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Abstract—In this paper, fast algorithms are proposed for an effi-
cient reduction of a 3-D layered system matrix to a 2-D layered one
in the framework of the frequency-domain layered finite element
method. These algorithms include: 1) an effective preconditioner
� that can converge the iterative solution of the volume-un-
known-based matrix equation in a few iterations; 2) a fast direct
computation of � � in linear complexity in both CPU run time
and memory consumption; and 3) a fast evaluation of � � in
linear complexity, with being an arbitrary vector. With these fast
algorithms, the volume-unknown-based matrix equation is solved
in linear complexity with a small constant in front of the number
of unknowns, and hence significantly reducing the complexity of
the 3-D to 2-D reduction. The algorithms are rigorous without
making any approximation. They apply to any arbitrarily-shaped
multilayer structure. Numerical and experimental results are
shown to demonstrate the accuracy and efficiency of the proposed
algorithms.

Index Terms—Electromagnetic modeling, finite element method,
frequency domain, large-scale, on-chip.

I. INTRODUCTION

A S IC DESIGN SCALES into the deep submicron
regime (and the nanometer regime), electromagnetics

(EM)-based analysis has increasingly become essential for four
major reasons.

1) Reduced feature sizes: at the 45 nm processing technology
node and beyond, the IC industry will have to print fea-
tures that are several times less than the wavelength of light
(193 nm) being used in optical lithography. In this regime,
light has to be modeled as a wave rather than a ray approx-
imation.

2) Increased clock frequency: as it is necessary to analyze the
signal response with harmonics five times the clock fre-
quency, static RLC-based simulations are no longer ade-
quate.
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3) The transition from single core to multicore: active power
management of multicore processors requires EM analysis
of the global power supply network in order to accurately
model current variations and transient power drops and
ground bounces.

4) Increased level of integration: integrating RF, analog, and
digital circuitry on a same chip leads often to undesirable
coupling and sometimes to system failure. For high-fre-
quency mixed-signal design, an electromagnetic solution
is required to overcome the fundamental limits of circuit-
based solutions.

In recent years, researchers in both circuits and fields have
initiated the development of innovative computational EM tech-
niques for on-chip problems [1]–[12]. In [4]and [5], a layered
finite element method (LFEM) was developed for electromag-
netic analysis of large-scale high-frequency integrated circuits.
In this method, the integrated circuit is discretized into many
layers by using triangular prism elements, with the prism axis
being the layer-growth direction. The vector prism basis func-
tions are used to expand the unknown electric field. After dis-
cretization, the system matrix of the original 3-D problem is re-
duced to that of 2-D layers. The system matrix of 2-D layers
is then reduced to that of a single layer. The cost of reduction
scales linearly with single-layer computational complexity. The
entire numerical procedure is rigorous without making any ap-
proximation. In a realistic on-chip structure, one can encounter
a large number of layers when choosing the layer-growth di-
rection, i.e., slicing the structure, along either - or -direction,
assuming is the dielectric stack-growth direction. (Note that
in current processing technology of integrated circuits, the di-
electric stack is grown layer by layer.) Hence, the number of
single-layer unknowns is generally much less than that of total
unknowns. For example, the former is 2270 while the latter
is 3.04 million in a test-chip interconnect [16] we have mea-
sured before. Therefore, the LFEM method is capable of han-
dling large-scale multilayer structures. Designers can deal with
a much smaller system produced by the LFEM to perform de-
sign optimization. Although the reduction has certain cost, the
cost can be amortized over many design iterations.

To further improve the efficiency of the LFEM method, fast
reduction algorithms are proposed here to efficiently reduce the
system matrix of the original 3-D problem to that of 2-D layers.
The volume-unknown-based matrix is first structured to be a
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block tridiagonal matrix. This reduces the complexity of the 3-D
to 2-D reduction from to , with being the
number of volume unknowns in a single layer (this notation is
used throughout this paper). The complexity of is fur-
ther reduced to by developing a number of fast algo-
rithms. These algorithms include: 1) an effective preconditioner

that can converge the iterative solution of the volume-un-
known-based matrix equation in a few iterations; 2) a fast direct
computation of in linear complexity in both CPU run time
and memory consumption; and 3) a fast evaluation of in
linear complexity, with being an arbitrary vector. With these
fast algorithms, the volume-unknown-based matrix equation is
solved in linear complexity. In addition, the constant in front of
the number of unknowns is small (less than 25). The accuracy
and efficiency of the proposed fast reduction algorithms have
been demonstrated by numerical results and measurements.

