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Communications

Fast Frequency-Sweep Analysis of RF Coils for MRI

Dan Jiao and Jian-Ming Jin*

Abstract—A fast frequency-sweep technique is developed for the anal-
ysis of radio-frequency coils for magnetic resonance imaging. This tech-
nique applies the method of asymptotic waveform evaluation to the
moment method solution of the integral equation for the original physical
problem. Numerical examples show that the proposed technique can speed
up the analysis by more than an order of magnitude.

Index Terms—Asymptotic waveform evaluation (AWE), magnetic reso-
nance imaging (MRI), method of moments (MoM), radio-frequency (RF)
coils.

I. INTRODUCTION

The radio-frequency (RF) coil is an important device in a magnetic
resonance imaging (MRI) system. The primary method used for its
analysis and design is based on the equivalent lumped-circuit model
[1]–[5]. In this method, whose details are described in a recent book
[6], the conductors used to construct an RF coil are modeled as
inductors and the RF coil is then modeled as anLC network. The
Kirchhoff voltage and current laws are then employed to establish a
set of linear equations, whose solution gives the resonant frequencies
and the current distributions in the coil. The method is simple and
also effective for RF coils operating at a low frequency. However,
by modeling a conductor as an inductor, one neglects the current
variation in the conductor and also the radiation loss of the conductor.
This introduces a significant error in the analysis of RF coils operating
at higher frequencies. As a result, the equivalent lumped-circuit
method becomes inaccurate and often predicts the current distribution
that disagrees with measured data.

A more accurate analysis of RF coils is to employ the method
of moments (MoM) [7], which is based on the exact solution of
Maxwell’s equations. This analysis is valid at both low and high
frequencies and it is also applicable to complex RF coils having
structures such as RF shields and end-caps. Recently, the MoM has
been used for the analysis and design of RF coils for MRI [8]–[11].
With the MoM, the analysis is performed at a specified frequency.
Since RF coils are highly resonant devices, the analysis must be
repeated at many frequencies with a very small frequency increment
in order to obtain the frequency response of an RF coil. This results in
an excessively long computing time, especially when many designs
have to be evaluated.

In this paper, we describe a fast frequency-sweep technique to al-
leviate this problem. This technique applies the method of asymptotic
waveform evaluation (AWE) [12], [13] to the MoM solution of the

Manuscript received April 30, 1999; revised June 23, 1999. This work was
supported by the National Science Foundation (NSF) under Grant ECE 94-
57735.Asterisk indicates corresponding author

D. Jiao is with the Center for Computational Electromagnetics, Department
of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 61801-2991 USA.

*J. M. Jin is with the Center for Computational Electromagnetics, De-
partment of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, 1406 West Green Street, Urbana, IL 61801-2991 USA
(e-mail: j-jin1@uiuc.edu)

Publisher Item Identifier S 0018-9294(99)07648-X.

Fig. 1. Subdivision of a birdcage RF coil into small triangular elements
(Capacitors are not shown).

integral equation for the RF coil analysis. Numerical examples show
that the proposed technique can speed up the analysis by more than
an order of magnitude.

II. FORMULATION

Consider an RF coil made of conducting strips1 and lumped
capacitors and possibly enclosed in an RF shield. A voltage source
applied to the coil will induce an electric current in the coil and the
shield. The electric field intensity produced by this current can be
expressed as

EEE(rrr) = �jk�

S

GGG rrr; rrr
0 � JJJ rrr

0
drrr

0 (1)

where k is the free-space wavenumber,� is the free-space wave
impedance,S denotes the conducting surface of the coil and the
shield, JJJ denotes the unknown surface current density onS; and
GGG(rrr; rrr0) is the well-known free-space dyadic Green’s function given
by

GGG(rrr; rrr0) = III +
rr

k2
g rrr; rrr

0
; g rrr; rrr

0 =
e�jkjrrr�rrr j

4�jrrr � rrr0j

with III being the unit dyad.
To determine the unknown surface current densityJJJ; we first

subdivide the conducting surfaceS into small triangular elements.
One example of such a subdivision is shown in Fig. 1. The surface
current density can then be expanded using the Rao–Wilton–Glisson

