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An Explicit and Unconditionally Stable FDTD
Method for Electromagnetic Analysis

Md. Gaffar and Dan Jiao, Senior Member, IEEE

Abstract—In this paper, an explicit and unconditionally stable
finite-difference time-domain (FDTD) method is developed for
electromagnetic analysis. Its time step is not restricted by the space
step, and its accuracy is ensured for the time step chosen based
on accuracy. The strength of the conventional explicit FDTD is
thus preserved in avoiding a system matrix solution, while the
shortcoming of the conventional FDTD is eliminated in the time
step’s dependence on space step. Numerical experiments in both
2-D and 3-D simulations have demonstrated the performance of
the proposed method in stability and efficiency without sacrificing
accuracy.

Index Terms—Explicit methods, finite-difference time-domain
(FDTD) method, unconditionally stable methods.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD)method [1], [2]
is one of the most popular computational electromagnetic

methods for solving Maxwell’s equations. It has been widely
adopted by researchers in numerous science and engineering
disciplines. An explicit FDTD method is free of matrix solu-
tions. However, its time step is dependent on the space step for
stability. When there exist fine features relative to the working
wavelength, the time step required for stability can be much
smaller than the time step determined by accuracy, which can
render an explicit FDTD simulation highly inefficient.
In recent years, many unconditionally stable FDTD methods

have been developed such as the alternating direction implicit
(ADI)-FDTD [3]–[5], the Crank–Nicolson (CN)-FDTD [6], the
locally one-dimensional (LOD)-FDTD [7], the Laguerre-FDTD
[8], a series of fundamental schemes [9], and others. All of
these methods are implicit methods that require a system ma-
trix solution. It has also been observed from many existing im-
plicit FDTD methods that the accuracy degrades greatly when
using a time step much larger than that permitted by stability.
In fluid dynamics, researchers have filtered unstable high-fre-
quency waves to enlarge the time step of an explicit scheme
[10]. Recently, a filtering technique has also been reported in
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[11] and [12], where the time step of an explicit FDTD is suc-
cessfully extended beyond the CFL limit, although the method
has not been made unconditionally stable. In [13], an explicit
and unconditionally stable time-domain finite-element method
(TDFEM) is successfully created (the preliminary work of [13]
has been shown in [14] and [15]). In this method, we retain
the strength of an explicit TDFEM in avoiding solving a matrix
equation, and we eliminate its shortcoming in time step. Despite
the success in the TDFEM, as yet no explicit FDTD methods
have been made unconditionally stable.
The contribution of this paper is the successful development

of an explicit and unconditionally stable FDTD method for
general electromagnetic analysis involving arbitrary structures,
inhomogeneous materials, and absorbing boundary conditions
(ABCs) such as a perfectly matched layer (PML). The basic
idea of this work has been presented in [16]. In this paper, we
provide a comprehensive description of this method.
The organization of this paper is as follows. In Section II, we

analyze the root cause of an explicit FDTD method when using
a time step beyond the stability criterion, based on which we re-
veal how to make an explicit FDTD unconditionally stable. In
Section III, we propose an explicit and unconditionally stable
FDTD method. The matrix-free strength of the traditional ex-
plicit FDTD method is retained by the proposed method. In
Section IV, we provide a detailed complexity and accuracy anal-
ysis of the proposed algorithm. In Section V, we discuss the
computational efficiency of the proposed method and the ter-
minology used to describe the proposed method. Through com-
parisons with the traditional explicit FDTDmethod in numerous
2-D and 3-D examples in both closed- and open-region settings,
Section VI demonstrates the stability, accuracy, and efficiency
of the proposed method. Section VII relates to our conclusions.

II. ON THE ROOT CAUSE OF THE INSTABILITY
OF AN EXPLICIT FDTD

In this section, we analyze the root cause of the instability
of an explicit FDTD method when a time step beyond the
Courant–Friedrichs–Lewy (CFL) condition is used. Existing
stability analysis such as the complex-frequency analysis
[2], the well-known Von Neumann analysis, and the eigen-
value-based approach for analyzing stability [18], [19] have
all shed light on such a root-cause analysis. Here, we present
our new findings on the root cause of instability, which enable
the removal of the root cause without sacrificing accuracy in
the explicit FDTD-based simulation of general electromagnetic
problems.
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A. Proposed Root-Cause Analysis

In an explicit FDTD method, the time marching is performed
in a leapfrog manner, which yields, in a source-free region,

(1)

where is the time step, superscript such as , and
denotes the time instant, represents the vector of the

unknown electric fields in the computational domain, whereas
vector contains discretized unknown magnetic fields.
and are sparse matrices, with matrix–vector products
and representing discretized , and ,
respectively. Once a space discretization is done, and
are determined regardless of time.
Substituting the ’s equation into the ’s equation in (1) and

rewriting (1) in a matrix form, we obtain

(2)

where

(3)

Let

(4)

Equation (2) can be rewritten as

(5)

To make the above stable, the spectral radius of must be
bounded by 1, i.e., the maximum modulus of the eigenvalues
and thereby the modulus of all eigenvalues of must be
bounded by 1. To analyze the spectral radius of , we consider
the following eigenvalue problem:

(6)

where is the diagonal matrix comprising the eigenvalues of
, and is the matrix whose column vectors are the eigenvec-

tors of .
Equation (6) can be rewritten as

(7)

Substituting in (4) into the above, we obtain

(8)

where is the upper block of , the row dimension of which
is the same as that of is the remaining part of , and

(9)

Equation (8) can further be written as

(10)

(11)

Multiplying (11) from right by and substituting (10) into
(11), we obtain

(12)

which yields

(13)

Denoting the th eigenvalue of by , and the th column
of by , from (9) and (13), we have

(14)

Denoting the eigenvalues of by , it is evident from (14) that

(15)

It can then be readily deduced from (15) that if and only if the
following condition is satisfied:

(16)

is guaranteed, thus the spectral radius of is bounded
by 1, and (5) is always stable. The above condition has also been
shown in [18]. In addition, as theoretically expected, (16) is the
same as the condition derived in [13] although the time-domain
finite-element-based marching in [13] is directly performed on
a second-order vector wave equation without using the leapfrog
scheme in the FDTD.
Next, we will proceed to analyze the root cause of the insta-

bility. First, we need to realize that the solution of at any time
instant can be superposed from the eigenvectors of , i.e., the
column vectors in , as shown in (14). To explain, we can
rewrite (1) as

