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Abstract—We develop a new time-domain method that is natu-
rally matrix free, i.e., requiring no matrix solution, regardless of
whether the discretization is a structured grid or an unstructured
mesh. Its matrix-free property, manifested by a naturally diag-
onal mass matrix, is independent of the element shape used for
discretization and its implementation is straightforward. No dual
mesh, interpolation, projection, and mass lumping are required.
Furthermore, we show that such a capability can be achieved
with conventional vector basis functions without any need for
modifying them. Moreover, a time-marching scheme is developed
to ensure the stability for simulating an unsymmetrical numer-
ical system whose eigenvalues can be complex-valued and even
negative, while preserving the matrix-free merit of the proposed
method. Extensive numerical experiments have been carried out
on a variety of unstructured triangular, tetrahedral, triangular
prism element, and mixed-element meshes. Correlations with
analytical solutions and the results obtained from the time-do-
main finite-element method, at all points in the computational
domain and across all time instants, have validated the accuracy,
matrix-free property, stability, and generality of the proposed
method.

Index Terms—Electromagnetic analysis, finite-difference time
domain (FDTD) methods, matrix-free methods, time-domain fi-
nite-element methods, time-domain methods, unstructured mesh.

I. INTRODUCTION

M ANY engineering challenges demand an efficient com-
putational solution of large-scale problems. If a com-

putational method can be made matrix free, i.e., free of matrix
solutions, then it has a potential of solving very large scale prob-
lems. Among existing computational electromagnetic methods,
the explicit finite-difference time-domain (FDTD) method [1],
[2] is free of matrix solutions. However, it requires a structured
orthogonal grid for space discretization. To overcome this lim-
itation, many nonorthogonal FDTD methods have been devel-
oped such as the curvilinear FDTD [3]–[5], contour and con-
formal FDTD [6]–[8], discrete surface integral (DSI) methods
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[9], generalized Yee-algorithms [10]–[15], and the Finite Inte-
gration Technique with affine theories [16]. Needless to say,
they have significantly advanced the capability of the original
FDTD method in handling unstructured meshes.
In existing nonorthogonal FDTD methods, a dual mesh is

generally required. The dual mesh needs to satisfy a certain re-
lationship with the primary mesh. Such a dual mesh may not
exist in an unstructured mesh. For cases where the dual mesh
exists, the accuracy of many nonorthogonal FDTDmethods can
still be limited. This is because in these methods, the field un-
knowns are placed along the edges of either the primary mesh or
the dual mesh, and are assumed to be constant along the edges.
Restricted by such a representation of the fields, one can only
obtain the dual field accurately (second-order accurate) at the
center point of the loop of the primary field, and along the direc-
tion normal to the loop area. Elsewhere and/or along other direc-
tions, the accuracy of the dual field cannot be ensured. However,
the points and directions, where the dual fields can be accurately
obtained, are not coincident with the points and directions of the
dual fields located on the dual mesh, in an unstructured mesh.
Actually, the only mesh that can align the two is an orthogonal
grid, which is used by the traditional FDTDmethod. As a result,
the desired dual fields have to be obtained by interpolations and
projections, the accuracy of which is difficult to control in an
arbitrary unstructured mesh. It is observed that many interpola-
tion and projection schemes lack a theoretical error bound. The
same is true to the primary fields obtained from the dual fields.
In addition to accuracy, stability is another concern since the

curl operation on is, in general, not reciprocal to that on
in existing methods developed for irregular meshes. It can be
proved that such a nonreciprocal operation can result in com-
plex-valued or negative eigenvalues in the underlying numer-
ical system. They make a traditional explicit time-marching ab-
solutely unstable. This fact was also made clear in [15]. As a
consequence, it remains a research problem how to ensure both
accuracy and stability of an FDTD-like method in an unstruc-
tured mesh.
The finite-element method in time domain (TDFEM) [17] has

no difficulty in handling arbitrarily shaped irregular meshes, but
it requires the solution of a mass matrix, thus not being ma-
trix-free in nature. The mass-lumping has been used to diago-
nalize the mass matrix in TDFEM, and also finite integration
technique [16]. But it requires well-shaped elements to be accu-
rate [18]. In addition to mass lumping, orthogonal vector basis
functions have been developed to render the mass matrix diag-
onal [19], [20]. These bases are element-shape dependent. They
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also rely on an approximate integration to make the mass ma-
trix diagonal. In recent years, Discontinuous Galerkin time-do-
main methods [21], [22] have been developed, which only in-
volve the solution of local matrices of small size. However, this
is achieved by not enforcing the tangential continuity of the
fields across the element interface at the same time instant. Cer-
tainly, an accurate result would still have to satisfy the conti-
nuity conditions of the fields. Not satisfying them has implica-
tions in either accuracy or efficiency. For example, it is observed
that a Discontinuous Galerkin time-domain method typically re-
quires a time step much smaller than that of a traditional explicit
time-domain method for accurate transient analysis. Recently, a
new time-domain method is developed in [23], which requires
no matrix solution regardless of whether the discretization is a
structured grid or an unstructured mesh. Since the curl operation
on and that of are enforced to be reciprocal of each other
in [23], although the stability is guaranteed for an arbitrary un-
structured mesh, the accuracy remains to be a strong function of
mesh quality.
In this paper, we develop an accurate and stable matrix-free