The remainder of this paper is organized as follows. In Sec-
tion II, the LFEM method is briefly reviewed. In Section III, the
proposed fast reduction algorithms are presented. In Section IV,
numerical and experimental results are given to demonstrate the
accuracy and efficiency of the proposed algorithms. Section V
relates to our conclusions.

II. BRIEF REVIEW OF THE LFEM METHOD

Consider 3-D integrated circuit problems. The circuit can be
a global on-chip interconnect network, a package, and a mixed-
signal IC. Generally, these circuits are multilayer structures.
They are embedded in a multilayer dielectric medium backed
by silicon, GaAs, InP or other substrates. A Manhattan-type
on-chip circuit is even layered in any of the -, -, and -di-
rections. Inside these circuits, the electric field satisfies the
second-order vector wave equation

(1)

subject to certain boundary conditions. In (1), is the rela-
tive permeability; denotes a complex permittivity that com-
prises both permittivity and conductivity; and are free-
space wave number and impedance, respectively; is the cur-
rent source; is the computational domain that encloses the cir-
cuit. To solve (1), a numerical algorithm is formulated to obtain
the field or field inside the computational domain, from
which the design parameters of interest are obtained. Due to the
computational complexity of on-chip circuit problems, the re-
sultant numerical system is generally large even for a small cir-
cuitry.

To overcome the large problem size, in [4], [5], a layered fi-
nite element method was developed. This method consists of a
number of steps. The first step is to reduce a 3-D layered system
matrix to a 2-D layered one. This is equivalent to eliminating all
the volume unknowns (unknowns that are along layer-growth
direction). For instance, the volumetric unknowns in layer 1,
which are , can be eliminated by using the procedure illus-
trated in Fig. 1, where and are the surface unknowns
on the top and bottom surfaces of layer 1. In Fig. 1, matrices ,

, , , , and are formed by the vector basis functions as-
sociated with corresponding unknowns. For example, matrix
is formed by the bases associated with upper surface unknowns,

is formed by the bases relating to volume unknowns, and

Fig. 1. Illustration of eliminating volume unknowns.

is formed between the bases pertaining to the upper surface un-
knowns and volume ones. These matrices are assembled from
their elemental contributions as follows:

(2)

in which is the edge basis function ([17], pp. 234–237), is
the node basis function [17, pp. 80], denotes the support of a
triangular element, and is the height of a prism element, which
is the layer thickness.

As shown in [4], [5], the reduced matrices can be obtained
from the original matrices as follows:

(3)

Due to the matrix properties such as and
[4], [5], (3) can be evaluated as

(4)

Therefore, the major computation task of the reduction be-
comes the evaluation of . Since is sparse, in [4],
[5], is evaluated as follows.

Step 1) An LU factorization of is performed by using
an advanced sparse solver such as a multifrontal
method [13].

Step 2) is calculated by forward and backward
substitution.

Step 3) is obtained.
The above procedure is referred to as direct reduction in this

sequel. It can be expensive when the dimension of is large.
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The computational cost of Step 1 is in CPU and
in memory. The cost of Step 2 is in CPU run time and

in memory since there exist columns in .
The cost of Step 3 is in CPU run time and memory
(note that is sparse). As a result, the total cost of evaluating

, and hence the cost of reducing a 3-D layered system
matrix to a 2-D layered one is dominated by Step 2 and Step
1, which is in CPU run time. This is expensive when

is large. In the next section, fast reduction algorithms are
proposed to reduce the computational cost by times. In
these algorithms, is first structured to be block-tridiagonal.
The cost of LU factorization is hence brought down to
from , and the cost of backward and forward substitution
is brought down to from . Then a number of
fast algorithms are developed to bring the complexity further
down to .

III. FAST REDUCTION ALGORITHMS

The key to evaluate efficiently is to solve the fol-
lowing matrix equation efficiently:

(5)

in which is one of the column vectors of . Here, a precon-
ditioned system

(6)

is solved iteratively to obtain . It is well known that to solve (6)
efficiently, three requirements need to be satisfied. First, the pre-
conditioner must be effective so that the number of iterations
can be minimized in a solution process. Second, it should be
computationally inexpensive to obtain the inverse or the factor-
ization of . And third, it should be computationally inexpen-
sive to obtain , with being an arbitrary vector. The pro-
posed fast reduction algorithms fulfill all the three requirements.
With them, (6) is solved with a linear complexity, which is the
optimal complexity one can hope for to solve (6), and hence (5).
In addition, the constant multiplier in front of the number of un-
knowns is very small.