(17)

Taking the time derivative of the second equation in (17) and
substituting the first equation, we obtain

(18)

Similar to the analysis in [13], the solution of to the above
equation at any time instant resides in the eigenspace of .
In other words, the eigenvectors of form a complete and
accurate set of basis functions to represent the space depen-
dence of the field solution at any time. A similar concept
was also presented in [20]. Notice that the eigenvector of ,
i.e., the eigenmode of , is not a spatial Fourier mode. The
spatial Fourier mode can be viewed as a source-free solution of
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Maxwell’s equations in free space, whereas the eigenmode of
is the resonance mode in the given problem since an eigenmode

satisfies . Such a solution satisfies all
the boundary conditions at the material interface present in the
given problem. Expanding in space by that is composed
of all the ’s eigenvectors, we have

(19)

where the space dependence of is carried by , and the
time-dependent coefficient vector can be found as follows.
Substituting the above (19) into (18), and front multiplying (18)
by , we obtain

As a result, we obtain the th entry of vector as the
following:

(20)

where and are arbitrary constant coefficients.
From (18), it can also be seen that corresponds to the

discretized operator. This operator is
semi-positive definite. Numerically, is a semi-positive defi-
nite matrix. Its eigenvalues are hence non-negative real num-
bers. In addition, as can be seen from (20), is nothing but
the resonance frequency of the th eigenmode in time.
Now, we have the following findings. First, (16) shows that

no matter how large the time step is, when instability occurs,
among all the eigenmodes (eigenvectors of ) contained in the
field solution, not all of them are unstable. Only a subset of the
eigenmodes that violate (16) are unstable, whereas the rest of the
eigenmodes are stable. For example, the null-space modes of
are always stable since their eigenvalues are zero. Second,
(16) shows that the unstable modes are also those modes that
cannot be accurately simulated by the given time step since
is nothing but the resonance frequency of an eigenmode. When
(16) is violated, the frequency is too high to be accurately sam-
pled by the given , thus causing instability.
As a result of the aforementioned root-cause analysis, we con-

clude that the root cause of the instability of an explicit FDTD
method when using a time step beyond the CFL condition is
the set of the eigenmodes of resulting from space discretiza-
tion, whose resonance frequency is higher than what can be ac-
curately sampled by the given time step. The number of such
modes is finite since the size of is finite. These unstable
modes exist due to fine discretizations relative to the working
wavelength. When the space discretization is finer, the eigen-
values of are higher. Such a fine discretization is unavoid-
able in structures whose fine features are small compared to the
working wavelength. It is very important to realize that the un-
stable modes arise from space discretization irrespective of time
stepping. Once the space discretization is finer than that per-
mitted by the given time step for accuracy, the unstable eigen-
modes whose eigenvalues violate (16) exist irrespective of the
methods used for time marching. That is why in an implicit
method, the error amplification factor must be bounded by 1 to

suppress the instability since the root cause of instability is not
removed in an implicit method.
However, (16), (19), and (20) clearly suggest an alternative

way to achieve unconditional stability without resorting to an
implicit method. It shows that if the time step is determined
by accuracy, then the unstable modes are also not required by
accuracy because the frequency corresponding to these modes
is beyond the highest frequency required to be captured by the
given time step. To explain, assuming the maximum frequency
present in a system response is . To achieve good accuracy,
we at least have to choose

(21)

The unstable modes then have frequencies

(22)

thus beyond the maximum frequency required to be captured by
accuracy.
In addition, (16) also shows that traditional CFL condition

essentially requires the time step be chosen in such a way that
all modes can be stably simulated by the given time step. In
other words, the time step determined from the CFL condition
makes (16) satisfied for all eigenmodes since the maximal
is inversely proportional to the smallest space step.

B. Comparison With Von Neumann Type Analysis

From the above section, it can be seen that the proposed root-
cause analysis is based on the following expansion to represent
the source-free solution of Maxwell’s equations:

In contrast, in the complex-frequency or Von Neumann anal-
ysis, the solution at any point and any time is expanded by
Fourier modes

where is the spatial Fourier coefficient, which is time depen-
dent, and denotes a spatial Fourier mode.
Comparing the two expansions, first, it is clear that each

eigenmode is not a single Fourier mode. In fact, in a general
problem with inhomogeneous materials and structures,
has a complicated space dependence. One mode would
have to be represented by many spatial Fourier modes. Second,
given any band-limited (with respect to prescribed accuracy)
input spectrum, the eigenmodes whose oscillation frequencies

larger than required by accuracy can be truncated without
affecting accuracy. In contrast, a Fourier expansion does not
show how to truncate high-frequency spatial modes without
sacrificing accuracy in a general non-free-space problem.
To see the difference more clearly, take the nullspace eigen-

mode as an example whose is zero. In the proposed root-
cause analysis, this mode can be stably simulated using an ar-
bitrarily large time step. In contrast, using the Von Neumann
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analysis, this single null-space eigenmode can have many high
spatial frequency components since the null-space eigenmode
is the static field distribution in the given problem, and a static
field distribution can also have very sharp space variations due
to complicated conductor and dielectric configurations in the
given problem. Using the Von Neumann or complex-frequency
analysis, such a null-space eigenmode cannot be stably simu-
lated by using an arbitrarily large time step, which is different
from what is found by the proposed root-cause analysis. Cer-
tainly, in free space, the eigenmodes of would revert to the
Fourier modes. The two analyses then agree with each other.
But, this is not true for general problems involving inhomoge-
neous materials and complicated structures.