time-domain method that is independent of the element shape
used for discretization. The tangential continuity of the fields
is satisfied across the element interface at each time instant.
No dual mesh, interpolation, projection, and mass-lumping are
needed. The accuracy and stability are both guaranteed for an ar-
bitrary unstructured mesh. This method is also made very easy
to implement. In addition, in a structured grid and with zeroth-
order vector bases, the proposed method reduces exactly to the
FDTD. The basic idea of this paper was outlined in [24], where
2-D formulations are provided, and modified higher-order bases
are developed to achieve a matrix-free method. In this paper,
we present 3-D formulations of [24] for general electromagnetic
analysis. We also show the proposed matrix-free method can be
formulated without modifying the traditional vector basis func-
tions. In addition, a comprehensive analysis is conducted on the
accuracy and stability of the proposed method. Numerical re-
sults on various highly unstructured triangular, tetrahedral, tri-
angular prism meshes as well as meshes with mixed-elements
are presented to demonstrate the accuracy, matrix-free property,
and generality of the proposed method.

II. PROPOSED FRAMEWORK FOR CREATING A MATRIX-FREE
TIME-DOMAIN METHOD

In this section, we present a general framework for creating
a matrix-free time-domain method independent of the shape of
the elements used for discretization. We separate the presenta-
tion of the framework from that of the detailed formulations (to
be given in next section) because the formulation corresponding
to the proposed framework is not unique. Under the proposed
framework, we can develop different formulations to achieve a
matrix-free time-domain method.
Consider a general electromagnetic problem involving arbi-

trarily shaped geometries and materials. For such a problem, an
unstructured mesh with arbitrarily shaped elements is more ac-
curate and efficient for use, as compared to an orthogonal grid.
The elements do not have to be of the same type. They can be a
mix of different types of elements such as tetrahedral, triangular

prism, and brick elements. Starting from the differential form of
Faraday's law and Ampere's law

(1)

(2)

we pursue a discretization of the two equations in time domain,
which can yield a numerical system free of matrix solutions in-
dependent of the element shape used for discretization.

A. Discretization of Faraday's Law
To discretize Faraday's law, we propose to expand the elec-

tric field in each element by a set of vector bases
as the following:

(3)

where is the unknown coefficient of the th vector basis ,
and is the number of vector bases in each element. The de-
grees of freedom of the vector bases are defined not only
on the faces of the element but also inside the element. Such a
choice of vector bases permits accurate generation of the other
field unknown at any point along an arbitrary direction, without
a need for interpolation and projection.
Substituting the expansion of into (1), computing at

points , and then taking the dot product
of the resultant with unit vector at each point respectively,
we obtain

(4)

which can be compactly written into the following linear system
of equations:

(5)

where is a diagonal matrix of the permeability,
is a global vector of length whose th entry is

(6)

and is a sparse matrix, the nonzero entries of which are

(7)

where denotes the global index of the -point, and is the
global index of the 's vector basis function. Let be the
total number of vector bases used to expand . The is of
size . During the procedure of constructing , the
tangential continuity of is enforced since the tangential elec-
tric fields at the element interface are uniquely defined in global
vector , and shared in common by all elements.

B. Discretization of Ampere's Law
To discretize Ampere's law, we apply it at

points, and then take the dot product of the
resultant with unit vector at each point, where and are
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associated with the degrees of freedom of the vector bases used
in (3). We obtain

(8)

where

(9)

which is at point along the direction. The at
point in (8) is generated by using the fields [obtained from
(5)] encircling . For example, if is located at an element
interface, the fields used to generate it are sampled across
the elements sharing . A detailed formulation with guaranteed
accuracy will be given in next section. As a result, we obtain the
following discretization of Ampere's law

(10)

where is a sparse matrix of size , and de-
notes the discretized op-
eration, the th entry of is , and the and

are the diagonal matrices of permittivity, and con-
ductivity respectively.

C. Connecting Ampere's Law to Faraday's Law

In order to connect (10) to (5), we need to find the relationship
between and . In [24], by making a minor modification
of the traditional vector bases, we make . In this
work, we show the traditional vector bases can also be kept as
they are without any need for modification. In this case, we can
find an analytical relationship between and as

, with an extremely simple block diagonal matrix whose
diagonal blocks are either of size 1 1 or 2 2. The detailed
formulation of will be given in next section.
In addition, when generating (5), apparently, we have an in-

finite number of choices of the points and the directions
for computing the discrete . However, to connect (5) to (10),
we need to keep in mind that the -points and directions we
choose should facilitate accurate generation of the desired
in (5) so that we can march on in time step by step—from
to via (5), and then from back to through (10).