The fast reduction algorithms encompass five components: 1)
a structuring of matrix , 2) an effective preconditioner , 3)
an iterative solution of (6) and a proof of its convergence, 4) a
fast direct computation of in linear complexity, and 5) a
fast evaluation of in linear complexity, each of which is
elaborated in the following subsections respectively.

A. A Structuring of Matrix B

Matrix is structured to be a block tridiagonal matrix. To
ease the explanation of the structuring of , we give an ex-
ample of a typical on-chip structure in Fig. 2(a). As shown
in this figure, the dielectric stack is grown vertically layer by
layer along . This direction is called as stack-growth direction
in this paper. In the LFEM, one can choose the layer-growth
(prism-axis) direction the same as the stack-growth direction,
i.e., -direction in the specific example shown in Fig. 2(a), or
different from the stack-growth direction. Here, without loss of
generality, we choose -direction as the layer-growth direction,

i.e., the direction to grow the layers of prism elements. Then, the
volume unknowns are assigned along direction. Recall that
matrix is formed between volume unknowns in each layer.
Fig. 2(b) depicts an cross-sectional view of these volume
unknowns, in which each dot denotes a volume unknown. If the
unknowns are ordered from line 1 to line 2 to line 3, and to line

, a matrix having a pattern shown in Fig. 2(c) will be gen-
erated. It is a block tridiagonal matrix. More important, each
diagonal block is a tridiagonal matrix. The off-diagonal blocks
are very sparse. For example, for the mesh shown in Fig. 2(b),
each row has only two nonzero elements (or even less), one is
the diagonal one, and the other is the super- or sub-diagonal one.

The lines 1, 2, 3, , and in the mesh shown in Fig. 2(b)
are used to form a block-tridiagonal matrix. Apparently, these
lines impose an additional constraint on the meshing. However,
in a realistic on-chip circuit, these lines do exist physically,
which are the material interfaces between the conducting region
and the dielectric region as can be seen from Fig. 2(a). Because
of a large number of conductors present in an on-chip circuit
(these conductors are used to connect millions of transistors),
there exist many of these lines. Even one does not introduce
these lines into the mesh, these lines exist, along which the mesh
must be partitioned.

B. An Effective Preconditioner P

is split as the following:

(7)

with being the block diagonal matrix, the strict lower
triangular part, and the strict upper triangular part. The ma-
trix patterns of , , and are shown in Fig. 2(d). and
are sparse matrices. For the mesh shown in Fig. 2(b), and
are bidiagonal matrices.

The matrix serves as an effective preconditioner of . It
was shown by numerical experiments that with , the iterative
process of solving (5) converges in two iterations for realistic
on-chip examples we have tested.

C. Iterative Solution and A Proof of Its Convergence

By using as the preconditioner, (5) is solved iteratively as

(8)

with denoting the iteration number. When (8) converges,
, and hence . From

(7), it can be seen that is the solution of . The
following proof demonstrates that the iteration in (8) converges
for any right-hand side and any initial vector .

Define a sequence of iterates of the form

(9)

in which is a square matrix. It is known that if the spectral
radius of , denoted by , is less than 1, then is
nonsingular and the iteration in (9) converges for any and
[14].

From (8), it can be seen that in our iteration scheme is

(10)
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Fig. 2. (a) Example of on-chip structures; (b) mesh and ordering; (c) matrix pattern for (b); and (d) the splitting of (b).

Denoting the eigenvalues of by , we have

(11)

in which denotes the eigenvector. From (10) and (11), we ob-
tain

(12)

Taking a norm on both sides of (12), we obtain

(13)

in which denotes the norm of . Without loss of gener-
ality, the 1-norm of a vector is used, which is

(14)

in which is the length of vector . If is less than
, then the modulus of is less than 1, then , and

then the convergence of (8) is proved.