III. PROPOSED EXPLICIT AND UNCONDITIONALLY
STABLE FDTD METHOD

Based on the aforementioned root-cause analysis, the essen-
tial idea of this paper to make an explicit FDTD unconditionally
stable is to remove the eigenmodes of whose eigenvalues
do not satisfy (16) instead of choosing a time step to make
(16) satisfied for every eigenmode. The latter makes the time
step limited by the space step, while the former is free of such a
constraint. This is the key difference between the proposed ex-
plicit FDTD method and the conventional FDTD method, and
why we call the proposed method unconditionally stable. The
accuracy of such an approach is guaranteed because the eigen-
vectors of form a complete set of bases for representing the
field solution, and the eigenvectors whose eigenvalues violate
(16) are not required by accuracy if the time step is chosen based
on accuracy, as analyzed in the above section.
For the complete removal of the unstable eigenmodes, we ex-

pand the field solution strictly in the space of stable modes, and
also project the numerical system onto the same stable space.
This is the same as changing the underlying numerical system,
namely, matrix , from the space of all eigenmodes to the space
of stable modes only, and then performing an explicit marching
strictly in the stable space. It is very important to change
because resulting from space discretization is the source of
the unstable modes, while the field solution is not. Regardless
of how much the solution is cleaned up at each time, the source
of instability still exists in the numerical system resulting from
space discretization. The numerical round-off error, the source
excitation, etc. all can excite the unstable modes inherent in the
numerical system when marching from current step to the next
step, no matter how much the field solution is free of unstable
modes at current step. The proposed method can also be viewed
as enlarging the space step without changing the original space
discretization, instead, achieving it in the eigenspace.
Following the aforementioned analysis, there are two

straightforward steps in the proposed explicit and uncondi-
tionally stable FDTD method. First, find the space of stable
modes for the given time step; second, perform an explicit
marching that is stable for the given time step irrespective of
the space step, no matter how large the time step is. In the
proposed algorithm, both steps are developed to retain the
strength of an explicit FDTD method in avoiding a system ma-
trix solution. As a result, the unconditional stability is achieved

without compromising the linear (optimal) complexity of the
traditional explicit FDTD method. To help understand the pro-
posed method, in what follows, we will begin with the explicit
marching with unconditional stability, assuming the space of
stable modes has been found; we then proceed to elaborate
a fast linear-complexity algorithm to find the space of stable
modes for the given time step regardless of its size.

A. Explicit Marching With Unconditional Stability

The general 3-D electromagnetic problems simulated by
the FDTD can be either a closed-region or an open-region
problem. For the former, the boundary condition at the trun-
cation boundary is known; while for the latter, an ABC is
generally used with the PML being a popular choice. Since
the solution in the artificially constructed ABC is fictitious,
we only span the field solution inside the solution domain in
the space of stable modes, and project the numerical system
inside the solution domain onto the space of stable modes,
while leaving the FDTD simulation inside ABCs as usual. This
is also done in view of the fact that the artificially constructed
ABCs such as the PML does not have fine features relative to
the working wavelength, and the small time-step issue of an
explicit FDTD in general arises from the fine features inside
the solution domain. Thus, the matrix in (3) is built for the
solution domain only.
We divide the unknown into two groups, one inside the

solution domain denoted by , and the other elsewhere such
as boundary, PML, or other ABCs denoted by . The same
is done for unknown . Subsequently, the sparse matrices
and are cast into the following form:

(23)

With the above, rewriting the first equation in (1) separately for
and , we obtain

(24)

(25)

Similarly, we have for the second equation in (1)

(26)

(27)

where current source is added for problems with sources.
Given a time step , let the space of the stable modes for the

given for be , and that for be . As shown in
Section II, is nothing but the subset of the eigenvectors
of whose eigenvalues satisfy (16). The has a simple
relationship with based on (1) or (10) as the following:

(28)



2542 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 62, NO. 11, NOVEMBER 2014

We then expand the field solutions inside the solution domain,
and , by their stable modes as the following:

(29)

with and being unknown coefficient vectors. We also or-
thogonalize so that .
Substituting (29) into (24), we obtain

(30)

Similarly, substituting (29) into (26) and multiplying both sides
of (20) by , we obtain

(31)

To facilitate efficient computation, we further simplify
the above equations (30) and (31) as follows. Multiplying

on both sides of (30), and utilizing the identity of

(32)

where is the diagonal matrix consisting of the eigenvalues
of satisfying (16), we obtain

(33)

Utilizing (32), (31) can also be simplified to

(34)

Since has a null space, the smallest eigenvalue is zero. For
this eigenvalue, (33) appears to be singular. However, since the
null-space modes of have a zero curl, the corresponding
is zero. Thus, we only need to set the entries of vector corre-
sponding to zero eigenvalues to be zero.
Both (33) and (34) do not require matrix solutions since the

matrix associated with the most advanced time step is iden-

tity. This matrix is the left-hand-side matrix in front of
in (33), and the left-hand-side matrix in front of in (34).
Thus, the matrix-free merit of the traditional explicit FDTD is
preserved. Furthermore, since is diagonal, the computation
of the right-hand sides of (33) and (34) only requires a few
matrix-vector multiplications. More important, unlike the tra-
ditional explicit FDTD, (33) and (34) are stable for the given
time step irrespective of its size. After the unknown coefficient
vectors and are found from (33) and (34), the entire field
solution can be reconstructed at any selected point of interest
from (29).

B. Proposed Linear-Complexity Algorithm for Finding the
Space of Stable Modes for Any Given Time Step

The space of stable modes can be directly constructed
from the eigenvectors of , whose eigenvalues satisfy (16).

However, the computational efficiency of such an approach may
not be desirable when the size of is large. We hence develop
the following fast linear-complexity algorithm to find ef-
ficiently. In this algorithm, we keep the advantage of the con-
ventional FDTD in being free of matrix solutions. Meanwhile,
we do not suffer from the shortcomings of the conventional
FDTDwhen the time step is small since we only need to perform
the traditional FDTD time marching in a small time window to
identify stable modes instead of finishing the entire simulation.
In the proposed algorithm, we start the conventional FDTD

simulation of (24)–(27). At selected time instants such as at
every th step ( , a good choice is the ratio of time step
required by accuracy to the time step determined by stability)
or adaptively determined time instants, we perform three sub-
tasks as follows.
1) Add field solution in matrix (initialized to be
zero) as a column vector, and also orthogonalize to
ensure the newly added solution vector is not linearly
dependent on the solution vectors that are present in .
The column dimension of after orthogonalization is
denoted by and its row dimension, i.e., the length of ,
is denoted by .