D. Time Marching

A leap-frog-based time discretization of (5) and (10) clearly
yields a time-marching scheme free of matrix solutions as
follows:

(11)

(12)

where is the time step, and the time instants for and ,
denoted by superscripts, are staggered by half. Neither (11) nor
(12) involves a matrix solution.
Equations (5) and (10) can also be solved in a second-order

based way. Taking another time derivative of (10) and substi-
tuting (5), we obtain

(13)
where

(14)

It is evident that the above numerical system is also free of ma-
trix solutions with a central-difference based discretization in
time. This is because the matrix in front of the second-order time
derivative, which is known as mass matrix, and the matrix be-
fore the first-order time derivative are both naturally diagonal.
Since the matrices are made naturally diagonal in the proposed
method, no approximation-based mass-lumping is needed.
It is also worth mentioning that the leap-frog-based time dis-

cretization shown in (11) and (12) is the same as the central-dif-
ference-based explicit discretization of the second-order system
(13). This can be readily seen by writing the counterpart of (12)
for evaluating , i.e., replacing by in (12), sub-
tracting the resultant from (12), and then substituting (11) to re-
place the term. Since (11) and (12) are
the same as the explicit discretization of (13), we can directly
solve (13), which also has only half a number of unknowns. If

unknowns are needed, they can readily be recovered from
through (11).

E. Remark
In the framework described above, we expand into certain

vector basis functions in each element, while sampling the
unknowns at discrete points to generate desired unknowns.
One can also switch the roles of the electric and magnetic fields:
expand the into vector basis functions in each element, while
sampling the unknowns. Which way to use depends on the
convenience for solving a given problem.

III. PROPOSED FORMULATIONS

In this section, we present detailed formulations to realize the
aforementioned matrix-free framework with guaranteed accu-
racy and stability. Since 2-D formulations have been presented
in [24], 3-D formulations will be the focus of this section.

A. Accurate Construction of and 's Degrees of Freedom
A common choice of the vector basis functions for expanding

the fields is the zeroth-order curl-conforming bases (edge ele-
ments) [25]. These bases have constant tangential components
along the edges where they are defined. The field representation
in the traditional FDTD is, in fact, a zeroth-order vector basis
representation in an orthogonal cell. However, the zeroth-order
vector bases have a constant curl in every element. Using such
bases to represent , the resultant is a constant in each el-
ement, and the is only second-order accurate at the center
point of each element. From such discrete -fields, we cannot
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Fig. 1. (a) Locations of points required for the accurate evaluation of at
point . (b) Locations of points with zeroth-order vector bases.

reversely obtain the unknowns associated with the zeroth-
order vector bases accurately in an arbitrarily shaped element.
To help understand the aforementioned point more clearly, take
a 2-D problem discretized into arbitrarily shaped triangular el-
ements as an example. Consider an arbitrary th edge. With the
zeroth-order vector bases to expand , the shown in (9) has
the unit vector tangential to the th edge, and the center

point of the th edge, as illustrated in Fig. 1. To obtain such an
accurately from the discrete (now only since the problem
is 2-D), the two -points should be located on the line that is
perpendicular to the th edge and centered at the point , as
shown in Fig. 1(a). In this way, the edge is perpendicular to the
-loop (in the plane defined by -direction and the line normal

to the edge), and resides at the center of the loop. As a result, an
accurate can be obtained from a space derivative of the two

unknowns. However, using the zeroth-order edge elements,
the curl of is constant in every element, thus we cannot gen-
erate at the desired points accurately. From another perspec-
tive, we can view the obtained at the center point of every
element to be accurate. However, in an arbitrary unstructured
mesh, the line segment connecting the center points of the two
elements sharing an edge may not be perpendicular to the edge,
and the two center points may not have the same distance to the
edge either, as illustrated in Fig. 1(b).
To overcome the aforementioned problem, we propose to use

higher-order curl-conforming vector bases to expand in each
element. With an order higher than zero, the curl of and hence

is at least a linear function of , , and in each element.
With this, the can be obtained at an arbitrary point along an
arbitrary direction accurately from (5). We hence can use this
freedom to choose points and directions in such a way that
they can reversely generate unknowns accurately from (10).
First-order bases are sufficient for use. Certainly, one can

employ bases whose order is even higher. This is one of the
reasons why the detailed formulations corresponding to the
proposed framework are not unique. In this work, first-order
bases are used, since they satisfy the need of the proposed
matrix-free method and they minimize computational overhead
as compared to other bases. For completeness of this paper,
in Appendix, we list all the twenty first-order bases in a tetra-
hedral element [26] together with their degrees of freedom
defined in terms of locations and projection directions

.