Matrices and are the off-diagonal blocks of , and is
the diagonal block. As can be seen from (2), the matrix elements
of can be written as

(15)

in which

(16)

where

(17)

and

(18)

In (17) and (18), is the area of a triangular element, (
, 2, 3) is the length of edge that is opposite to node in the
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Fig. 3. Illustration of an arbitrary node m and its connection with other nodes.

triangular element, and is the angle formed between edge
and edge .
It is known that the frequency band of on-chip circuits is from

DC to tens of gigahertz. The typical geometrical dimension of
on-chip circuits is at 1 level. This makes the first part in the
square bracket in (16) negligible when compared to the second
part. For example, consider 50 GHz and 0.1 mesh size

(19)

In contrast, the second part in (16), which is
, is an (1) quantity as can be seen

from (18). Hence,

(20)

which can be denoted by

(21)

in which

(22)

With the matrix elements of known, and
can be derived. Since is tridiagonal and symmetric,
can be written as

(23)
Consider an arbitrary volume unknown denoted by node in
Fig. 3, which is a more detailed plot of Fig. 2(b). Assuming
that the mesh is reasonably good, and hence the sizes of all the
elements are similar, we obtain

(24)

in which is the number of triangular elements that own node
as one of their vertices. In (24), is obtained by assem-

bling the contribution from elements. Based on the unknown

ordering scheme illustrated in Section III-A, node , node
, and node all reside on the same line as shown in Fig. 3.

Since node and node can only be simultaneously shared
by two triangular elements, and so are node and node ,

, and are assembled from two elemental con-
tributions as

(25)

Therefore, (23) can be written as

(26)

Since nodes and are adjacent to node , the
eigenfield at these two nodes can be estimated by at node

. Hence

(27)

As shown in Fig. 3, node not only interacts with the adja-
cent two nodes residing on the same line, but also interacts with
nodes residing on the line left to it and the line right to it. The
interaction with the nodes residing on the left line is character-
ized by and that with the nodes residing on the right line is
characterized by . Therefore, and consist of matrix ele-
ments in which node resides on the adjacent lines and
connects directly to node through one edge. Assuming that
the number of nodes is , can be evaluated by

(28)

Since the nodes are adjacent to node , (28) can be estimated
as

(29)

Take the mesh shown in Fig. 3 as an example, (the
number of circled nodes) and , hence, from (27) and (29),

. In general on-chip applications, since the
dielectric stack is multi-layered, the mesh must be partitioned
at the dielectric interface (along ) as shown in Fig. 4, i.e., no
elements can go beyond a dielectric layer. Since each layer is
so thin that it generally sustains only one layer of elements, the
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Fig. 4. Illustration of the mesh partition at the dielectric interfaces.

maximum number of nodes in the adjacent lines that a single
node can directly interact with is 6 as shown in Fig. 4. Therefore

(30)

Even if the on-chip dielectric stack is not considered, (30) is
what is generally needed to make a good mesh. In addition, there
exists the following relationship between and

(31)

Hence, from (27) and (29), the following inequality always
holds true

(32)

Therefore, from (13), . And hence, the iteration in (8)
converges for any and any initial vector .

From (9), it can be seen that

(33)

hence

(34)

Clearly, the smaller is, the faster the convergence is. From
(10)

(35)
in which is the condition number of matrix . When esti-
mating , can be treated as a constant. This is because
is block diagonal, and each diagonal block is formed by volume
unknowns residing on one line along the stack-growth direction
( -direction) as shown in Fig. 2(b). Hence, each diagonal block
of is mainly determined by the material and geometrical in-
formation of the stack. For on-chip circuits, the stack is fixed for
each processing technology node. Hence, the condition number
of matrix can be estimated as a constant. As a result, from
(35), the ratio of to serves as a good measure of
the convergence rate of the proposed iterative solution.

Since is a block tridiagonal matrix, (8) can be simplified to

(36)

in which denotes the line index, denotes the th diagonal
block of , which is formed by volume unknowns on line .
The operations in (36) involve an inverse of each block diag-
onal matrix, , and two sparse matrix vector multiplications.
Since and are extremely sparse (for example, two
nonzero elements per row), the matrix vector multiplication in
(36) can be obtained efficiently in linear complexity with a con-
stant multiplier generally less than 5. The remaining task is to
compute efficiently, with being the right-hand side of
(36).