1The moment method analysis of RF coils made of circular conducting
wires is described in detail in a recent book [6]. A narrow strip of widthw

is equivalent to a circular wire with a radius given bya = 0.223w. This
equivalence is derived by equating the self-impedance of a strip segment to
that of a wire segment of the same length. Hence, a moment method solution
based on strips can be applied to RF coils made of wires, andvice versa.
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Fig. 2. (a) Illustration of two joint triangular elements. (b) Vector plot of
the RWG functionfffn:

(RWG) basis functionfffn(rrr) [14]

JJJ(rrr) =

N

n=1

Infffn(rrr) (2)

whereN is the number of unknowns, which is the number of edges
shared by two triangular elements, andIn denotes the unknown
expansion coefficient. The RWG basis functionfffn(rrr); also known
as the triangular roof-top function, is defined over two triangular
elements joined at a common edge`n

fffn(rrr) =

`n

2A+
n

���+n ; rrr in T+
n

`n

2A�n
����n ; rrr in T�n

0; otherwise

(3)

where T�n denote the two triangles associated with thenth edge,
A�n are the areas of trianglesT�n ; `n is the length of thenth edge,
and ����n are the vectors defined in Fig. 2(a). The vector plot of
fffn(rrr) is illustrated in Fig. 2(b). The most important feature of this
basis function is that its normal component to edge`n is a constant
(normalized to one) whereas the normal components to other edges
are zero. This feature guarantees the continuity of current flow over
all edges and makesIn the current density passing through edge
`n: Triangular elements are chosen here because of their excellent
modeling capability of arbitrary geometries, which is not shared by
rectangular elements.

Applying Galerkin’s method to (1) results in a matrix equation

Z(k)I(k) = V (k) (4)

in which the impedance matrixZ and vectorV have the elements
given by

Zmn(k) = jk�

T T

fffm(rrr) � fffn rrr0 �
1

k2
r

� fffm(rrr)r � fffn(rrr
0) g(rrr; rrr0)drrr0 drrr (5)

(a)

(b)

Fig. 3. (a) A capacitor applied atTm: (b) A voltage source applied atTm:

Vm(k) =�

T

EEE(rrr) � fffm(rrr)drrr (6)

whereTm andTn denote the support offffm andfffn, respectively.
If there is neither a capacitor nor a voltage source applied atTm;

then Vm(k) = 0 because the boundary condition requires that the
tangential electric field must vanish on a perfectly conducting surface
(see Appendix for a more general case). If a capacitorCm is applied
at Tm; as illustrated in Fig. 3(a), it is easy to find that

Vm(k) = �
(`m)2

j!Cm
Im(k) (7)

where! denotes the angular frequency. Clearly, this can be moved to
the left-hand side of (4), which is equivalent to adding(`m)2=j!Cm
to Zmm: If a voltage sourceV ex

m is applied atTm; as illustrated in
Fig. 3(b), then

Vm(k) = `mV
ex
m (8)

which provides the right-hand side of (4) for a solution ofI(k).
To obtain the solution of (4) over a wide frequency band, we

expandI(k) into a Taylor series

I(k) =

Q

n=0

mn(k� k0)
n (9)

wherek0 is the expansion point. Substituting this into (4), expanding
the impedance matrixZ(k) and the excitation vectorV (k) into a
Taylor series, and finally matching the coefficients of the equal powers
of k � k0 on both sides yield the recursive relation for the moment
vectors

m0 =Z�1(k0)V (k0) (10)

mn =Z�1(k0)
V (n)(k0)

n!
�

n

i=1

Z(i)(k0)mn�i

i!
n � 1 (11)

whereZ(i) denotes theith derivative ofZ(k) and likewiseV (n)

denotes thenth derivative of V (k). These derivatives are found
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TABLE I
CPU TIMINGS FOR CALCULATIONS ON DIGITAL PERSONAL WORKSTATION

AWE method Direct method
Problem

Number of
elements

Number of
unknowns

Freq. pts. CPU time Freq. pts. CPU time
Speed-up

Fig. 4 336 348 25 000 35.6 s 250 1352 s 38.0
Fig. 5 818 1043 20 000 719.5 s 400 36 192 s 50.3

analytically in this work using the following derivative formula.
Given a function

f(k) = (1� ck
2)
e�jkr

r

wherec is a constant, itsnth derivative is given by

f
(n)(k) = [jn(n� 1) + 2nkr]ce�jkr(�jr)n�3

� 1� ck
2
re
�jkr(�jr)n�2:

The Taylor expansion has a limited bandwidth. To obtain a wider
bandwidth, we representI(k) with a better behaved rational Padé
function

I(k) =

L

i=0

ai(k � k0)
i

1 +

M

j=1

bj(k � k0)
j

(12)

whereL + M = Q: The unknown coefficientsai and bj can be
calculated by substituting (9) into (12), multiplying (12) with the
denominator of the Padé expansion, and matching the coefficients of
the equal powers ofk � k0: This leads to the matrix equation

mL mL�1 mL�2 � � � mL�M+1

mL+1 mL mL�1 � � � mL�M+2

mL+2 mL+1 mL � � � mL�M+3

...
...