2) With , we transform the original in the solution do-
main to a reduced as the following:

(35)

which can be obtained in linear complexity by per-
forming computation in sequence from right to left.

3) We compute the eigenvalues and eigenvectors of .
Since the size of is small, its eigenvalue solution
can be obtained with negligible cost.

To adaptively determine the time instants to perform the
aforementioned three subtasks, one can check whether the new
field solution obtained, , contains new information that has
not been covered by or not. This can be quantitatively
assessed by . If this number is
smaller than a prescribed tolerance, we do not perform the
aforementioned three subtasks; otherwise, we do.
When progressively adding a solution vector into in the

above process, repeating eigenvalues will be observed from the
eigenvalue solution of the reduced matrix (35). These repeating
eigenvalues, when the weights of their eigenvectors become
dominant in the field solution, correspond to the physically im-
portant eigenvalues of the original system as analyzed in [13]
(the physically important eigenvalues are the eigenvalues of
, whose corresponding eigenvectors have a non-negligible

weight in the -field solution). Based on this fact, the aforemen-
tioned time-marching procedure for identifying stable modes
can be terminated when the following two criteria are satisfied.
First, the weights of the eigenmodes of corresponding

to the repeating eigenvalues become dominant as compared to
the weights of other eigenmodes based on accuracy criterion .
Denoting the eigenmodes of corresponding to the repeating
eigenvalues by , and the other eigenmodes by . Their
weights and can be determined from

(36)
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In arriving at the above equations, we utilize the fact that is
orthogonal and so are the eigenvectors of . The dominance
of the is assessed by

(37)

The second criterion is to examine whether the difference be-
tween the repeating eigenvalues identified at adjacent steps is
smaller than a prescribed error tolerance , which is written as

(38)

where denotes a repeating eigenvalue at the th step. The
smaller the and are, the better the accuracy. However, the
simulation will also take longer time. In general, the choice of

or is sufficient to produce a good level of accuracy
without sacrificing efficiency.
When both conditions, (37) and (38), are satisfied, a com-

plete and accurate set of physically important eigenmodes of the
original system is found from which we select the eigenvectors
of reduced matrix whose eigenvalues satisfy (16) to form

that is stable and accurate for the given time step.
can then be obtained from

(39)

where denotes the number of stable modes. The above is then
used in (33) and (34) to perform explicit time marching. No-
tice that we do not have to multiply and together
to construct , we only need the expression of (39) since
only matrix-vector multiplications are needed in (33) and (34).
The eigenvalues contained in the diagonal matrix in (33)
and (34) are also known from the repeating eigenvalues corre-
sponding to the stable modes identified in the aforementioned
procedure.

IV. COMPLEXITY AND ACCURACY ANALYSIS

A. Complexity Analysis

The overall procedure of the proposed method and the com-
plexity of each step are summarized as follows.
Step I: A preprocessing step to find the space of stable modes

for the given time step irrespective of its size, which is per-
formed based on the algorithm described in Section III-B.

(I-1): Perform the conventional explicit FDTD simulation
of (1) and march on in time by one step. The complexity is
linear , where is the total number of electric and
magnetic field unknowns.
(I-2): At selected time instants, the number of which is

, perform the following four subtasks.
(a) Add field solution vector as a column vector

in , and orthogonalize it with respect to the other
vectors in . The complexity is , which is
linear.

(b) Construct a reduced matrix shown in (35), the
complexity of which is . Notice that we only

need to compute the blocks associated with the newly
added column vector in since the other block in

is known from the computation at previous steps.
(c) Solve a reduced eigenvalue problem of size for

, the cost of which is negligible because of the
reduced matrix size.

(d) Check the weights of different eigenmodes in the field
solution from (36). The operation count is .
Examine whether (37) and (38) are satisfied. If not
satisfied, we go back to Step (I-1); if satisfied, we stop.
The space of stable modes, (39), is completed.

Step II: Explicit time marching stable for any given time step.
(II-1) Perform time marching in a reduced space of stable
modes. Compute unknown coefficient vectors and
from (33) and (34). The cost is if no artificial absorber
exists, where is the number of stable modes. If there is an
artificial absorber such as a PML, the computational com-
plexity is at each time, where is the number
of unknowns at the interface between the solution domain
and the artificial absorber, which is much smaller than .
The FDTD marching inside the artificial absorber is per-
formed as usual, the complexity of which is linear.
(II-2) After and are obtained at all time steps, the field
solution can be readily constructed from (29) at each time
instant since and are time independent. Same
as [13], if only selected solutions are needed, we can
select the rows to compute and , the cost is .

In summary, the linear complexity of the original explicit
FDTD at each time step without solving a matrix equation is
retained in the proposed method, while the shortcoming of the
conventional FDTD in stability is overcome.

B. Accuracy Analysis

If the time step is chosen based on accuracy, the space of
stable eigenmodes, , for the given time step is also the
accurate space to represent the field solution at any time instant.
In other words, (29) is an accurate representation of the electric
and magnetic fields. To explain, from (18), field solution at
any frequency for an arbitrary source can be written as [13]

(40)

where is the diagonal matrix composed of the eigenvalues
of , and eigenvector matrix is split into two groups,
stable modes whose eigenvalues satisfy (16), and un-
stable ones whose eigenvalues violate (16). It is
evident from (40) that the weight of each eigenmode in field so-
lution is proportional to . The larger the eigenvalue
as compared to , the smaller the contribution of its corre-
sponding eigenvector to the field solution. Therefore, given an
input spectrum and a required accuracy, there is a maximum
to be kept in the field solution, the corresponding frequency of
which is denoted by . Eigenmodes whose eigenvalues are
greater than such a maximum value can be removed without
sacrificing the prescribed accuracy since their weights in the
field solution are negligible. When the time step is chosen
based on accuracy, the eigenvalues of the unstable modes are
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beyond the maximum frequency required by accuracy, as can
be seen from (22). Hence, the unstable component in (40) can
be eliminated without sacrificing the required accuracy, leaving
the stable modes an accurate space to represent field
solutions at any frequency and any time.

