
A Direct Finite Element Solver of Linear Complexity for
Large-Scale 3-D Circuit Extraction in Multiple Dielectrics

Bangda Zhou, Haixin Liu, and Dan Jiao
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

ABSTRACT

We develop a direct finite-element solver of linear (optimal)
complexity to extract broadband circuit parameters such
as S-parameters of arbitrarily shaped 3-D interconnects in
inhomogeneous dielectrics. Numerical experiments demon-
strate a clear advantage of the proposed solver as compared
with existing finite-element solvers that employ state-of-the-
art direct sparse matrix solutions. A linear complexity in
both CPU time and memory consumption is achieved with
prescribed accuracy satisfied. A finite-element matrix from
the analysis of a large-scale 3-D circuit in multiple dielectrics
having 5.643 million unknowns is directly factorized in less
than 2 hours on a single core running at 2.8 GHz.

Categories and Subject Descriptors

B.7.2 [Integrating Circuits]: Design Aids - simulation,
verification

General Terms

Algorithms

Keywords

Circuit extraction, interconnect, finite element methods, di-
rect solvers

1. INTRODUCTION
Multicore and many-core computing have become a new

form of equivalent scaling to accompany the continuation
of Moore’s Law. As information needs to be transferred
in and out of the processors at a throughput proportional
to the computational performance, a concurrent rapid scal-
ing of processor input/output (I/O) bandwidth is required.
Thus, the design of high-bandwidth I/O has become a new
challenge in current and future integrated circuit and sys-
tem design. To meet such a challenge, accurate and efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

modeling of non-quasi-static effects, substrate noise, high-
frequency noise, and parasitic coupling is called for. Model-
ing of effects that have a more global influence such as cross
talk, substrate return path, substrate coupling, and electro-
magnetic radiation is also demanded. The advent of new
technologies such as 3D integration by the use of TSVs and
wireless signaling with passive devices further challenges the
traditional quasi-statics and/or 2D based circuit modeling
approaches.

The fullwave based methods for 3-D circuit modeling can
be categorized into two broad classes: integral equation (IE)
based methods and partial differential equation based meth-
ods. In the latter, a representative method is the finite el-
ement method (FEM). A surface IE-based method reduces
a 3-D volumetric problem to a surface problem. However,
its formulation becomes cumbersome when the circuit to be
extracted involves complicated materials. Little work has
been reported in a surface IE-based fullwave extraction of
3-D lossy circuits in nonuniform dielectrics. A volume IE-
based method is capable of handling arbitrary nonuniform
materials with great ease, however, the resulting linear sys-
tem of equations is not only dense but also large involving
volume unknowns in the entire 3-D circuit. Therefore, when
the problem of interest involves complicated materials, the
FEM method has been a popular method for choice because
of its great capability in handling both irregular geometries
and inhomogeneous materials.

As a partial differential equation based method, the FEM
produces a sparse system matrix for solving Maxwell’s equa-
tions. Although the system matrix is sparse, its inverse as
well as LU factors are generally dense. As a result, solving
it can be a computational challenge when the matrix size is
large. A traditional direct solution is computationally ex-
pensive. It is shown in [1] that the optimal operation count
of the direct solution of an FEM matrix in exact arithmetic
is O(N1.5) for 2-D problems, and O(N2) for 3-D problems,
where N is the matrix dimension. Although there have been
successes in speeding up the direct finite element solution by
a multifrontal based algorithm [2] or by an H-matrix based
mathematical framework [3] for 3D fullwave analysis, as yet,
no O(N) complexity, i.e. optimal complexity, has been ac-
complished for the FEM-based direct solution of general 3-D
circuit problems.

State-of-the-art fast FEM-based solvers rely on iterative
approaches to solve large-scale circuit problems. The com-
putational complexity of an iterative solver is O(NitNrhsN)
at best, where Nit is the number of iterations, and Nrhs the
number of right hand sides. When Nit and Nrhs are large,



state-of-the-art iterative solutions become inefficient since
the entire iteration procedure has to be repeated for each
right hand side. To give an example, assuming the CPU
cost for each port is 30 minutes, to assess crosstalk between
64 ports in a high-speed I/O, one has to wait for 1.3 days.
Furthermore, the complexity of an iterative solver is prob-
lem dependent since the iteration number Nit is, in general,
problem dependent.