...
. . .

...
mL+M�1 mL+M�2 mL+M�3 � � � mL

b1
b2
b3
...
bM

= �

mL+1

mL+2

mL+3

...
mL+M

(13)

which can be solved forbj : Once bj are obtained, the unknown
coefficientsai can then be calculated as

ai =

i

j=0

bjmi�j 0 � i � L: (14)

Clearly, in the procedure described above the impedance matrix
Z(k) is inverted only once, which is the main reason for the efficiency
of the AWE method. In the case that one expansion point is not
sufficient to cover the desired frequency band, one can use multipole
expansion points, which can be selected automatically using a simple
binary search algorithm [15].

III. N UMERICAL EXAMPLES

To demonstrate the efficiency and accuracy of the proposed
method, a number of numerical examples are considered. We first
applied the method to a 2.25 cm�2.25 cm square loop made of
a 0.143-cm-wide strip and connected to a capacitor of 90 pF [6,
p. 145]. The calculated resonant frequency agrees very well with

Fig. 4. Magnitude of the input admittance of a nonshielded low-pass bird-
cage coil as a function of frequency.

the measured value with a relative error less than 2.3%. We then
applied the method to a dipole antenna made of a conducting strip,
the calculated input impedance as a function of frequency agrees
very well with other solutions [7, p. 72] with the largest relative
error less than 5%.

Having verified the method, we applied it to a low-pass birdcage
coil whose diameter and length are 26 cm. The coil is made of
2.54-cm-wide conducting strips and the number of rungs is 12. The
capacitors have a value of 1.7 pF to place the dominant mode at
128 MHz and the voltage is applied across one of the capacitors.
Fig. 4 shows the magnitude of the input admittance as a function
of frequency. The number of triangular elements used to model the
coil is 336 and the number of unknowns is 348. With a frequency
increment of 1 MHz, it takes the direct method, which solves (4)
repeatedly for each frequency, 1352 s to obtain the solution on a
digital personal workstation (500-MHz Alpha 21164 processor). With
a sixth-order Taylor expansion (Q = 6, L = 3, M = 3), the AWE
method produces an accurate solution with 0.01-MHz increments over
the entire band in 35.6 s, which is a speed-up of 38. A higher-
order Taylor expansion would result in an even larger speed-up at
the expense of an increased computer memory requirement.

The above calculations are repeated for the birdcage coil placed
in an RF shield having a diameter of 32 cm and a length of 30 cm.
The capacitors have a value of 2.95 pF to place the dominant mode
at 128 MHz. Fig. 5 gives the magnitude of the input admittance as a
function of frequency. The discretization and CPU time information
is summarized in Table I, which shows a similar speed-up.

IV. CONCLUSION

In this paper, we described a fast frequency-sweep technique for
the analysis of RF coils for MRI. This technique applies the AWE
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Fig. 5. Magnitude of the input admittance of a shielded low-pass birdcage
coil as a function of frequency.

method to the MoM solution of the integral equation for the RF coil.
Numerical examples showed that the proposed technique can speed
up the analysis by more than an order of magnitude, making it a very
useful tool for the design of RF coils.

APPENDIX

If the conduction loss of a coil has to be evaluated, the coil must
be considered as a nonperfect conductor. In this case, even if there is
neither a capacitor nor a voltage source applied atTm, Vm(k) 6= 0.
Instead, sinceEEE = �JJJ with � being the surface resistivity, (6)
becomes

Vm(k) = ��

N

n=1

In(k)

T

fff
m
(rrr) � fff

n
(rrr) drrr: (15)

Clearly, this can be moved to the left-hand side of (4), which is

equivalent to adding�
T

fff
m
(rrr) � fff

n
(rrr) drrr into Zmn. Note that

this integral vanishes whenTm andTn do not overlap each other.
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