V. NUMERICAL RESULTS

We first demonstrate the unconditional stability of the pro-
posed method. We then simulate a number of 2-D and 3-D ex-
amples in both open- and closed-region settings to examine the
accuracy, efficiency, and stability of the proposed method in
comparison with the traditional explicit FDTD method.

A. Demonstration of Unconditional Stability

We simulate a 3-D parallel-plate structure whose analytical
solution is known. The material is air in between the plates. The
structure has a 1- m height (along ), 6- mwidth (along ), and
900- m length (along ). The space step is 0.333, 0.85417, and
90 m, respectively, along the - -, and -direction. A vertical
current source is injected at the near end of the parallel-plate
structure from the bottom plate to top plate. The voltage wave-
forms are sampled at both near and far ends. The computa-
tional domain is truncated by a perfect electric conductor (PEC)
boundary condition at the bottom and on the top, and by perfect
magnetic conductor (PMC) boundary condition elsewhere. The
waveform of the current source is a Gaussian derivative pulse of

with s and . Due
to the small space step of the structure, the traditional FDTD
must use a time step as small as 1.0363 10 s in order to
maintain the stability of time-domain simulation. In contrast,
for the same space step, the proposed method can use an arbi-
trarily large time step without becoming unstable. For example,
to use , we only need to keep zero-eigenvalue modes
in (29) while discarding others. The voltages generated from
the proposed method with a time step of 0.001, 0.01, and 0.1 s
are, respectively, shown in Fig. 1, while with the same time step,
the conventional FDTD simply diverges. In addition, the results
generatedwith a time step of 0.01 and 0.001 s are not only stable,
but also accurate since the time step of 0.01 and 0.001 s satisfies
accuracy requirements for the given input spectrum. This can be
clearly seen from the excellent agreement between the solutions
generated from the proposed method and analytical solution, as
shown in Fig. 1. Thus, with a time step 10 times larger than
that permitted by the CFL condition, the proposed method still
generates both stable and accurate results.

B. Demonstration of Accuracy, Efficiency, and Stability

1) 2-D Dielectric Cylinder Scattering: A 2-D dielectric
cylinder comparable to wavelength with a fine notch, as shown
in Fig. 2(a), is simulated in the presence of a line current
source. The current source is placed at the center of a solu-
tion domain of dimension 2.1 mm 2.1 mm, the waveform
of which is with

s, s, and GHz.
The solution domain is truncated by a PML region, which has
five grid cells all around the solution domain with a uniform
cell size of 71.43 m. The width and height of the dielectric
notch are both 3.57 m, and the side length of the square

Fig. 1. Voltages of an m-level 3-D structure simulated with different time
steps in comparison with an analytical solution.

Fig. 2. Simulation of a 2-D dielectric cylinder with a fine feature in the pres-
ence of a current source. (a) Problem setup ( mm).
(b) Electric field solution.

cylinder is 357.15 m. To capture the fine feature of the notch,
a non-uniform grid is used, with the smallest grid size being
3.57 m and the largest one being 71.43 m. The region of
the dielectric cylinder and the notch is occupied by a material
having and .
The electric field sampled at the center of the right-most

boundary is plotted in Fig. 2(b) and compared with the result
from a conventional FDTD method. We observe excellent
agreement. In addition to correlating results at randomly se-
lected points, we have also assessed the entire solution error of
the proposed method by evaluating , where
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vector contains all the unknown electric and magnetic fields
in the solution domain computed from the proposed method,
whereas is the reference solution obtained from (33) and
(34) with all eigenmodes of included and computed directly
from the ’s eigenvalue solution. The maximum error of the
proposed method at all time is shown to be 0.88%, verifying
the accuracy of the proposed method.
To simulate this example, the time step for a conventional

FDTD simulation is 2.671 10 s. In contrast, the proposed
method is able to use a time step of 1.3065 10 s solely
determined by accuracy to perform the time-domain simula-
tion. The total CPU time cost by a traditional FDTD is 7068.5
s, whereas the time of the proposed method is 217.8 s including
the CPU time of both the preprocessing and the unconditionally
stable time marching. Among the 217.8 s, the time cost by
the traditional FDTD marching in the pre-processing step is
204.3567 s [the cumulative time of Step (I-1)], the time cost by
the identification of physically important eigenmodes including
the computation of the small eigenvalue problem is 0.2135 s
[the cumulative time of Step (I-2)], and the time cost in the
explicit time-marching in Step II is 13.2392 s. Comparing the
204.3567 s cost by the proposed method in Step (I-1) with the
total 7068.5 s cost by the traditional FDTD, it is evident that
only a small time window needs to be simulated to identify all
the physically important eigenmodes. The and chosen in
the proposed method are 10 , and 10 , respectively; and the
number of steps to collect FDTD solutions, , is five. Twenty
physically important eigenmodes have been identified from the
preprocessing procedure, whose square roots of eigenvalues
are , , , ,

, , , ,
, , , ,
, , , ,
, , , and ,

respectively. Notice that any nonzero eigenvalue of corre-
sponds to a full-wave field distribution since the corresponding
eigenvector does not satisfy curl equal to zero since
is not zero.
We then shrink the size of the dielectric notch to 35.7 nm.

The proposed method takes 1.3252 10 s to finish the entire
simulation while the conventional FDTD costs 1.067 10 s,
yielding a speedup of more than 805. The time step of the pro-
posed method is 1.3065 10 s, whereas that of the tradi-
tional FDTD is 1.899 10 s. The difference between the
entire solution computed from the proposed method and that of
the conventional FDTD is assessed by
at all time, the maximum of which is shown to be less than 1.4%.
The 2-norm is used to compute the vector norm.
2) Dipole Antenna Radiation in 3-D Free Space: The second

example is the radiation of a dipole antenna in 3-D free space.
The dipole of length 300 m is placed at the center of a solution
domain of dimension 900 m 600 m 300 m. The source
waveform is a fast Gaussian derivative pulse with
s, and s. The solution domain is truncated
by a PML region that has 20 grid cells all around the solution
domain with a uniform cell size of 100, 85.714, and 60 m in
- and -direction, respectively. The electric field sampled
at the center of the right-most boundary is plotted in Fig. 3 and