The contribution of this paper is a direct FEM solver of
linear complexity for extracting fullwave circuit parameters
from arbitrarily shaped 3-D lossy conductors in inhomoge-
neous materials. Both theoretical analysis and numerical ex-
periments have demonstrated its linear complexity in both
CPU time and memory consumption with prescribed accu-
racy satisfied. The proposed direct solver successfully fac-
torizes an FEM matrix having 5,643,240 unknowns resulting
from the analysis of a large-scale 3-D lossy circuit in multi-
ple dielectrics in less than 2 hours on a single core running
at 2.8 GHz. Comparisons with state-of-the-art direct FEM
solvers that employ the most advanced direct sparse matrix
solutions as well as a commercial iterative FEM solver have
shown a clear advantage of the proposed direct solver.

2. VECTORFINITE-ELEMENT ANALYSIS
Consider a general 3-D circuit with arbitrarily shaped

lossy conductors and inhomogeneous dielectrics that can be
lossless, lossy, and dispersive. The physical phenomena in
such a circuit are governed by the second-order vector wave
equation

∇× (
1

µr

×E) + jk0η0σE − k
2
0εrE = −jk0Z0J, (1)

where E is electric field intensity, µr is relative permeability,
εr is relative permittivity, σ is conductivity, k0 is free-space
wave number, Z0 is free-space wave impedance, and J is
current density. A finite element based solution of (1) results
in the following linear system of equation:

Y{u} = {b}, (2)

in which b denotes a vector of current sources, Y is a sparse
matrix, which can be written as

Y = −k
2
0T + jk0G + S (3)

where T, G, and S are assembled from their elemental con-
tributions as the following

Te
ij =

ZZZ

V

εrNi · NjdV

Se
ij =

ZZZ

V

1

µr

(∇× Ni) · (∇× Nj)dV (4)

Ge
ij =

ZZZ

V

η0σNi · NjdV +

ZZ

S

(n̂ × Ni) · (n̂ ×Nj)dS,

where V denotes the volume of each element e, S is the
outermost boundary of the entire circuit, n̂ is a unit normal
vector, and N is the vector basis function used to expand
unknown E in each element.

3. MATHEMATICAL BACKGROUND
In state-of-the-art multifrontal based direct sparse solvers

[2, 5], the overall factorization of a sparse matrix is orga-
nized into a sequence of partial factorizations of smaller

dense frontal matrices. Various ordering techniques have
been adopted to reduce the number of fill-ins introduced dur-
ing the direct matrix solution process. The computational
cost of a multifrontal based solver depends on the number
of nonzero elements in the L and U factors of the sparse
matrix. This solver is based on exact arithmetic, and hence
its optimal complexity is higher than linear complexity [1].

Recently, it is proved in [3] that the sparse matrix result-
ing from a finite-element based analysis of electromagnetic
problems can be represented by an H matrix [4] without
any approximation, and the inverse as well as L and U of
this sparse matrix has a data-sparse H-matrix approxima-
tion with a controlled error. It is shown that an H-matrix
based direct FEM solver has a complexity of O(NlogN) in
storage and a complexity of O(Nlog2N) in CPU time for
solving general 3-D circuit problems.