B. Relationship Between and

The vector contains the unknown coefficients of vector
basis functions as shown in (3), while vector contains the

discrete electric fields at points along directions as defined
in (9). If , then . Hence, (10) and (5)
are directly connected to each other. Among higher-order vector
basis functions [26], the vector bases associated with edges sat-
isfy naturally. However, the bases defined on
the faces and those inside the element, in general, do not. This
problem can be solved by modifying the original higher-order
vector bases to make , as done in [24]. We can also
keep the original higher-order vector bases as they are, but find
the relationship between and as follows.
Substituting (3) into (9), we have

(15)

from which we obtain

(16)

where matrix obviously has the following entries:

(17)

The is of size but an extremely simple matrix—It is a
block diagonal matrix with each diagonal block of size either
1 or 2. To be specific, for the vector basis function whose
degree of freedom is associated with edges, the and
elsewhere in the th row ; for the vector basis function
whose degree of freedom is not associated with edges, it is either
defined on faces or inside the element. Such a basis function
comes in as a pair, for which there are two nonzero elements on
the th row of , and two nonzero elements on the th row
of , forming a 2 2 diagonal block in as the following

(18)

The off-diagonal terms in the above do not vanish because for
face or internal degrees of freedom, the basis function pair as-
sociated with each point are not perpendicular to each other
in terms of the vector basis's direction. Overall, the can be
written as

(19)

where each diagonal block is equal to either 1 or a 2 2
matrix shown in (18), which can be readily inverted to obtain

, denoted by . Obviously, is also a block diagonal ma-
trix whose diagonal blocks are of size either 1 or 2. As a result,
we find a closed-form relationship between from as

(20)

Equation (5) hence can be rewritten as

(21)

Thus, (10) and (5) are connected to each other.
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Fig. 2. points and directions for generating .

C. Accurate Construction of and Choice of 's Points
and Directions
To construct (10) accurately, we propose to use an -loop

uniquely defined for each 's degree of freedom to obtain the
desired in (5). This loop centers each 's degree of freedom, and
is also positioned perpendicular to the 's degree of freedom.
This -loop can be chosen in its simplest manner: a 1-D line
segment in 2-D settings, and a 2-D rectangular loop centering
and normal to the 's degree of freedom in 3-D problems, as
shown in Fig. 2. Regardless of the shape of the element, such
a rectangular loop can always be defined for each unknown.
Along this loop, we select the middle points of the four sides
as -points and the four unit vectors tangential to each side as
-directions to generate . As a result, each unknown

is associated with four -points and directions. These -points
are all located inside the elements that share the unknown,
instead of being selected on the faces of the elements. In this
way, each point is located only in one element, and hence
the -field at the point can be readily found from (5). The set
of -points and -directions defined for each makes the
whole set of -points denoted by , and the whole set of
-directions denoted by .
With the aforementioned choice of -points and directions,

the in (8) can be accurately discretized with second-
order accuracy as the following

(22)

where is the distance between and , while is the
distance between and as illustrated in Fig. 2. With (22),
we obtain

(23)

where denotes the global index of the -point associated with
the , and is simply two times the distance between the
-point ( ) and the -point . Each row of has only

four nonzero elements.
Obviously, there is no need to construct a dual mesh for

as the -points and -directions we select are individually de-
fined for each unknown, which do not make a mesh. In addi-
tion, regardless of the choice of -points and directions, there
is no difficulty in generating corresponding from (5) accu-
rately, due to the use of higher-order basis functions.

D. Imposing Boundary Conditions
The proposed method, in its first-order form (11)–(12), con-

forms to that of the FDTD numerical system; in its second-
order form (13), conforms to the second-order wave equation

based TDFEM. Hence, the boundary conditions in the proposed
method can be implemented in the same way as those in the
TDFEM and FDTD. Below we provide more details.
For closed-region problems, the perfect electric conductor

(PEC), the perfect magnetic conductor (PMC), or other nonzero
prescribed tangential or tangential are commonly used
at the boundary. To impose prescribed tangential at
boundary points, in (5), we simply set the entries at the

points to be the prescribed value, and keep the size of
the same as before to produce all discrete from the
discrete . In (10), since the entries at the points are
known, the updating of (10) only needs to be performed for
the rest entries. As a result, we can remove the

rows from corresponding to the boundary fields,
while keeping the column dimension of the same as before.
The above treatment, from the perspective of the second-order
system shown in (13), is the same as keeping just
rows of , providing the full-length (with the boundary
entries specified) for the multiplied by , but taking only
the rows of all the other terms involved in (13).
To impose a PMC boundary condition, the total unknown
number is without any reduction. Equation (5) is formulated
as it is since the -points having the PMC boundary condition
can be placed outside the computational domain. As for (10),
there is no need to make any change either since the tangential

is set to be zero outside the computational domain. The end
result is the same as a TDFEM numerical system subject to the
second-kind boundary condition.
For open-region problems, the framework of (5) and (10) in

the proposed method is conformal to that of the FDTD. As a re-
sult, the various absorbing boundary conditions that have been
implemented in FDTD such as the commonly used PML (per-
fectly matched layer) can be implemented in the same way in
the proposed matrix-free method.