Fig. 3. Simulation of the radiation of a dipole in 3-D free space.

compared with the result from a conventional FDTD method,
which reveals an excellent agreement. Such an agreement is not
only observed at randomly selected points, but also in the entire
solution vector. The maximum difference between the proposed
solution and the conventional FDTD solution, measured by

at all time, is shown to be less than 0.43%.
The time step is 1.4714 10 s to maintain the stability of
a conventional FDTD simulation. Since there is no fine feature
involved in this example, the space step is chosen solely based
on accuracy, thus the time step required by accuracy is also at the
level of 1.4714 10 s. In this example, since the problem
size is small, we directly compute the eigensolution of the
matrix to build the space of stable modes. The total time cost by
a traditional FDTD is 294 s, whereas the time of the proposed
method is 254 s, although the same time step is used. This is due
to the reduced system size in the step of unconditionally stable
explicit marching, where the solution is found in a reduced space
of stable modes.
3) 3-D Parallel-Plate Waveguide: The third example is the

3-D parallel-plate structure simulated in Section V-A, but with
a fast Gaussian derivative pulse having a maximum input fre-
quency of 34 GHz, at which the spectrum decays to 10 of its
maximum value. To simulate this example, a conventional ex-
plicit FDTD method requires a time step as small as 1.0363
10 s to maintain the stability of the time-domain simula-
tion because the smallest space step is 0.33 m. In contrast,
the proposed explicit method is able to use a large time step of
1.1928 10 s based on accuracy to generate accurate and
stable results. As shown in Fig. 4, the voltage waveforms simu-
lated by the proposed method agree very well with those gener-
ated by the conventional explicit FDTD. This agreement is not
only observed at selected points, but also in the entire solution
vector. The maximum difference between the proposed solu-
tion and the conventional FDTD solution, measured by

at all time, is shown to be less than 1.37%.
It is worth mentioning that this does not mean the proposed
method is less accurate than the conventional FDTD by 1.37%.
This only shows that the two methods are different by 1.37%.
To clarify, we have compared both the proposed method with
the “golden reference” that is obtained by solving the eigen-
value problem of as it is and march on in time with (33) and
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Fig. 4. Simulation of a 3-D parallel plate structure.

(34) using all eigenvectors of without any removal. Since the
space dependence of the field solution in this approach is ob-
tained without time marching and approximation, its accuracy
in space dependence is not degraded by time stepping. Let this
solution be , we find to be 0.65%, while

is 0.76%.
Since the problem size is small, the full eigensolution of the
matrix is computed to build the space of stable modes. The

total time required by the proposed method is approximately
11 s. Compared with 12419.7109 s required by the conventional
explicit FDTD, the proposed method has a speedup of 1164.
The and chosen in the proposed method are 10 , and
10 , respectively. The solutions are sampled every 50 steps
in the preprocessing. Two physically important eigenmodes are
identified from the preprocessing procedure, whose square roots
of eigenvalues are zero, and , respectively.
4) 3-D On-Chip Bus Structure: The fourth example is an

on-chip 3-D bus structure, as shown in Fig. 5(a). The width of
each bus is 3 m and so is the spacing between buses. The buses
are in the stack of four dielectric layers. The structure is excited
with two current sources, one is from bus 1 to bus 2 and the other
is from bus 3 to bus 2. The type of current sources is the same as
that in Section V-B.3). The number of cells along the -direction
is ten, along the -direction is eight, and along the -direction is
five. Thus, the space step along the -direction is 50 m, along
the -direction is 1.875 m, and along the -direction is 0.3 m.
The and chosen in the proposed method are 10 , and
10 , respectively. The solutions are sampled every 50 steps in
the preprocessing. Seven physically important eigenmodes are
identified from the preprocessing procedure, whose square roots
of eigenvalues are 0.0, , , ,

, , and , respectively.
In the conventional FDTD, the time step, constrained by the

smallest space step, is 9.9355 10 s. In contrast, the time
step in the proposed method solely determined by accuracy re-
gardless of space step is 5.3928 10 s. For this time step,
the total CPU time of the proposed method is 261.2 s, whereas
the total time of the conventional FDTD is 11951.1 s, yielding

Fig. 5. Simulation of a 3-D on-chip bus structure. (a) Structure. (b) Voltage
waveforms.

a speedup of approximate 47. In the total time cost by the pro-
posed method, the time cost by the traditional FDTD marching
in the preprocessing step is 255.9 s (the cumulative time of Step
(I-1) in the preprocessing step), the cumulative time of Step
(I-2) in the preprocessing step is 0.5057 s, and the time cost
in the explicit time-marching in Step II is 4.8 s. In Fig. 5(b),
the voltages sampled at the far end between bus 1 and bus 2,
bus 2 and bus 3, and bus 1 and bus 3 obtained from the pro-
posed method are compared with those obtained from the con-
ventional FDTDmethod. The maximum difference between the
proposed solution and the conventional FDTD solution, mea-
sured by containing all field solutions
at all time, is shown to be less than 2.6%. We have also cor-
related both the proposed method and the conventional FDTD
with the “golden reference” solution . The
is found to be 0.75%, whereas is 2.1%.
5) Large-Scale Example: Phantom Head Beside a Wire

Antenna: With the accuracy and efficiency of the proposed
method validated, we applied the method to a large-scale
phantom head example [17] with over 48 million unknowns,
which cannot be simulated by the conventional FDTD in a
feasible run time due to the existence of fine tissues relative
to the working wavelength, whose corresponding frequency
is 1.8 GHz. The maximum dielectric constant is 67.636, and
the average one is 9.9. The dimension of the phantom head
is 28.16 cm 28.16 cm 17.92 cm, whose largest size is
over five wavelengths. The number of discretization cells in
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Fig. 6. Simulation of a phantom head beside a wire antenna. (a) and (b) Relative permittivity in a cross section at a height of 11.2 and 5.6 cm. (c)–(e) Electric
field distribution at three different time instants in a cross section at a height of 11.2 cm.