D. Fast Direct Computation of In Linear Complexity

Matrix is the block diagonal matrix of . It is composed of
block matrices as shown in Fig. 2(c)

and (d). Each is tridiagonal because each volume unknown
residing on one line has only crosstalk with itself and its adjacent
two neighbors. The inverse of a tridiagonal matrix belongs to the
class of semiseparable matrices. Assuming is of order ,
there exist two sequences , , such that

can be written as follows [15]:

...
...

...
. . .

...

(37)

Denoting as , the sequences ,
can be generated in operations as

(38)

Therefore, , and hence , can be obtained in linear
complexity. In addition, is stored in , ,

sequences rather than a full matrix of
size in (37). Hence, although is dense, the memory
consumption of storing , and hence , is linearly pro-
portional to the matrix size.

E. Fast Evaluation of in Linear Complexity

Since the inverse of is dense, apparently the evaluation
of requires operations. In fact, it can be obtained
in operations. The matrix vector multiplication is
evaluated as shown in (39). Consider the upper triangular part.
The underlying terms are those that do not need to be computed,
as they can be reused from the previous step if one starts from the
last row. As a result, for each row, there is only one multiplica-
tion ( is the row index) that needs to be calculated together
with one summation and one multiplication with . The same
is true for the strict lower triangular part. The underlying terms

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2010 at 21:28:21 UTC from IEEE Xplore.  Restrictions apply. 



272 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 1, FEBRUARY 2010

TABLE I
COMPARISON OF THE S-PARAMETERS

do not need to be recomputed if one starts from the second row
and proceed to the following rows. For each row, there is only
one multiplication that needs to be calculated together
with one summation with the previous value and one multipli-
cation with . Hence, the cost of scales as with
a constant multiplier equal to 7. See (39) at the bottom of the
page.

As a result, the computational cost of solving scales
linearly with the number of unknowns. Hence, the total cost of
computing scales as because there exist
columns in . As a result, the cost of 3-D to 2-D reduction
scales as , speeding up the direct reduction by
times.

IV. NUMERICAL RESULTS

The performance of the proposed fast reduction algorithms
was tested on a test-chip 3-D interconnect structure [5], [16].
The structure is of 300 width and 2000 length. Table I
compares the accuracy of the proposed fast reduction with that
of the direct reduction. S-parameters sampled at three different
frequency points, 1 GHz, 12.8 GHz, and 50 GHz, are chosen for
comparison. As shown in Table I, good agreement is observed.

The number of single-layer volume unknowns, , is 300 in
this simulation. The initial vector of the iteration in (8) is chosen
as 0. The iteration converges in two steps with the relative error
in less than 0.001. The relative error is defined by

(40)

Fig. 5. Relative error versus the number of iterations for a test-chip intercon-
nect structure.

In (40), the difference between and is used to assess the
error instead of that between and true . This is because
when is equal to , is the solution of as
can be seen from (7) and (8).

In Fig. 5, the relative error of is plotted as a function of
the number of iterations at 12.8 GHz. Fast convergence can
be observed. The accuracy of is achieved within 10 it-
erations. The and were also numerically eval-
uated. It was shown that was and

was , which contributed to the fast con-
vergence of the proposed iterative scheme. The 1-norm of a ma-
trix is used which is the maximum sum of the absolute values
in each row/column.

In Fig. 6, the S-parameters were plotted over the entire fre-
quency band, which revealed an excellent agreement between
the proposed fast reduction and the direct reduction as well
as the measured data. When performing the reduction, all the
columns of were processed. It was shown that the number

...
...
...

. . .
...

...

(39)
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Fig. 6. S-parameters of an on-chip interconnect structure of length 2000 �m. (a) S11 magnitude. (b) S11 phase. (c) S12 magnitude. (d) S12 phase.

of iterations required by different columns to reach the same
accuracy could be different. But within 2 iterations, the S-pa-
rameters shown in Table I and Fig. 6 can be obtained. There
exist some columns that require a few more iterations. How-
ever, it was observed that the norm of these columns was or-
ders-of-magnitude less than that of the other columns, and the
error in these columns has little influence on the accuracy of the
reduced matrix in (3).

