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Hierarchical Finite-Element Reduction-Recovery
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High-Speed Integrated Circuits
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Abstract—This paper proposes a hierarchical finite-element re-
duction-recovery method for large-scale transient analysis of high-
speed integrated circuits. This method rigorously reduces the ma-
trix of a multilayer system of O(IV) to that of a single-cell system
of O(1) regardless of the original problem size. More important,
the matrix reduction is achieved analytically, and hence the CPU
and memory overheads are minimal. In addition, the reduction
preserves the sparsity of the original system matrix. As a result,
the matrix factorization cost is reduced to O(1) by the proposed
method. The CPU cost at each time step scales linearly with the
number of unknowns. The method is applicable to any Manhattan-
type integrated circuit embedded in layered dielectric media. Nu-
merical and experimental results demonstrate the performance of
the proposed method.

Index Terms—Electromagnetics, finite-element method, in-
tegrated circuits, large-scale analysis, time domain, transient
analysis.

I. INTRODUCTION

NTEGRATION is the trend. It is at the intersection of
I crosscutting technologies, materials, and spectrum that
some of the greatest opportunities for future integrated circuits
(ICs) arise. However, integration leads often to undesired
coupling. For instance, switching currents induced by logic
circuits cause ringing in the power-supply rails and in the
output driver circuitry. This in turn propagates through the
common substrate to corrupt sensitive analog signals on the
same chip. Prevailing circuit-based signal integrity paradigms
are reaching their limits of predictive accuracy when applied
to high-frequency mixed-signal settings. An electromagnetics
(EM)-based analysis is required to overcome the fundamental
limits of circuit-based analysis.

In addition to the EM-based analysis, very-large-scale anal-
ysis is also essential for the design of next-generation integrated
circuits. For example, the impact of noise due to die-package
interaction, substrate coupling, etc., can already be seen at all
levels of a power delivery network: from chip to package to
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motherboard to the voltage regulator module. The move towards
integrating thousand cores on a single chip will exacerbate the
problems even more. Therefore, it is of critical importance to
develop scalable algorithms to tackle large problem sizes en-
countered in the analysis and design of next-generation ICs.

Recently, efforts have been initiated to develop computational
EM techniques amenable for on-chip problems. Readers can
refer to [1]-[15] for recent developments. Algorithms of O(N)
or O(Nlog N) computation with O(N) memory (N being
the number of unknowns) have been reported. They represent
an impressive improvement as compared with conventional
O(N?) and O(N?) techniques. However, for large-scale IC
design problems, even O(N) is expensive since N is too
large. Therefore, it is necessary to further reduce the O(N)
complexity to O(M) with M < N, also in a rigorous fashion.
In [14]-[17], a time-domain layered finite element reduction
recovery (LAFE-RR) method was proposed for high-frequency
modeling and simulation of large-scale on-chip circuits. This
method rigorously reduces the matrix of the original multilayer
system to that of a single-layer system irrespective of the
original problem size. More important, the matrix reduction
is achieved analytically, and hence the CPU and memory
overheads are minimal. In addition, the reduction preserves
the sparsity of the original matrix. The method applies to any
arbitrarily shaped multilayered structure. Since the reduction is
analytical, only the reduced single-layer system matrix needs to
be computed. Hence, this method is able to solve a single-layer
matrix of O(M), with M being the number of single-layer
unknowns that is much less than N to rigorously obtain the
solution of the original matrix.

Although the problem size is reduced to O(M) in [14] and
[15], solving it in O(M') complexity was not achieved yet. The
single-layer sparse matrix was solved by a multifrontal-based
sparse matrix solver.! Though an advanced sparse solver, it can
grow beyond O(M?) in CPU run time when M is large. Here,
we propose a direct solution of O(M) complexity to solve the
single-layer matrix equation. In this method, the reduction-re-
covery approach is hierarchically applied to the system matrix to
reduce it analytically to a single-cell matrix of O(1). The single
cell is a 1-D domain, the dimension of which is the number of
stacks present in the IC circuit. Thus, the matrix factorization
time becomes negligible. The computation of O(M) is solely
spent on recovering M unknowns of interest. The method is ap-
plicable to any Manhattan-type integrated circuit embedded in
layered dielectric media. For applications involving arbitrarily
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shaped integrated circuits, readers can refer to our recent devel-
opment in [18].