IV. TIME MARCHING FREE OF MATRIX-SOLUTION WITH
GUARANTEED STABILITY

A leap-frog-based time marching shown in (11)–(12) as well
as a central-difference based time discretization of (13) is abso-
lutely matrix-free, i.e., free of a matrix solution. However, both
are absolutely unstable since the curl-curl operator here is an
unsymmetrical matrix. This is not only true for the proposed
method but also true for any method whose curl operation on
one field unknown is not the reciprocal of the curl operation on
the other field unknown. To prove, we can perform a stability
analysis of (11)–(12) and (13) [27], [28]. The -transform of
the central-difference based time marching of (13), or (11)–(12)
after eliminating , results in the following equation:

(24)

where is the eigenvalue of . The two roots of (24) can be
readily found as

(25)

If is Hermitian positive semidefinite like that resulting from
TDFEM or FDTD in an orthogonal grid, all its eigenvalues are
nonnegative real. Thus, we can always find a time step to make
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in (25) bounded by 1, and hence the explicit simulation of
(13) as well as (11)–(12) is stable. Such a time step satisfies

, where is the maximum eigenvalue of
, which is also 's spectral radius. However, if is not sym-

metrical, which is the case in the proposed method and many
existing nonorthogonal FDTD methods, its eigenvalues either
are real (can be negative) or come in complex-conjugate pairs.
For complex-valued eigenvalues as well as negative ones, the
two roots and shown in (25) satisfy , and neither
of them has modulus equal to 1. As a result, the modulus of one
of them must be greater than 1, and hence the explicit time-do-
main simulation of (13) and (12) must be unstable.
However, if we choose to make symmetric, the

accuracy cannot be guaranteed in a general unstructured mesh.
This dilemma is solved as follows without sacrificing the ma-
trix-free merit of the proposed method. Basically, we can start
with the following backward-difference based discretization of
(13) [17]:

(26)

where the associated with is chosen at the th time
step instead of the th step. Performing a stability analysis of
(26) for lossless cases, we find the two roots of as

(27)

As a result, the can still be bounded by 1 even for an infinitely
large time step. However, this does not mean the backward dif-
ference is unconditionally stable since now the can be com-
plex-valued or even negative. To make the magnitude of (27)
bounded by 1, we find that the time step needs to satisfy the fol-
lowing condition

(28)

where denotes the imaginary part of . It is obvious to
see that the scheme is stable for large time step, but not stable
for small time step. Such a requirement happens to align with
preferred choices of time step, since a large time step is desired
for an efficient simulation.
Rearranging the terms in (26), we obtain

(29)

where

(30)

Since is not diagonal, (29) requires a matrix solution. To
avoid that, we can solve this problem as follows.
Let the diagonal part of be , which means

(31)

Front multiplying both sides of (29) by , we obtain

(32)

where is the right hand side of (29), and

(33)

Although (29) permits the use of any large time step, when we
choose the time step based on that of a conventional explicit
method, the time step satisfies

(34)

and therefore

(35)

This time step is also the time step required by accuracy when
space step is determined by accuracy. Since in (31) is diag-
onal, the norm of its inverse can be analytically evaluated as

(36)

We therefore obtain from (35) and (36)

(37)

As a result, the inverse of can be explicitly represented
as a series expansion

(38)

which can be truncated after the first few terms without sac-
rificing accuracy due to (37). Thus, the system matrix has an
explicit inverse, and hence no matrix solution is required in the
proposed method. The final update equation becomes

(39)

where is a diagonal matrix which is 's inverse. The number
of terms is guaranteed to be small (less than 10) since (37)
holds true, and the central-difference-based time step (34) is
usually not chosen right at the boundary, , but smaller
for better sampling accuracy. Notice that the spectral radius of
, as revealed in (37), is essentially the square of the ratio of

the actual time step used to the largest time step permitted
by the stability of a conventional explicit scheme .
It is a constant irrespective of the mesh quality. Therefore, the
convergence of (38) is guaranteed and the convergence rate does
not depend on the mesh quality. Notice that using (38) does
not change the stability analysis since it is used to obtain the
inverse of system matrix, which does not change the backward
difference based time marching scheme.
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The computational cost of (39) is sparse matrix-vector mul-
tiplications since each term can be computed from the previous
term. For example, if we first compute , then the
second term in (39) can be obtained from . Let the resul-
tant be . The third term relating to is nothing but .
Therefore, the cost for computing each term in (39) is the cost
of multiplying by the vector obtained at the previous step,
thus efficient.