the solution domain is 255 255 127, while the number of
cells used in the PML is 20 in each direction. Thus, the total
number of cells is 295 295 167. The smallest space step
in the - -, and -direction are, respectively, 0.011, 1.1, and
1.4 mm. The input current source has a waveform of Gaussian
derivative, located at = 14.52 cm and cm. To
maintain stability, the traditional FDTD requires a time step
of 7.3378 10 s. The proposed method is able to use a
time step of 4.5360 10 s solely determined by accuracy
regardless of space step. Fifteen stable modes are identified
from the preprocessing procedure with the choice of ,

, and , the smallest six eigenvalues
of which are, respectively, 0, , ,

, , and . The total
CPU time cost by the traditional FDTD is 3.3779e5 s (projected
based on the time cost at each step), whereas the total CPU
time of the proposed method including both preprocessing and
explicit time marching is only 8858 s, thus a speedup of 38.
In the total time cost by the proposed method, the time cost
by the traditional FDTD marching in the pre-processing step
is 7663.2 s [the cumulative time of Step (I-1)], the cumulative
time of Step (I-2) is 0.0216 s for computing a small eigenvalue
problem and identifying physically important eigenmodes, and
the time cost in Step II is 1194.8 s for explicit time marching.
The total number of time steps simulated in the preprocessing
step is 3538, rendering a small time window of s.
The relative permittivity distribution is shown in Fig. 6(a), and
(b), respectively, at the height of 11.2 and 5.6 cm. The contour
plots of the -component electric field at three different time
instants in a cross section at a height of 11.2 cm are shown in
Fig. 6(c)–(e).
All of the aforementioned examples have been simulated to

very late time, no late-time instability has been observed, which
is theoretically guaranteed by the proposed method since the

numerical system has already been transformed to a new one
that is stable for the given time step regardless of how large the
time step is.
6) Problems Without Fine Features Relative to Working

Wavelength: In the previous examples, some structures are
sizable compared to wavelength such as the last 3-D phantom
head example and the 2-D dielectric scattering example in
Section V-B.1), while others are electrically small. However,
all these structures involve fine features relative to the working
wavelength. It is also understood that only in these structures
there exists a gap between the time step required by accuracy
and the time step determined by stability, and hence there is
a need for increasing the time step. In this section, to further
examine whether the performance of the proposed method
relies on fine features or not, we simulate a cavity problem of
five wavelengths without any spatially over-resolved features.
The cavity is of dimension 43.2 mm 34.4 mm 8.8 mm.

The cell size along each of - -, and -directions is 0.1 wave-
length (0.88235 mm). A -orientated current dipole of one cell
size is located at the center of the PEC cavity. Since there are
no fine features relative to working wavelength in this structure,
the time step for conventional FDTD and that for the proposed
method is both 1.6993 10 s, which is the same as the time
step required by accuracy. The waveform of the current pulse
is , where is twice that of
the time step. The simulation parameters in the preprocessing
step are chosen as and . The
total number of physically important eigenmodes identified in
the preprocessing step is 259.
The CPU time of the conventional FDTD is 2465.9 s, whereas

the total CPU time of the proposed method is 826 s, yielding a
speedup of approximately 3. Among the 826 s, the cumulative
time of Step (I-1) is 796.3638 s; the cumulative time of Step
(I-2) is 4.558 s; while the time cost in the explicit marching in the
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Fig. 7. Simulation of a five-wavelength 3-D cavity without fine features.
(a) Comparison with reference solution generated by traditional FDTD at one
observation point. (b) Comparison at all points and all time with error evaluated
by .

second step is 25.1393 s. It is evident that even though the struc-
ture does not involve spatially over-resolved features, the pro-
posed method has a speedup over the traditional FDTDmethod.
A detailed theoretical analysis will be given in Section V.
The time-domain waveform sampled at a point (42.4, 16.8,

and 4.4 mm) is shown in Fig. 7(a) as compared to the result
from the conventional FDTD. Excellent agreement is observed.
We have also evaluated the total solution error at all time and
all points in comparison with the FDTD results by computing

. In Fig. 7(b), we plot such an error
versus time. The average error across the whole time window is
shown to be .

VI. DISCUSSIONS

In this section, we discuss a few important issues relating to
the computational efficiency of the proposed method and the
terminology used to describe the proposed method.
1) On the Number of Stable Eigenmodes: The set of the

stable eigenmodes for the time step chosen based on accuracy
is the set of physically important eigenmodes. These modes are
defined as the eigenmodes that cannot be neglected in the field
solution for a prescribed accuracy. In [21] and [22], it is shown
that the number of physically important eigenmodes required to

represent the solution of electrodynamicMaxwell’s equations in
a general 3-D problem, for any prescribed accuracy and at any
frequency, scales linearly with the electric size of the problem.
In the volume-discretization-based FDTD, the number of un-
knowns scales cubically with the electric size of the problem
since each wavelength is discretized into a constant number of
points such as ten or others, and there are three dimensions to
discretize. Therefore, the number of important eigenmodes ,
the upper bound of which is for any frequency, is al-
ways much smaller than the unknown size . For electrically
small problems, the is even a constant irrespective of for
achieving any desired order of accuracy.
In addition to the fact that is orders of magnitude smaller

than , these modes can also be extracted band by band in
the proposed method. For example, if we encounter a broad fre-
quency band where many eigenmodes are important, we can
divide this band into multiple small bands, launch a pulse for
each sub-band, and extract the fewmodes in each sub-band. The
union of the eigenmodes in each sub-band is the set of the eigen-
modes important for the whole frequency band.
In addition, we do not need to store these eigenmodes as

a whole either. Once a set of eigenmodes is found for each
sub-band, their contributions to the field solution can already be
found by performing Step II in the proposed method. The final
field solution is simply the addition of the contribution from
each eigenmode. By doing so, the memory we need is just the
memory required to store the eigenmodes in each sub-band.
It is also worth mentioning that the stable modes found in this

work are frequency and time independent. The non-dc stable
modes are also right-hand-side independent. Once found, they
can be reused for all simulations. In other words, the prepro-
cessing step in the proposed method can be done once for all
simulations.
2) On the Model-Order Reduction (MOR): Although the