In Section II, we give a brief overview of the time-domain
LAFE-RR method. In Section III, we present the proposed hier-
archical finite-element reduction-recovery (HIFE-RR) method
that analytically reduces the system from O(N) to O(1). In
Section IV, numerical and experimental results are presented
to demonstrate the capability of the proposed method. The con-
clusions are drawn in Section V.

II. BASIC TIME-DOMAIN LAYERED FINITE-ELEMENT
REDUCTION-RECOVERY SCHEME

The electric field E inside a 3-D integrated circuit satisfies
the second-order vector wave equation

V x (1, 7'V x E(r,t)] + pocd7E(r, t) + p1oo 0, E(r, t)
= —pedJ(r,t) (1)

subject to certain boundary conditions. In (1), u,., o, €, o are
relative permeability, free-space permeability, permittivity, and
conductivity, respectively; J is the current source; and V' is the
computational domain that encloses the circuit. A time-domain
finite-element solution of (1) and its boundary condition results
in a system of ordinary differential equations [19]

d?u du

T—+R—+Sut+w=j 2

arz "t J @
in which T, R, and S are square matrices and u, w, and j are
column vectors. Their elements are given by

‘/ ‘7
sz-j:u,tl/// V xN; -V x N;dV
. 1%
wi= —// N, P(N,)dS j; = —uo/// N, - 9,JdV
J JS J J Jv

3)

where N; are the vector bases used to expand the unknown elec-
tric field E and P is an operator associated with the absorbing
boundary condition.

When the problem size is large, it is difficult to solve ma-
trix (2). The time-domain LAFE-RR method [14], [15] was
developed to overcome this problem. In this method, the un-
knowns are ordered layer by layer as shown in Fig. 1(a). The
layer growth direction can be the z-direction, i.e., the stack-
growth direction, or the y- and z-direction. In each layer, the un-
knowns are divided into surface and volume ones. As shown in
Fig. 1(a), the unknowns associated with the solid edges are sur-
face unknowns; and the unknowns associated with the dashed
edges are volume unknowns. The 3-D layered system matrix
is then analytically reduced to a 2-D layered one as shown in
Fig. 1(b). The 2-D layered system matrix is then analytically
reduced to a single-layer system as shown in Fig. 1(c). The re-
duced single-layer matrix preserves the same sparse pattern as
that of a single-layer matrix in the original system matrix, which
enables an efficient computation. The method permits different
layout structures in different layers. It is applicable to both tri-
angular prism and brick element based discretization. Once the
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Fig. 1. Illustration of the LAFE-RR process. (a) 3-D layered system. (b) 2-D
layered system. (c) Single-layer system.
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Fig. 2. (a) Unknown ordering scheme. (b) 3-D layered system matrix T (From
[15].)
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Fig. 3. (a) 2-D layered system matrix. (b) Reduced single-layer system matrix.
(From [15].)

unknowns on a single surface are known, the unknowns on other
surfaces and the unknowns in the volume can be recovered, as
demonstrated in [14] and [15].

The reduction from a 3-D to a 2-D layered system is achieved
without computational overhead by utilizing the orthogonality
of the vector basis functions associated with volume un-
knowns and those associated with surface ones. In Fig. 2(b),
we show the matrix structure of system matrix T, where M,
(Il =1,2,..., L) is the matrix formed by the unknowns residing
onsurface [; K; (I = 1,2,..., L) is the matrix formed between
the unknowns residing on surface | and surface [+1; Py, is
the matrix formed by the volume unknowns in layer [ that is
bounded by surfaces [ and [+1; and Q; (I = 1,2,..., L) is the
matrix formed between surface and volume unknowns in layer
l. Due to the fact that the volume vector bases are perpendicular
to surface vector bases, all the Q; matrices in Fig. 2 vanish.
As a result, the 3-D layered system matrix [Fig. 2(b)] can be
reduced to a 2-D layered system matrix [Fig. 3(a)] without
computational cost.
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The reduction from a 2-D layered system to a single-layer
system is achieved by developing an analytical top-down-
bottom-up elimination procedure. Assuming that layer [ is of
interest, the 2-D layered system matrix shown in Fig. 3(a) can
be analytically reduced to a single-layer system matrix shown
in Fig. 3(b). The matrix M;, carries the contribution from all
the layers above layer [ to layer [, while matrix M, carries the
contribution from all the layers below layer [ to layer [. These
two matrices can be obtained recursively and analytically from

