration of the structure. (b) Elec-
tric field at the observation point using a time step of 0.166 ps. (¢) Electric field
at the observation point using a time step of 1.66 ps.

E. On-Chip 3-D Bus

Next, an on-chip 3D bus structure embedded in an inhomoge-
neous stack of dielectrics is simulated. The proposed method is
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able to use the time step required by accuracy, 2.9412 x 1012
s, to obtain accurate results. In contrast, the conventional FDTD
must use a time step of 9.9355 x 10~ 16 s to ensure stability. The
total CPU time of the proposed method is 7.12 s, whereas that
of the conventional FDTD is 7 426 s. The speedup of the new
method over the FDTD is approximately 1 043. The number of
removed eigenmodes is 536 in this example. The entire solution
error is plotted in Fig. 5 as a function of time, revealing good
accuracy of the proposed method. The speedup of the method
in [18] over the traditional FDTD is 47. Hence, the proposed
method is more efficient in simulating this example.

F. Electromagnetic Interference (EMI) Example

In the last example, we simulate an EMI example as illus-
trated in Fig. 6(a), and compare the performance of the pro-
posed method with the method of [24]. The structure is a cube of
side length 11 cm truncated by perfect electric (PEC) boundary
conditions all around. In the center, there is a PEC sheet with
five slots. The thid slot has a width of 0.25 mm, and others are
of width 1 cm. Then we set the total E, at the center point
of the lower-half domain to be exp(—a?(t — #3)?) with o =
1.26 x 10'% s, and tg = le — 9 s. The third slot is discretized
along y into 5 uniform cells. The cell size is 1 cm along z-, and
z-direction, respectively, and 0.02 cm along y in the areas other
than the third slot. We compare the results obtained from the
conventional FDTD, the proposed method, and the HIE in [24],
for a time step of 0.166 ps which is the time step of the con-
ventional FDTD, and the time step of 1.66 ps, respectively. The
E, obtained for the two choices of the time step at the center
point of the upper domain are plotted in Fig. 6(b), and (c), re-
spectively. The HIE is shown to be unstable for the time step of
1.66 ps, whereas the proposed method still generates stable and
accurate results.

VII. CONCLUSION

In this paper, an alternative method is developed to achieve
unconditional stability in an explicit FDTD simulation. It
retains the strength of FDTD in avoiding matrix solutions,
while eliminating its shortcoming in time step. The unstable
modes are directly deducted from the original FDTD numerical
system to eradicate the root cause of instability. Since the
unstable modes have the largest eigenvalues and the FDTD
system matrix is sparse, the unstable modes can be efficiently
and reliably found in O(k*N) complexity, where k is the
number of unstable modes. The proposed method only requires
a very minor modification on the traditional FDTD to make it
unconditonally stable. Its implementation is hence convenient.
Numerical experiments and comparisons with existing explicit
FDTD methods have demonstrated the superior performance
of the proposed method in stability, accuracy, and efficiency.
The essential idea of the proposed method can also be applied
to other time domain methods. The proposed method com-
plements the capability offered by the original explicit and
unconditionally stable FDTD [18]. Recently, this work has also
been extended for analyzing general lossy problems in [25].
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