In an H matrix [4], the matrix blocks are partitioned into
multilevel admissible blocks and inadmissible blocks. The
admissible blocks appear in the off-diagonal blocks. Con-
sider a matrix block Yt,s formed by unknown sets t and s,
if it satisfies the following admissibility condition

min{diam(Ωt), diam(Ωs)} < ηdist(Ωt, Ωs), (5)

then it is admissible. In the above, Ωt denotes the support
of all basis functions belonging to set t, Ωs denotes the sup-
port of all basis functions belonging to set s, diam(·) is the
Euclidean diameter, dist(·, ·) is the Euclidean distance be-
tween two sets, and η is a positive parameter that can be
used to control the accuracy of the admissibility condition.
A matrix block that does not satisfy the above admissibility
condition is called inadmissible. In an H matrix, an inad-
missible block keeps its original full matrix form, while an
admissible block is represented by a low-rank matrix shown
as the following:

Ỹt×s = A#t×k · BT
#s×k, (6)

where k is the rank which is bounded by a constant for
circuit problems [3], and # denotes the cardinality of a set.
The error of a rank-k approximation can be evaluated as [4]

‖Yt×s − Ỹt×s‖2 = σk+1, (7)

in which σk+1 is the maximum singular value among trun-
cated singular values. By applying (7), the error of an
H-matrix representation can be quantitatively controlled.
With a rank-k representation, an H matrix significantly ac-
celerates matrix-related operations and reduces storage cost
for a prescribed accuracy as compared to a full-matrix based
representation.

4. PROPOSEDLINEAR-COMPLEXITYDI-

RECT FINITE ELEMENT SOLVER
In the proposed method, we fully take advantage of the

zeros in the original FEM matrix, and also the zeros in the
L and U factors. Instead of treating L/U as a whole H-
matrix like what is done in [3], we only store the nonzeros in
L and U with a compact error-controlled H-matrix repre-
sentation, compute these nonzeros with fast H-matrix based
arithmetic, while completely removing all the zeros in L and
U from storage and computation. Since the geometry of a
3-D circuit is known, we maximize the zeros in L and U
by nested dissection ordering [1]. We build an elimination
tree based on the nested dissection ordering, and precisely



2
1 i+1

i+1

i

i+1 S
DD

D

Figure 1: An example of nested dissection on do-
main cluster Di

identify the nonzeros in L and U by finding a tight bound-
ary of each node in the elimination tree. The boundary of
each node is the union of the unknowns that have a crosstalk
with the unknowns contained in the node, in L and U. Since
each nonleaf node in the elimination tree is a 2-D separator,
the boundary of each node is essentially the union of the
unknowns residing on the bounding box of the 2-D separa-
tor, thus the boundary size is proportional to the node size,
which is 2-D. Since the computation associated with each
node in the elimination tree is essentially a dense matrix
operation of size (node+boundary), we reduce the factor-
ization of the original large 3-D FEM matrix to a sequence
of factorizations of 2-D dense matrices. We then develop
efficient H-matrix based algorithms to accelerate the com-
putation of all the intermediate 2-D dense matrices. After
adding the cost associated with each node in the elimination
tree, the computational complexity of the proposed direct fi-
nite element solver can be theoretically proved to be O(N),
which will be detailed in Section 5. The overall algorithm of
the proposed direct solver has six major steps:

1. Build cluster tree TI based on nested dissection

2. Build elimination tree EI from TI

3. Do symbolic factorization guided by EI to

obtain the boundary for each node N
{j} in EI

4. Generate H-matrix structure FH
N(j)

for each node N
{j} in EI

5. Do numerical factorization guided by EI by

H-matrix-based algorithms

6. Solve for a right hand side based on EI . (8)

4.1 Build cluster tree TI from nested dissec-
tion

Nested dissection [1] is an ordering scheme based on geo-
metrical information. Different ordering techniques can re-
sult in a different number of fill-ins and the nested dissection
ordering has been proved to be optimal for a finite element
matrix in the sense that it minimizes the number of fill-ins.
With nested dissection, a computational domain is recur-
sively divided into two separated subdomains and one in-
terface. An example is shown in Figure 1, where at level
i, a computational domain Di is divided into three parts
Di+1

1 , Di+1
2 , and Si+1, in which D denotes a domain and S

denotes an interface. Subdomain Di+1
1 and Di+1

2 are sepa-
rated by interface Si+1. Let LDi

2×Di
1

be a matrix block in

L in the Di
2-row and Di

1-column, and UDi
1×Di

2
be a matrix

block in U in the Di
1-row and Di

2-column. We can order the

D

D D Si+1

i

1 2
i+1 i+1

S SSD DDD S Si+2 i+2 i+2 i+2 i+2 i+2 i+2 i+2 i+2
1 2 4 5 2
 33 4 1

Figure 2: An example of cluster tree T i
I of domain

cluster Di

unknowns in domain Di as {Di
1, D

i
2, S

i}, then the LDi
2×Di

1

and UDi
1×Di

2
will become zero, and hence reducing fill-ins.