M) =M, + M, - K;M; 'K,
M} =M, + M; — KoMS 'K,

;d = Ml—l -+ Ml — Kl—lM;:iMl—l (4)
and

MIL—l = ML—l + ML — KLleKL,
MIL—2 = ML—2 + ML—l — KL_1MIL__11KL_1

fu =M+ My — K MT M (5)
Matrices M), and M, can be obtained analytically because
in (4) and (5), there is no need to compute the matrix inverse
and matrix—matrix multiplication. This is due to the fact that
in a multilayered structure, M; (I = 1,2,..., L) can be con-
structed to be proportional to each other, K; (I = 1,2,..., L)
can be constructed to be proportional to each other, and M,
(Il = 1,2,...,L) can also be made proportional to K; (I =
1,2,..., L). Therefore, M; (I = 1,2,..., L) of primed quanti-
ties are also proportional to K; (I = 1,2, ..., L). As aresult, the
reduction shown in Fig. 3, which is mathematically represented
by (4) and (5), is achieved with minimal numerical calculation.
To be more specific, if M;, which is M in the first layer, is
chosen as the reference, then M, and M, can be obtained in-
stantly by scaling M by a certain coefficient made of permit-
tivity, conductivity, and layer thickness in different layers. This
also demonstrates that the reduced single-layer matrix preserves
the same sparsity pattern as that of a single layer in the original
system matrix.

As can be seen from (4) and (5), calculating M, and M,
only involves O(L) operations, where L is the number of layers.
To be more specific, take the evaluation of Ml_lKl as an ex-
ample. Since M is made linearly proportional to K, the eval-
uation of Ml_lKl only costs one scalar multiplication in the
LAFE-RR method. However, it costs O(M) operations, with
M being the matrix size of M; and K; even M; and K,
are diagonal matrices like what they are in the finite-difference
time-domain (FDTD)-based methods. The LAFE-RR method
truly takes full advantage of the layered property of IC structures
in the framework of time-domain finite-element methods. It is
expected that this scheme can be leveraged by other time-do-
main methods.

The solution of the single-layer system is used to obtain the
field solution in the layer to which the system is reduced as

well as to recover the field solution in other layers [14], [15].
An inefficient treatment of the single-layer solution can make
it a computational bottleneck of the LAFE-RR method. In the
following section, we describe the proposed HIFE-RR method
that factorizes the single-layer matrix in O( 1) time and recovers
the other unknowns in linear time.

III. PROPOSED HIERARCHICAL FINITE-ELEMENT
REDUCTION-RECOVERY METHOD

The reduced single-layer matrix equation shown in Fig. 3(b)
can be further reduced to

Mz = by, (6)
where

"o __ / /7 \—1

ld — ld — Kl(Mlu) Kl
"ol 1—17q7

1,1l — bl,l - Kleu b3,z~

Again, since M and K are linearly proportional to each other,
there is no need to perform matrix inverse, matrix—matrix multi-
plication, and matrix—vector multiplication to obtain (6). Matrix
MY/, is equal to M scaled by a coefficient, where M is assem-
bled from its elemental contribution as the following:

M ;= h?(ﬂ(ﬁf)/ ; W, - W,dQ (7

in which h{, ey are the height and dielectric constant, respec-
tively, in layer [ and element e, W is the edge basis function
[20] that is used to construct N in (3) [14], [15]. If the integrated
circuit involves different layout structures in different layers, as
shown in [16] and [17], then M; will be augmented to

W, - W,;d2

h
7, ij — _I(M()t?z6 + 0-5At11005) / (7a)

3 J Jae
where o is conductivity that is artificially introduced in each
element. The o¢ is constructed to have the same property as the
permittivity, i.e., layered. The terms associated with the differ-
ence between the true conductivity in each element and the o
will be moved to the right-hand side of (2) in the time-marching
process. The resultant time-stepping scheme is called a fast-
marching scheme, which was detailed in [16] and [17] and hence
is not repeated here.

A closer examination of IM; reveals a similar matrix pattern
as the global system matrix shown in Fig. 2(b) if one orders
the single-layer surface unknowns in sequence from left to right
and from bottom to top. This suggests a hierarchical approach
to tackle it. In the following, we will elaborate on the procedure.