objective of this paper is to find the root cause of instability,
and subsequently remove this root cause in an explicit FDTD
method, since the number of stable eigenmodes is smaller
than the original system size, as an added bonus, the proposed
method also effectively reduces the system order. However,
this does not mean a MOR technique alone can solve the
stability problem. With a MOR technique, one can solve a
reduced-order system to find the solution of the original large
problem. However, the stability problem still exists in the
reduced order system.
In addition, from the perspective of the MOR, the proposed

method is different from existing MORmethods, and offers fea-
tures that are generally not available in other methods. It gener-
ates a minimal-order model [25] required by accuracy; it has a
closed-form error bound; the model generation has linear (op-
timal) complexity (the algorithm of the proposed preprocessing
step has linear complexity); and the resultant model-based sim-
ulation has a diagonal system.
3) On the Speedup of the Proposed Method: In general, the

optimal speedup of an unconditionally stable method over a
conditionally stable method without sacrificing accuracy is the
ratio of the time step allowed by accuracy and that per-
mitted by stability . This ratio is the same as the ratio of the
space step allowed by accuracy and the actual space step used
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in order to capture the fine features relative to working wave-
length. If the structure does not involve fine features relative to
the working wavelength, then the time step required by stability
agrees with that required by accuracy, and then there is no need
to enlarge the time step of the FDTDmethod since that time step
is the one needed for accuracy.
In the proposed method, we simulate a time window of width

“ ” to extract the physically important eigenmodes from the en-
tire structure information contained in and the FDTD solu-
tions. Let the total time window to be simulated in the FDTD be
. The speedup of the proposed method is essentially bounded
by since after extracting all the physically important eigen-
modes and subsequently stable modes for the given time step
in the pre-processing step, the explicit FDTD marching is per-
formed on a reduced fully decoupled diagonal system of the
stable modes, the time cost of which is negligible as compared
to the preprocessing step. Therefore, different from the implicit
unconditionally stable methods, the speedup of the proposed
method over the traditional FDTD does not have to rely on the
spatially resolved features. This has also been numerically ver-
ified in the last example in Section V. Certainly, if there are fine
features, the speedup over the traditional FDTD can be greater
than that without fine features. In addition, by minimizing “ ,”
we can even achieve a more than optimal speedup, as shown in
[23].
Numerically, the length of is adaptively determined

through the error control parameters in the proposed pre-
processing step instead of artificially assumed. Theoretically
speaking, the length of is shorter than , i.e., the time we
need to simulate to extract the complete set of physically
important eigenmodes from is always smaller than the time
required to finish the entire FDTD simulation regardless of the
structure size for the following reason.
As can be seen from (40), which reveals the weight of each

eigenmode in the field solution as , the contributions
to the field solution at a given frequency are dominated by eigen-
modes whose eigenvalues are closer to the given frequency. In a
time-marching process, the early time response is dominated by
the high-frequency components. Therefore, higher order eigen-
modes are identified earlier than the low-order modes. Once
the lowest physically important eigenvalue is found, our pre-
processing step can be terminated since at this time, all the
eigenvalues larger than the lowest one should have already been
extracted. Therefore, the time window “ ” to simulate in the
preprocessing step is determined by how soon we can identify
the smallest eigenvalue of physical importance. For electrically
small problems, the smallest eigenvalue to extract is zero, i.e., dc
eigenvalue; for electrically large cases, the smallest eigenvalue
to extract is the first nonzero eigenvalue , whose square root
is proportional to , where denotes the largest
problem dimension, and is the speed of light. Since the weight
of each eigenmode in the field solution is proportional to

, the contribution of a mode whose eigenvalue is can
already be seen at frequencies higher than . Therefore,
the time “ ” we have to simulate can be estimated to be propor-
tional to , where is the highest frequency where the con-
tribution of the mode is not negligible, and hence can be
detected. Since is no less than ,

while is and is larger than , we have
smaller than . Similar analysis can be done for the electrically
small cases.
It is also worth mentioning that the proposed algorithm does

not rely on the FDTD marching to traverse the entire structure
to sense the structure since the entire structure information is
known from space discretization and contained in . In the
proposed algorithm, we extract eigenmodes not just from field
solutions, but from both and field solutions. The solutions
we collect in are simply used to test the physically impor-
tant eigenmodes out from the matrix. As long as has
a nonzero projection on the physically important eigenmodes,
these modes can be found from . This property of the pro-
posed method can be leveraged to further accelerate the pro-
posed method.
In the future, we will continue to study how to further speed

up the proposed method. Other options to remove the root cause
of instability in an explicit time-domain method will also be
explored. Recently, this work has also been extended to analyze
general lossy electromagnetic problems in [24].
4) On the New Term of “Explicit and Unconditionally Stable

Method”: The existing implicit unconditionally stable methods
use a time integration method to remove the dependence of the
time step on space step; while the proposed method is very dif-
ferent. It certainly does not belong to the class of commonly un-
derstood unconditionally stable methods. However, the method
presented here also removes the dependence of time step on
space step, which is accomplished by adapting the eigenmodes
of the system matrix to remove the root cause of instability.
If the time step required by accuracy is infinity, the proposed
method also allows one to use an infinitely large time step to per-
form a stable and accurate time-domain simulation. In addition,
every spatial Fourier mode contained in a stable eigenmode is
stably simulated. From these perspectives, the proposed method
has the same features as an unconditionally stable method. It is
hoped that this work can help enrich the literature and broaden
the definition of the unconditionally stable methods.

VII. CONCLUSION

In this paper, the root cause of the instability associated with
an explicit FDTD method using a time step beyond stability
criterion has been analyzed. Based on the root cause analysis,
an explicit and unconditionally stable FDTD method has been
developed. The strength of the conventional explicit FDTD is
retained in avoiding solving matrix equations while its short-
coming is overcome in the time step’s dependence on space
step. Hence, the proposed work helps remove a major computa-
tional bottleneck associated with the explicit FDTD simulation.
The comparison with the conventional explicit FDTD method
in both 2-D and 3-D simulations have demonstrated the clear
advantage of the proposed explicit and unconditionally stable
FDTD method in accuracy, efficiency, and stability. Important
issues relating to the computational efficiency and the nature of
the proposed method have also been discussed. The general idea
of the proposed method can be applied to other time-domain
methods that solve first-order Maxwell’s equations in time.
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