Moreover, if the interface Si+1 is also further divided, i.e.,
Si+1 is divided and ordered as Si+2

1 , Si+2
2 and Si+2

3 , then
Si+2

1 and Si+2
3 are also completely separated by Si+2

2 . The
recursive procedure of the nested dissection results in a tree
structure shown in Figure 2. Each node of the tree is called
a cluster in an H-matrix-based representation, and the en-
tire reversed tree that is rooted at the whole unknown set I
and ended at the leaf unknown sets is called a cluster tree.
Figure 2 shows a sub-tree rooted at the Di cluster. The
nodes at the leaf level are called leaf clusters, and those at
the non-leaf levels are called non-leaf clusters. The partition
is recursively done until the unknown number in each cluster
is no greater than leafsize, a predetermined constant.

4.2 Build elimination tree EI from TI

The elimination tree of a matrix [2] is defined as the struc-

ture with n nodes {N (1), . . . , N (n)} such that node N (p) is

the parent of N (j) if and only if the following is satisfied,

p = min{i > j|LN(i)×N(j) 6= 0} (9)

in which LN(i)×N(j) is one matrix block in factor L with

node N (i) being the row and node N (j) being the column.
Because the sparse matrix Y obtained from a finite-element
method is irreducible, the data structure generated from (9)
is a tree.

In the proposed method, a domain cluster Di in the clus-
ter tree is decomposed and ordered by nested dissection as
{Di+1

1 , Di+1
2 , Si+1}. If we treat each cluster as a node in

the elimination tree, it is easy to verify that node Si+1 is
the parent of node Di+1

1 and Di+1
2 based on (9). Hence, the

elimination tree generated from a nested-dissection based
cluster tree is a tree with the interface cluster being the par-
ent of subdomain clusters. Such a rule can be applied to
each domain cluster recursively. The final elimination tree
constructed for the entire unknown set has nonleaf nodes
being the interface clusters at different levels and leaf nodes
being the domain clusters of leaf size. As an example, the
elimination tree corresponding to the cluster tree shown in
Figure 2 is given in Figure 3. Note that each node N (j)

in elimination tree has its own cluster tree structure. The
elimination tree EI is built upon selected nodes in TI . Com-
bining all nodes in EI will result in I, the entire unknown
set.

In an LU factorization procedure, from the definition of
an elimination tree we can find that factorizing one node
N (j) in the elimination tree, i.e. YN(j)×N(j) , will modify the
matrix content belonging to all its ancestors. In other words,



Si+2
5Si+2

4

D i+2
1 D3

i+2 D i+2
4D i+2

2

Si+1

Figure 3: Illustration of an elimination tree.

UN(j)×ans(N(j)) and Lans(N(j))×N(j) will be updated if we

use ans(N (j)) to denote the combined set of all ancestors of

node N (j). The LU factorization of matrix Y is a bottom-up
or a post-order traversal of the elimination tree EI .