The computational domain is discretized into brick elements.
For ICs that are made of Manhattan-type structures such as in-
terconnects and square spiral inductors, the brick elements are
indeed natural for use. For ICs that are arbitrarily shaped, the tri-
angular prism elements are natural for use. The efficient mod-
eling and simulation for the latter was addressed in [18]. The
focus of this paper is the efficient simulation of Manhattan-type
integrated circuits embedded in layered dielectric media.

In each brick element, the unknown E is expanded by using
12 vector bases N; [20, p. 292-294], which are parallel to the
brick edges. The resultant discretization on a single surface is
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Fig. 5. Sparse pattern of M; with a brick-element-based discretization.

shown in Fig. 4. It involves N, segments along = and N, seg-
ments along y. The vector bases IN; are shown as arrows. Each
basis is associated with one field unknown. The horizontal un-
knowns are denoted by e, and the vertical unknowns are de-
noted by e,. We first order e, of line 1 (y-orientated), which is
ey1, €, between line 1 and line 2, which is e,; we then pro-
ceed to e, of line 2, which is ey, e, between line 2 and line
3, which is e.», and so on. By doing so, the single-layer sur-
face-unknown-based matrix IM; as given in (7) and (7a) is struc-
tured to be a banded matrix as shown in Fig. 5. It is formed by
submatrices in each y-orientated segment. The horizontal un-
knowns e, and vertical unknowns e, are naturally decoupled
in M; because the associated vector bases are perpendicular to
each other. Hence M is decoupled into matrix M, that involves
only unknowns e, as shown in Fig. 6(a), and IV, decoupled
small sparse matrices M, ; (¢ = 1,2,..., N,) formed by hori-
zontal unknowns e, in each segment as shown in Fig. 6(b). Note
that this does not lead to the conclusion that there is no physical
coupling between vertical and horizontal unknowns. They influ-
ence each other by changing the right-hand side of each other at
each time step.

M, in each y-orientated segment 7 is formed by four block
matrices Ay ;, By ;, B;f,i, and C, ;, each of which is diagonal,
as shown in Fig. 5. This is because the adjacent e, unknowns do
not belong to the same element, as can be seen from Fig. 4. The
matrix elements of A, ;, B, ;, and C, ; are evaluated from

Wy s Wy, m
Ay,im = hl(p’ogl,im) 9

Wy, Wy, m
By,im = hl(p’ogl,im) 18

Cy,im:Ay,im
(m=1,2,...N,, i=12. N,+1) (8)

. e» Nx ey.Nx< 1

e,
i w! \ Mx,l

2 €2 \\ Mx,Z

ExNx \\ M,\‘,N,\‘

(a) (b)

Fig. 6. Decomposition of M;. (a) Matrix M,, formed by unknowns ¢, . (b)
Decoupled matrices M ,; formed by e, in each segment.

in which w,, ,, is the length of the mth segment along y; w;, ; is
the width of the ith segment along z; h; is the same as that in
(7); and ¢, ;,,, is the permittivity in the (¢, m) element in layer
. (Note that A, i, By, and C,; in (8) will be augmented by
o¢ when the fast-marching technique is used.) Clearly, A, ; and
B, ; are linearly proportional to each other. This is the property
of the vector basis functions used in a brick element, which also
holds true for those in a prism element.

Each of M, ; (i = 1,2,...,N,) matrices is tridiagonal be-
cause each e, unknown interacts only with its upper and lower
neighbor directly. M, ; is assembled from its elemental contri-
bution as

€

Mg ; = hy(poer)

Cy

(i=1,2,...N,)

©))
where w;, is the length along y in the eth element and €)' is the
permittivity in the eth element in layer [.
M, can be further reduced to a matrix in a single segment,
i.e., a matrix of 1-D size. Assuming it is reduced to segment 2,
the reduced system is

Weiwy [2 1
18 1 21’

yiu | By ey,i by,i
= . (10
B;;[,i, A;,m Cy,it1 by,i+1
In (10), A ;, and A}, can be obtained by a top-down

bottom—up procedure as follows:

Bottom-up
/ _ —1
yN. =AyN, T Ay N, +1 - By, 1AL BN, 1

/ /—1
AyN,—1=AyN. 1+ Ay N, —Byn, ANy By,

/ 1—1
=AyitAyip— By,'i+1Ay,i+1By,i+1

Y,iu (1 1)
Top-down
Als=A, 1 +A,>-B,1AB,,
Ays=Ay2+ Ay~ ByA B,
pid = Ayt + Ay =By AL By (12)
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A,;and B, ; (j = 1,2,..., N, + 1) in the same segment
are linearly proportional to each other, as can be seen from (8).
In addition, Ay ; and By ; ( = 1,2,..., N, + 1) in different
segments are also linearly proportional to each other. Hence,
the reduction process in (11) and (12) is achieved analytically,
i.e., there is no need to invert matrices, perform matrix—matrix
multiplication, and so on. The computation in (11) and (12) es-

sentially becomes the evaluation of two coefficients as follows:

Bottom-up

1 -1
Ay N,—1 = Qy,N,—1 + Ay N, — bNr(INT an,

/ /—1
Ay N,—2 =0y,N,—2 Ay N,—1 — by N, —1b, x 1by N, 1

/ _ . . . /—1 .
Oy o = Oy i+ Ay ip1 — Oy i1 by g0y i 13)
and
Top-down
/ _ —1
Ay o =0y 1+ Gy2 — by;lay,lby,l
[ —1
Ay 3 =0ay2+ ay3 — bysa, 50y
/ _ /—1
Ay id = Qy,i—1 F Qyi — by i—1a, = 1by i1 (14)

The two coefficients a; ;,, and ay, ,; are then used to scale
A, ; in a single segment to obtain A ;; and AJ ;, in (10) in-
stantly. Hence the cost is minimized. The reduced matrix in-
volves unknowns on two lines. It can be further analytically re-

duced to involve unknowns on one line as follows:

" _qn
Ay,ideyvi = by,i

where

"o A . l -1 .

y,id — Ay,id - By-,z( y,iu) Byﬂ?

"ol CAI=17

Yl byﬂ? o B?NAy-,iu y,i+1t (15)

As a result, the reduced single-line matrix is diagonal. Hence,
the matrix inversion is avoided.

The recovery of all the vertical unknowns e, can be per-
formed as

_ A!=1pt . P
ey =Ay by ; —Byjeyl, =12, ...,i-1
_ Al=17p1 PR
Cy.j+1 = Ay,j [by,j+1 - By,jey;j]v J=1+1,2, ..., N,.

(16)

Since matrices A, ; and B, ; in (16) are linearly proportional to
each other and both are diagonal, again there is no need to invert
matrices and perform matrix—vector multiplication. In addition,
the inversion of diagonal matrix A] ; only needs to be done
once and reused for other 5. Unknowns e, in (16) are, hence,
obtained in linear complexity.

The recovery of the horizontal unknowns e, can be conducted

as

rj = M;_}bm j=1,2,...,N,. (17)

’ ’

can be performed in linear complexity [21]. The constant multi-

Since matrices M, ; ( = 1,2,..., N,) are tridiagonal, (17)

—— Analytical
----- This method |

0 02 04 0.6 08 1 4.6 = 4.65 47 4.}5
Time (s) x10" Time (s) x10™

(a) (b)

Fig. 7. Simulation of a pair of power-ground planes in comparison with the
analytical solution. (a) Electric field sampled at = = 2 pm. (b) Electric fields
sampled at z = 0,2 pm, and 7 pm showing the delay in time.

plier is only seven. In addition, because of the linear dependence
between M, ;, as can be seen from (9), M ; only needs to be
factorized once and reused for other j.

A. Performance Analysis

The matrix of O(M) is reduced to O( 1) analytically. The fac-
torization cost of the O( 1) system is a constant. The time com-
plexity of recovering M parameters of interest is O(M) with
O(M) memory consumption. In addition, the constant mul-
tiplier is no greater than seven. It should be noted that even
the system matrix is diagonal like what it is in explicit FDTD
methods, the O( 1) factorization complexity cannot be achieved
since inverting a diagonal matrix of dimension N costs O(N)
divisions.