V. RELATIONSHIP WITH FDTD

In a regular orthogonal grid and with the zeroth-order vector
bases, the proposed method reduces exactly to the FDTD. This
is very different from the mixed formulation like [29]
where mass lumping has to be used to prove equivalency. To ex-
plain, for a 2-D rectangular grid and a 3-D brick-element based
discretization, with a zeroth-order edge vector basis used in each
rectangular or brick element, the operation of in the pro-
posed method is the same as how the curl of is discretized
in the FDTD; and the operation of with is
the same as how the curl of is discretized in the FDTD.
Furthermore, since naturally satisfies in an orthog-
onal grid, the resulting numerical system is symmetric and pos-
itive semidefinite. Hence the original leap-frog explicit time
marching is stable without any need for special treatment. That
is also why in a traditional FDTD with an orthogonal grid, an
explicit time marching is never observed to be absolutely un-
stable because the system matrix is symmetric.
To see the above point more clearly, take the 2-D rectangular

grid as an example. The is simply a union of at the
center point of each edge, with being either or along each
edge; and the is nothing but the vector containing at the
center point of each rectangular patch. Each row of has four
nonzero elements as each element has four bases. Multiplying
the th row of by is nothing but

(40)

where , , , are the global indexes of the four edge basis
functions in the rectangular element where the point is lo-
cated, and and are the two side lengths of the rectangular
element. It is evident that (40) is the same as that performed in
the FDTD to produce the at the center of each -loop. With

, the operation of is to do

(41)

where is simply the length of the side that is perpendicular
to edge in a rectangular element. Obviously, the above is the
same as that used in the FDTD to calculate fields, which is
an accurate discretization of of second-order accuracy
at the center point of an edge for along the edge.
In addition, even in an orthogonal grid, the implementation

of the proposed method is more convenient, since no dual grid
is needed. After is formed for the grid, is known as

without any construction cost. For unstructured meshes, the
FDTD method would fail, whereas the proposed method is ac-
curate and stable regardless of how irregular and unstructured
the mesh is.

Fig. 3. Simulation of wave propagation and reflection in a 2-D triangular mesh.
(a) Mesh. (b) Illustration of incident wave and truncation boundary conditions.

VI. NUMERICAL RESULTS
In this section, we simulate a variety of 2- and 3-D unstruc-

tured meshes to demonstrate the validity and generality of the
proposed matrix-free method in analyzing arbitrarily shaped
structures and materials discretized into unstructured meshes.
The accuracy of the proposed method is validated by comparing
with both analytical solutions and the TDFEM method that is
capable of handling unstructured meshes but not matrix-free.

A. 2-D Triangular Mesh
The first example is a wave propagation and reflection

problem in an 2-D triangular mesh shown in Fig. 3(a). Some
mesh elements are very skewed due to fine features in a
narrow gap whose size is less than a few . The dielectric
constant is in the red shaded region and 1 else-
where. The incident is specified as , where

, ,
s, and denotes the speed of light. The top, bottom and

right boundaries are terminated by PEC, while the left boundary
is truncated by the sum of the incident and reflected fields as
illustrated in Fig. 3(b). Since the left boundary is not close to the
dielectric discontinuity, the reflected field at the left boundary
can be analytically approximated as ,
where is the -coordinate at the left boundary, and is the
width of the computational domain.
In the proposed method, the number of expansion terms

used is 9 in (38). For comparison, we simulate the same
example by TDFEM since it is capable of handling un-
structured meshes. The time step used in both methods
is . In Fig. 4(a), the electric fields at two
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Fig. 4. Simulation of a 2-D triangular mesh. (a) Electric fields at two points.
(b) Entire solution error versus time.

points and
randomly selected

are plotted in comparison with TDFEM results. The directions
of the two fields are respectively , and

. Excellent agreement can be observed
with TDFEM results. Such an agreement is also observed at all
points for all time. As shown in Fig. 4(b), the entire solution
error as compared with the TDFEM solution is less than 2% at
all time instants. A few peak errors are due to the comparison
with close-to-zero fields. The entire solution error is defined by

(42)

where denotes the entire unknown vector of
length solved from the proposed method, and
denotes the reference solution, which is TDFEM result in this
example.

B. Wave Propagation in a 3-D Box Discretized into
Tetrahedral Mesh
A 3-D box discretized into tetrahedral elements is simulated

in free space. The mesh details are shown in Fig. 5. The dis-
cretization results in 544 edges and 350 elements. To investigate
the accuracy of the proposed method in such a mesh, we con-
sider that the most convincing comparison is a comparison with
analytical solution. We hence study a free-space wave propaga-
tion problem whose analytical solution is known. To simulate
such an open-region problem,we impose an analytical boundary
condition, i.e., the known value of tangential , on the outer-
most boundary of the problem; we then numerically simulate

Fig. 5. Illustration of the tetrahedron mesh of a 3-D structure.

Fig. 6. Simulation of a 3-D box discretized into tetrahedral elements. (a) Simu-
lated two electric fields in comparison with analytical results. (b) Entire solution
error for all unknowns versus time.

the fields inside the computational domain and correlate results
with the analytical solution.
The structure is illuminated by a plane wave having

, where ,
, and . The time step used in the pro-

posed method is , which is the same as
what a traditional central-difference based TDFEM has to use
for stability. The number of expansion terms is 9 in (38). In
Fig. 6(a), we plot the first and 1832th entry randomly selected
from the unknown vector, which represent , with