4.3 Symbolic factorization
As mentioned in previous section, factorizing one node

in elimination tree would only affect its ancestors. How-
ever, the combined set of all its ancestors is larger than
what the factorization of one node actually modifies. We
therefore need to find out the minimal set of nodes affected
by the factorization of one node to save time and storage.
In this paper, this minimal set is termed the boundary of
each node, denoted by bnd(N (j)) for each node N (j) in the
elimination tree. As a simple example, a 3-level nested dis-
section on a domain cluster Di is shown in Figure 4, where
the interface cluster Si+1 at level i + 1 is decomposed as
{Si+1

1 , Si+1
2 , Si+1

3 }, and the Si+2 at level i+2 is decomposed
as {Si+2

1 , Si+2
2 , Si+2

3 }. The boundary of Di+3, denoted by
bnd(Di+3), can be identified geometrically as

bnd(Di+3) = {Si+1
1 , S

i+1
2 , S

i+2
2 , S

i+2
3 , S

i+3}. (10)

Mathematically, the LDi+3×bnd(Di+3) is filled due to the as-
sembly of an FEM matrix or the factorization of lower-level
nodes because the bnd(Di+3) is in contact with node Di+3,
while we have

LDi+3×{ans(Di+3)−bnd(Di+3)} = 0. (11)

Hence, if the above block is removed from memory as well
as the factorization process, then the time and storage can
be significantly reduced.

Identifying bnd(N (j)) for each node N (j) in elimination
tree based on geometrical information is straightforward.
However, due to the complication of mesh and the irreg-
ularity in clusters having a small size, a geometrical way
may not generate bnd(N (j)) precisely. We hence develop
the following symbolic factorization procedure to identify
the boundary of each node in the elimination tree. Notice
that a post-ordering or bottom-up tree traversal scheme is

adopted to go through all nodes in the elimination tree.

Initialize bnd(N (i)) from YI×I

For each node N
(i) in elimination tree EI

For each cluster Cj (cluster index) in bnd(N (i))

idx = node index of cluster Cj in EI

For each cluster Ck 6= Cj in bnd(N (i))

Put Ck into bnd(N (idx))

end

end

end (12)

4.4 Generate the H-matrix representation for
each node in EI

After obtaining the boundary for each node in the elimi-
nation tree, the structure of the factorized matrix is known.
This permits the construction of an H-matrix representation
FH

j for each node as the following

FH
j =

 

YH
N(j)×N(j) YH

N(j)×bnd(N(j))

YH
bnd(N(j))×N(j) ŶH

bnd(N(j))×bnd(N(j))

!

(13)

where FH
j is the H-matrix representation of frontal ma-

trix, the YH
N(j)×N(j) , YH

N(j)×bnd(N(j) )
, and YH

bnd(N(j))×N(j)

are unique matrix blocks associated with node N (j). The
ŶH

bnd(N(j))×bnd(N(j))
is composed of multiple pointers that

link different parts to corresponding parts in the H-matrix
representation of the nodes that bnd(N (j)) belongs to. There-
fore, we build the H-matrix representation for three matrix
blocks and form the 4th one with the link to other matrices.
The H-matrix representation of FH

j is constructed based
on the tree described in Section 4.1. Usually, the size of
bnd(N (j)) is larger than that of N (j), therefore, an adaptive
division scheme is introduced to prevent skewed H-matrix
representations, namely a 2 × 1 or 1 × 2 division will be
adopted if the size of row cluster and the size of column
cluster are very different so that the row and column dimen-
sion can be made similar in an admissible block.

4.5 Numerical factorization and Solution
Numerical factorization is done as the following:

For each node N
(j) in EI

collect FH
j , make it ready for factorization

compute LH
N(j)×N(j) , UH

N(j)×N(j) by H-LU

YH
N(j)×N(j) = LH

N(j)×N(j) · U
H
N(j)×N(j)

compute UH
N(j)×bnd(N(j)) by solving

LH
N(j)×N(j) · U

H
N(j)×bnd(N(j)) = YH

N(j)×bnd(N(j) )

compute LH
bnd(N(j) )×N(j) by solving

LH
bnd(N(j) )×N(j) · U

H
N(j)×N(j) = YH

bnd(N(j))×N(j)

update ŶH
bnd(N(j))×bnd(N(j)) by

ŶH
bnd(N(j))×bnd(N(j)) = ŶH

bnd(N(j))×bnd(N(j))

− LH
bnd(N(j))×N(j) · U

H
N(j)×bnd(N(j) )

end (14)



i

S 1
i+1

S 2
i+1

S 3
i+1

S 1
i+2

S 2
i+2

S 3
i+2

S i+3
D i+3

D

Figure 4: Illustration of symbolic factorization on
multi-level domain cluster Di

where the first three operations can be done based on H-
based arithmetic [4], and the last one is performed by devel-
oping an efficient algorithm to update the local H-matrices
associated with the nodes affected the node being factorized.
With L/U known in their H-format, the solution can also
be efficiently obtained for any right hand side.