IV. NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION

First, the proposed method is validated with a structure
having an analytical solution: a pair of power-ground planes
made of perfect conductors. Its width (along y), its height
(along ), and its length were set as 10 ym. Along the length,
the structure was subdivided into ten layers. The dominant
transverse electromagnetic mode was launched on the incident
plane at z = 0. The exact absorbing boundary condition for
the dominant mode was placed on both the incident and exiting
planes. The incident pulse was the time derivative of a Gaussian
pulse E"°(t) = 22(t — to) exp(—(t — t)?/72), in which 7
was chosen to be 3.0 x107'2 s and to was 47. The time step
was chosen to be 2.0 x 107'® s. In total, 50000 time steps
were simulated. The electric field at z = 2 pym was sampled
and compared with the analytical solution, which revealed an
excellent agreement, as can be seen from Fig. 7(a). Fig. 7(b)
depicts the time delay at z = 0,2 pum, and 7 pm, respectively.
Clearly, the delay is accurately simulated by the proposed
method.

With the accuracy validated, we tested the performance of the
proposed method. The z — y cross-section of the power-ground
plane structure was discretized into 50 segments along = and 50
segments along z. Along ¥, the structure is discretized into var-
ious number of segments from 25 to 200, resulting in 200 000 to
more than one million unknowns. The matrix factorization time
is plotted with respect to the number of unknowns in Fig. 8(a)
in comparison with that cost by a conventional time-domain fi-
nite-element method and the LAFE-RR method reported in [14],
[15]. Both LAFE-RR and the conventional time-domain finite-
element solver employ the state-of-the-art multifrontal solver to
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Fig. 8. Simulation of a pair of power-ground planes. (a) Decomposition time.
(b) CPU cost at each time step. (c) Memory cost in decomposition.

factorize sparse matrices. In this simulation, the layer-growth
direction was chosen the same as the length direction, which is
z. Hence, when increasing the discretization elements along vy,
the single-layer matrix size is increased. As a result, the factor-
ization cost of the LAFE-RR method increases, as can be seen
from Fig. 8(a). In contrast, the cost for the matrix factorization
of the proposed method is a constant regardless of the number of
unknowns. In Fig. 8(b), we plot the CPU cost at each time step
versus the number of unknowns for the three methods. Again,
the proposed method outperforms the other two methods. The
memory consumption of the proposed method for the matrix
factorization is also plotted against the number of unknowns
in Fig. 8(c) and compared with a conventional time-domain fi-
nite-element method and the LAFE-RR method. Once again, the
superior performance of the proposed method is observed.
Next, a test-chip interconnect structure of length 100 pm [22]
was simulated. The structure was fabricated using conventional
silicon processing technology. It comprised three metal layers
and 13 inhomogeneous dielectric stacks. The structure was di-
vided into 338 brick elements in each layer, rendering 715 sur-
face unknowns and 1093 volume unknowns per layer. Due to
a nondisclosure agreement, the detailed structure is not given
here. Fig. 9 depicts the time-domain waveforms of the sampled
voltages at the near and far end of one wire in the interconnect
structure, with its near end excited by a current source and the
far end left open. Clearly, the results agree with those gener-
ated by a conventional time-domain finite-element method. In
addition, for this short interconnect structure, it is observed that
RC effects are dominant because the sampled voltage behaves
as an integration of the current over the time. Since this struc-
ture involved different layout structures in different layers, the
fast-marching method developed in [16] and [17] was used to
increase the time step without sacrificing the stability and ef-
ficiency. The fast-marching technique was also used in all the

x 10
2 2
0
S-2
(0]
)]
8
g -4 —_— Vnear: This method
_____ Viar: This method
5 o Vnear: Conventional
f £ Voo Conventional
‘.“ 4
-8- . LN : 1 !
0 0.5 1 1.5 2 25
. -11
Time (s) x10

Fig. 9. Time-domain waveforms of a 100-pm-long test-chip interconnect
structure simulated by the proposed method. (Vyear and Vi, are the voltages
observed at the near end and far end, respectively.)
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Fig. 10. Simulation of a test-chip interconnect of length 100 zzm. (a) Decompo-
sition time. (b) CPU cost at each time step. (c¢) Memory cost in decomposition.

following examples that involve different conductor configura-
tion in different layers.

The performance of the proposed method was then compared
against the time-domain LAFE-RR method and the conven-
tional time-domain finite-element method in Fig. 10. Again,
the cost of the proposed method in matrix factorization is a
constant. The factorization cost of the LAFE-RR method is
also a constant here because the number of unknowns is grown
along the longitudinal direction (layer-growth direction) in this
example, and hence the single-layer matrix size remains the
same. The computer used is an IBM system X3550 with two
Intel Woodcrest dual core processors.