, and 1832 respectively. From Fig. 6(a), it can be seen
clearly that the electric fields solved from the proposed method
have an excellent agreement with analytical results. To further
verify the accuracy of the proposed method in the entire com-
putational domain, we assess the entire solution error (42) as a
function of time, where the reference solution is analytical re-
sult . In Fig. 6(b), we plot across the
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Fig. 7. (a) Entire solution error versus time of all unknowns obtained from
-rows of equations. (b) Entire solution error versus time of all obtained

from -rows of equations.

whole time window in which the fields are not zero. It is ev-
ident that less than 4% error is observed at each time instant,
demonstrating the accuracy of the proposed method. The center
peak in Fig. 6(b) is due to a comparison with close to zero fields.
In addition to the accuracy of the entire method, we have

also examined the accuracy of the individual , and sep-
arately, since each is important to ensure the accuracy of the
whole scheme. First, to solely assess the accuracy of , we per-
form the time marching of (5) only without (10) by providing
an analytical to (5) at each time step. The resultant is
then compared to analytical at each time step. As can
be seen from Fig. 7(a) where the following -error

(43)

is plotted with respect to time, the error of all unknowns is
less than 3% across the whole time window, verifying the accu-
racy of .
Similarly, in order to examine the accuracy of , we perform

the time marching of (10) only without (5) by providing an an-
alytical to (10) at each time step. The relative error of all
unknowns shown in (42) as compared to analytical solutions

is plotted with time in Fig. 7(b). Again, very good accuracy is
observed across the whole time window, verifying the accuracy
of .

C. Wave Propagation in a Sphere Discretized into Tetrahedral
Mesh
The third example is a sphere discretized into tetrahedral

elements in free space, whose 3-D mesh is shown in Fig. 8.

Fig. 8. Illustration of the tetrahedron mesh of a sphere structure.

Fig. 9. Simulation of a 3-D sphere discretized into tetrahedral elements.
(a) Two electric fields in comparison with analytical results. (b) Entire solution
error for all unknowns versus time.

The discretization results in 3183 edges and 1987 tetrahedrons.
Again, we set up a free-space wave propagation problem in the
given mesh to validate the accuracy of the proposed method
against analytical results. The incident has the same form
as that of the first example, but with in
accordance with the new structure's dimension. The outermost
boundary of the mesh is truncated by analytical fields. The
time step used is , which is the same as that
used in a traditional TDFEMmethod. The number of expansion
terms is 9 in (38). The two degrees of freedom of the electric
field, whose indices in vector are 1 and 9762, respectively,
are plotted in Fig. 9(a) in comparison with analytical data.
Excellent agreement can be observed. In Fig. 9(b), we plot the
entire solution error shown in (42) versus time. Less than 3%
error is observed in the entire time window. It is evident that
the proposed method is not just accurate at certain points, but
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Fig. 10. Top view of the triangular prism mesh of an coaxial cylinder structure.

Fig. 11. Simulation of a 3-D coaxial cylinder discretized into triangular prism
elements. (a) Two electric fields in comparison with analytical results. (b) Entire
solution error for all unknowns versus time.

accurate at all points in the computational domain for all time
instants simulated.

D. Coaxial Cylinder Discretized Into Triangular Prism Mesh

The fourth example has an irregular triangular prism mesh,
the top view of which is shown in Fig. 10. The structure has
two layers of triangular prism elements (into the paper) with
each layer being 0.05 m thick. The discretization results in 3092
edges and 1038 triangular prisms. Both the innermost and out-
ermost boundaries are terminated by exact absorbing boundary
condition, which is the analytical tangential on the boundary.
The incident has the same form as that in the first example,
but with . The used is and the
number of expansion terms is 9. Two observation points, whose
indices in vector are 1 and 11 272 respectively, are chosen

Fig. 12. Simulation of a mesh having different types of elements. (a) Illustra-
tion of the mesh. (b) Two electric fields in comparison with analytical results.
(c) Entire solution error for all unknowns versus time.

to plot the electric fields in Fig. 11(a). Excellent agreement with
analytical solutions can be observed. In Fig. 11(b), we plot the
entire solution error shown in (42) versus time in comparison
with the reference results which are analytical solutions. Again,
excellent accuracy (less than 0.7% error) is observed at all points
in the computational domain for all time instants simulated.

E. Mesh With Mixed Elements

We have examined the capability of the proposed method in
handling meshes made of different types of elements. This mesh
is illustrated in Fig. 12(a), which consists of 1312 triangular el-
ements in the center and 84 rectangular elements surrounding
it. In each triangular element, there are eight first-order vector
bases; and in each rectangular element, there are 12 first-order
vector bases. The interface between a rectangular and a trian-
gular element is an edge, where the degrees of freedom from
both elements are shared in common to ensure the tangential
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Fig. 13. Illustration of materials and geometry of a package inductor.

continuity of the fields. A wave propagation problem is simu-
lated in this mixed-element mesh. The incident field is a plane
wave having ,
where , and . The time step used is

. In Fig. 12(b), the electric fields at two randomly se-
lected points are plotted in comparison with analytical data. Ex-
cellent agreement can be observed. In Fig. 12(c), the entire so-
lution error is plotted as a function of time. Again, excellent
accuracy is observed, which verifies the capability of the pro-
posed method in handling meshes having mixed types of ele-
ments. Such a capability also facilities a convenient implemen-
tation of various absorbing boundary conditions such as the per-
fectly matched layer.