5. COMPLEXITY AND ACCURACY
Consider a computational domain with the number of un-

knowns along each dimension being n. It is split into 8
smaller domains using nested dissection recursively. One in-
termediate stage is shown in Figure 5, where three shaded
surface separators are combined to form one interface clus-
ter S. The total number of unknowns is N = n3, and the
depth of elimination tree is L = log2 n. For a node N (j), the
dimension of its frontal matrix FH

j satisfies

dim(FH
j ) = #{N (j)} + #{bnd(N (j))}. (15)

As shown in Figure 5, the number of unknowns of the bound-
ary for a cube domain with side length a is proportional to
the surface area, 6a2, and the number of unknowns con-
tained in the interface node is 3a2. Therefore, the following
satisfies:

#{bnd(N (j))} = α#{N (j)} (16)

where α is a constant for an arbitraily-shaped domain, and
equal to 2 for a cube domain. Assuming Fj is at level l

with l = L being the root level, its dimension can be ap-
proximated as dim(Fj) = 3#{N (j)} = 9 × (2l × 2l). It is
proven that the complexity of an H-matrix LU factorization
is bounded by the complexity of an H-matrix multiplication
[4], which is O(m log2 m) for a matrix of dimension m. For

each node N (j) in the elimination tree EI , the operation
associated with this node is hence

Plu(FH
j ) = P (FH

j ⊗ FH
j )

= O
`

2l × 2l log2(2l × 2l)
´

= O
`

22l(2l)2
´

. (17)

The total operation complexity is the summation of the op-
eration complexity of each node in the elimination tree, thus

Plu(YH) =
X

j,N(j)∈EI

Plu(FH
j )

∼

L
X

l=0

8(L−l) × (2l)2(2l)2 = N

L
X

l=0

(
4l2

2l
) = O(N), (18)

which is linear. Similarly, the total storage complexity of

a__
2

a__
2

a

a
S

a

Figure 5: One step in nested dissection

Figure 6: Illustration of a package interconnect.

the proposed solver can be evaluated as

Storagelu(YH) ∼
L
X

l=0

8(L−l) × (2l)2(2l)

= N

L
X

l=0

(
2l

2l
) = O(N). (19)

In the proposed solver, we represent the update and frontal
matrices associated with each node in the elimination tree
by an H matrix. Such an H-matrix representation exists
because the update and frontal matrices are related to the
Schur complement. Since the original FEM matrix has an
exact H-matrix representation and its inverse has an error
bounded H-matrix representation [3], it can be proven that
the intermediate Schur complements obtained during the
factorization process and their inverses both can be repre-
sented by H-matrices with error controlled.

6. NUMERICAL RESULTS

6.1 Package interconnect with measured data
We first validated the accuracy of the proposed method

on a package interconnect provided by a company. Figure 6
illustrates its cross sectional view, top review, and 3-D view.
Due to a nondisclosure agreement, detailed geometrical data
are not shown. In Figure 7, we plot the S-parameters ex-
tracted by the proposed method in comparison with the
measured data and the results generated from a commer-
cial FEM-based tool. Excellent accuracy of the proposed
solver can be observed in the entire frequency band.