Next, we considered a three-metal-layer on-chip interconnect
structure with orthogonal returns. The geometry is depicted in
Fig. 11(a) from both the cross-sectional view (in x — z plane)
and the 3-D view. The conductivity of all metalsis 5 x 10 S /m.
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Fig. 12. Simulation of a 3-D on-chip interconnect.

The conductivity of the silicon substrate is 10* S/m. There exist
five z-orientated wires in M1 and M3 layers, respectively, as
shown in Fig. 11(b). The width of these wires is 1 um and the
spacing is 1 pm. The interconnect length (9 pm) along y is sub-
divided into nine layers. Its two ends are both attached to an air
layer, which is truncated by a first-order absorbing boundary
condition. The top and bottom boundaries along the z-direc-
tion are perfect electrically conducting boundaries. The left and
right boundaries along the x-direction are perfect magnetically
conducting boundaries. The layer growth direction is chosen as
y. Bach layer is divided into 600 brick elements. The near end
of the 1-um-wide wire in M2 was excited by a current source.
The source waveform was the time derivative of a Gaussian
pulse Ji"(t) = #2(t — to) exp|[—(t — to)2/72], in which 7 is
1.0 x10~'2 s and tg is 47. The current probe was placed un-
derneath the 1-psm-wide wire in the dielectric layer between the
M1 layer and M2 layer. The voltage at the near and far end of
the 1-pm-wide wire was simulated. In Fig. 12, the result ob-
tained by the proposed method is compared with that obtained
by a traditional time-domain finite-element method. As shown
in Fig. 12, an excellent agreement was observed, which again
demonstrates the accuracy of the proposed method.

The fourth example is a large-scale test-chip interconnect
structure. This interconnect involves 146 parallel returns (par-
allel to M2 lines) in the M3 layer, two M2 signal lines and
two M2 return lines, which are backed by a solid metal plane
in M1. The structure is of length 2000 pm. The conventional
time-domain finite-element method fails to factorize the system

Imag(S11)

L L

0 10 20 30 40 50
Freq (GHz)

Fig. 14. S-parameters of a 3-D on-chip interconnect simulated by the proposed
method.

matrix, whereas the proposed method successfully simulated
the S-parameters of the test-chip structure. Fig. 13 depicts the
time-domain waveforms, in which “current src” is the current
source injected at the near end of one M2 wire; V; and V5 are
the voltages observed at the near ends of the two M2 wires;
and V3 and V4 are the voltages observed at the far ends.
Clearly, an inductance effect can be observed. Fig. 14 plots the
simulated S-parameters in comparison with the measured data.
Once again, good agreement is observed. The S-parameters
are extracted from the near ends of two M2 wires, which are
physically disconnected. As can be seen from Fig. 14, at low
frequencies, crosstalk Sq5 is almost zero and hence Sq1 is close
to one. However, crosstalk increases at high frequencies.

We also applied the proposed method to solve a large-scale
package-level power delivery problem. The structure involves a
bottom ground plane with via holes, a center via layer consisting
of both power and ground vias, and a top power plane with via
holes. The structure occupies an area of 2500 x 2500 ym?. The
thickness of each layer is 0.03, 0.025, and 0.03 mm, respec-
tively. A bottom power via is excited by a current source as
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Fig. 15. Time-domain waveforms of a package-level power delivery structure
simulated by the proposed method.

Fig. 16. Simulation of a package-level power delivery structure. Voltage map
sampled at (a)t = 2x 107 s, (b)t = 3x 107 s,and (c)t = 3.7x 107! s,

shown by I, in Fig. 15. The voltages sampled at the source lo-
cation and the other two via locations also are shown in Fig. 15.
In Fig. 16, the voltage map of the bottom ground plane is given at
three time instants. A dynamic voltage variation over the ground
plane can be clearly observed.

V. CONCLUSION

In this paper, a hierarchical finite-element reduction-recovery
method is proposed to simulate large-scale high-speed ICs in
time domain. In this method, the system matrix of O(IV) is hi-
erarchically and analytically reduced to a system of O( 1), thus
enabling a significant reduction in computational complexity.
The matrix factorization time is a constant irrespective of the
problem size. The unknown recovery time scales linearly with
the number of unknowns. It is applicable to any Manhattan-type
integrated circuit embedded in layered media. Numerical and
experimental results demonstrate its superior performance.
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