The test-chip interconnect structure was then modified to ex-
amine whether the same performance could be observed in a dif-
ferent structure. The original metal plane in metal-3 layer, which
was continuous along the 2000 length, was broken every
other 100 along the length. As a result, the metal-3 layer
was filled by 10 metal plates, each of which was 100 long.
The spacing between two adjacent plates was 100 . The pro-
posed fast reduction and the direct reduction were used to simu-
late this structure. In Table II, the S-parameters sampled at three
different frequency points are given, which reveal a very good
agreement. Again, only two iterations were used to generate the
results shown in Table II. In Fig. 7, the relative error with respect
to the number of iterations was plotted at 1 GHz, 12.8 GHz,
and 50 GHz, respectively. Fast convergence can be observed.
The ratio of to at the three different frequency
points was given in Table III. Clearly, the ratio increases when
frequency increases, which explains the slower convergence at
the high frequency end observed in Fig. 7. With the accuracy
validated, the CPU time of the proposed fast reduction was com-

pared against that of the direct reduction. In Table IV, the CPU
time for solving (5) for 1000 right-hand sides is listed with re-
spect to the number of unknowns for both schemes. It is clear
that the proposed technique is faster than the direct one. In ad-
dition, the speedup increases with the number of unknowns ,
i.e., the larger the problem size, the more efficient the proposed
technique. This is because the time complexity of the proposed
technique in solving (5) is strict as can be seen from
the third row in Table IV. In contrast, existing advanced sparse
solvers such as a multifrontal method has an increased slope in
the complexity curve, i.e., the slope increases when the number
of unknowns increases. For example, when was increased
to 1 188 288, it took the multifrontal-method-based direct re-
duction more than 1 h to solve (5) for 1000 right-hand sides,
while the proposed technique took about 6 min. Asymptoti-
cally, the complexity of the multifrontal solver reaches
when solving a block-tridiagonal matrix. The computing plat-
form used was an IBM system x3550 with two Intel Woodcrest
dual core processors.

In Fig. 8, the relative error versus the number of iterations
was plotted for case, compared to Fig. 5, similar
convergence could be observed. In Fig. 9, the relative error
versus the number of iterations was plotted for
case. Again, fast convergence is observed. Here, we observe
that the convergence rate of the proposed iterative solution has
little dependence on the number of unknowns. This is because
in on-chip problems, the stack is fixed. Take the computational
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TABLE II
COMPARISON OF THE S-PARAMETERS FOR A MODIFIED TEST-CHIP INTERCONNECT STRUCTURE

TABLE III
RATIO OF ������� TO ��� AT THE THREE DIFFERENT FREQUENCY POINTS

TABLE IV
COMPARISON OF THE CPU TIME

Fig. 7. Relative error versus the number of iterations for a modified test-chip
interconnect structure.

Fig. 8. Relative error versus the number of iterations for the test-chip intercon-
nect structure �� � �����.

domain shown in Fig. 4 as an example, the discretization
along the stack-growth direction ( -direction) is fixed, when
the problem size is increased, the problem size is increased
along the direction only. Based on the definition of , ,
and , the and are determined by the matrix

Fig. 9. Relative error versus the number of iterations for the test-chip intercon-
nect structure �� � ����	�.

characteristics in two adjacent segments along direction.
The dielectric stack is the same in all the segments along .
What is different in each segment is the conductor location.
But where to place conductors is also constrained in an on-chip
circuit. In all the layers present in a stack, only metal layers
can be used to place conductors. Hence, similar conductor and
dielectric configuration is encountered no matter the problem
size is small or large when the problem size is increased along

. Hence, the ratio of to is at the same level (at
each frequency point), which results in a similar convergence
rate irrespective of the number of unknowns.

V. CONCLUSION

In this paper, fast reduction algorithms were developed to
efficiently reduce a 3-D layered system matrix to a 2-D lay-
ered one in the framework of the frequency-domain layered
finite element method. These algorithms include a structuring
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of the volume-unknown-based matrix, an effective precondi-
tioner , a direct solution of in linear complexity, and
a fast computation of in linear complexity. With these
fast algorithms, the iterative solution of the volume-unknown-
based matrix equation converges in a few iterations in realistic
on-chip structures. In addition, in each iteration the computa-
tional cost scales linearly with the number of unknowns. As a
result, the volume-unknown-based matrix equation is solved in
linear complexity with a small constant (less than 25) in front
of the number of unknowns. The reduction from a 3-D layered
system to a 2-D layered one is hence accelerated significantly.
In addition, the proposed fast reduction algorithms apply to any
arbitrarily-shaped multilayer structure.
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