6.2 Large-scale inductor array
We then simulated a large-scale 3-D inductor array [3] to

examine the performance of the proposed direct solver. The
computer used is a unix server with an AMD CPU running
at 2.8 GHz. The frequency simulated is 10 GHz. The num-



0 1 2 3 4

x 10
10

−45

−40

−35

−30

−25

−20

−15

−10

−5

Freq (Hz)

|S
1

1
| 
(d

B
)

 

 

Commercial

Measured

Proposed

0 1 2 3 4

x 10
10

−7

−6

−5

−4

−3

−2

−1

0

Freq (Hz)

|S
1

2
| 
(d

B
)

 

 

Commercial

Measured

Proposed

Figure 7: Simulation of a package interconnect. (a)|S11|. (b)|S12|.

0 1 2 3 4 5 6

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

N

F
a
c
to

ri
z
a
ti
o

n
 T

im
e

 (
s
)

 

 

Proposed solver

Multifrontal solver
H−matrix solver

Linear reference

0 1 2 3 4 5 6

x 10
6

0

1

2

3

4

5

6
x 10

4

N

M
e

m
o

ry
 (

M
b

)

 

 

Proposed solver

Multifrontal solver
H−matrix solver

Linear reference

0 1 2 3 4 5 6

x 10
6

10
−4

10
−3

10
−2

10
−1

10
0

N

A
c
c
u
ra

c
y

 

 

Proposed solver

H−matrix solver

Figure 8: Simulation of a large-scale 3-D inductor array from 117,287 to 5,643,240 unknowns at 10 GHz. (a)
LU factorization time. (b) Memory. (c) Accuracy.

ber of inductors varies from 2 × 2 to 14 × 14. The number
of unknowns ranges from 117,287 to 5,643,240. The simula-
tion parameters used are leafsize=8 and η=3. The relative
error for (7) is set as 6e− 5. In Figure 8(a), (b), and (c), we
plot the factorization time, the memory cost, and the accu-
racy of the proposed solver respectively with respect to N in
comparison with both a state-of-the-art multifrontal based
solver [5] and an H-matrix based direct FEM solver. The
accuracy is measured by relative residual. As can be seen
from Figure 8, first, the proposed direct solver demonstrates
a clear linear complexity with good accuracy achieved in the
entire unknown range; second, the proposed method outper-
forms both the multifrontal based solver and the H-matrix
based solver. Notice that the multifrontal solver is based
on exact arithmetic instead of prescribed accuracy, thus its
accuracy is not shown in Fig. 8 (c). We also compared the
performance of the proposed direct solver with a state-of-
the-art iterative FEM solver available in the market. The
computer used is a PC having an Intel CPU running at 2.4
GHz. Due to limited memory available on this PC, a 5 × 5
inductor array is simulated. To extract the S-parameters at
50 ports of the inductor array, the proposed direct solver
only costs 558.39 s, whereas the commerical iterative FEM
solver costs 2208 s.

7. CONCLUSION
A linear-complexity direct sparse matrix solution is devel-

oped for FEM-based large-scale 3-D circuit extraction with
arbitrarily shaped lossy conductors in inhomoegenous mate-
rials. A comparison with both state-of-the-art direct FEM

solvers and an iterative FEM solver has demonstrated its
superior performance.

8. ACKNOWLEDGMENT
This work was supported by a grant from SRC (Task

1292.073). The authors would also like to thank Dr. Hen-
ning Braunisch at Intel for providing the interconnect struc-
ture and measured data.

9. REFERENCES
[1] A. George. Nested dissection of a regular finite

element mesh. SIAM J. on Numerical Analysis,
10(2):345–363, April 1973.

[2] J. W. H. Liu. The multifrontal method for sparse
matrix solution: Theory and practice. SIAM Review,
34(1):82–109, March 1992.

[3] H. Liu and D. Jiao. Existence of H-matrix
representations of the inverse finite-element matrix of
electrodynamic problems and H-based fast direct
finite-element solvers. IEEE Trans. MTT,
58(12):3697–3709, December 2010.

[4] S. Borm, L. Grasedyck, and W. Hackbusch.
Hierarchical matrices. Lecture note 21 of the Max
Planck Institute for Mathematics, 2003.

[5] UMFPACK5.0. [on line]
http://www.cise.ufl.edu/research/sparse/umfpack/.