F. S-Parameter Extraction of a Lossy Package Inductor
In this example, we simulate a package inductor made of

lossy conductors of conductivity 5.8e+7 S/m, and embedded in
a dielectric material of relative permittivity 3.4. Its geometry
and material parameters are illustrated in Fig. 13. The inductor
is discretized into five layers of triangular prism elements, the
thickness of each of which is 6.5, 30, 6.5, 8.5, and 30 from
bottom to top, respectively. The top view of the mesh is shown
in Fig. 14(a). The boundary conditions are PEC on the top and
at the bottom, and PMC on the other four sides. A current source
is launched respectively at the two ports of the inductor. It has
a Gaussian derivative pulse of ,
with , and . The number of expan-
sion terms is 10 used in this simulation. The voltages obtained
at both ports with port 1 (upper port) excited and port 2 open are
plotted in Fig. 14(b) in comparison with the TDFEM results. Ex-
cellent agreement can be observed. The -parameters are also
extracted and compared with those generated from the TDFEM.
Very good agreement can be seen from Fig. 14(c) and (d) across
the entire frequency band.

G. CPU Time and Memory Comparison
Among existing time-domain methods for handling unstruc-

tured meshes, the TDFEM only requires a single mesh like the
proposed method. The TDFEM also has guaranteed stability
and accuracy, and it ensures the tangential continuity of the
fields across material interfaces. We hence choose the TDFEM
to benchmark the performance of the proposed method.
The example considered is a large-scale example having mil-

lions of unknowns, since small examples are not challenging
to solve, which is true to almost every time-domain method.
The computational domain is a circular cylinder of radius 1 m

and height 5 m, which is discretized into 25 layers of trian-
gular prism elements. The thickness of each layer is 0.02 m.
The incident field is a plane wave having

, where , and .
The time step used is , which is the same in
the TDFEM and the proposed method. The number of expan-
sion terms used in the proposed method is nine in (38).
The zeroth-order vector bases are employed in the TDFEM,

whereas the first-order bases are used in the proposed method.
This comparison is, in fact, disadvantageous to the pro-
posed method since the sparse pattern resulting from a
higher-order-bases based discretization is much more com-
plicated and the system matrix has many more nonzeros, as
compared to the zeroth-order-based discretization. However, if
the proposed method is able to show advantages even for such
a disadvantageous comparison, then its efficiency gain over the
same-order TDFEM would become even more obvious.
The triangular prism discretization results in 3 718 990 un-

knowns in the zeroth-order TDFEM. We find that the TDFEM
simulation cannot be performed on our desktop PC that has
16-GB memory due to the TDFEM's large memory require-
ment. This is because although the explicit TDFEM only re-
quires solving a mass matrix, which is sparse and simple, its
and factors are generally dense. Although the mass matrix is
time independent, and hence we only need to factorize it once.
The TDFEM still has to be equipped with sufficient memory
to store and factors to carry out the following backward
and forward substitutions for the matrix solution at each time
step. Certainly, iterative solvers can be used to reduce memory
usage, however, they are not cost-effective in time-domain anal-
ysis since many right hand sides need to be simulated, and the
number of right hand sides is equal to the number of time steps.
We hence find a computer that has 128-GB memory so that

the TDFEM simulation can be successfully performed on this
example. On this computer, it takes the TDFEM 2109.44 s
and more than 72-GB memory to finish the LU factorization
of the mass matrix. The CPU time cost at each time marching
step is 9.31 s, which is one backward and forward substitution
time. For a fair comparison, a similar number of unknowns is
generated in the proposed method. The resulting system matrix
size is 3 741 700. In contrast to the 2109.44 s cost by TDFEM
for factorization, the proposed method has no factorization
cost since it is free of matrix solution. In contrast to the 72-GB
memory required by the TDFEM, the proposed method only
takes 6.2-GB memory to store the sparse matrices, as it does
not need to store and since the mass matrix is diagonal.
The CPU run time of the proposed method at each time step
is 3.76 s, which is spent on a few matrix-vector multiplica-
tions. From the aforementioned comparison, the computational
efficiency of the proposed method can be clearly seen. Re-
cently, advanced research has also been developed to reduce
the computational complexity of a direct matrix solution [30].
However, not solving a matrix always has its computational
advantages as compared to solving a matrix.
We have also compared the accuracy between the two

methods using the analytical data as the reference, since the
example is set up to have an analytical solution. The entire solu-
tion error of the proposed method measured by (42) is shown to
be less than across the entire time window. The entire
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Fig. 14. Simulation of a 3-D package inductor with dielectrics and lossy conductors. (a) Top view of the triangular prism element mesh. (b) Time-domain voltages
at the two ports. (c) Magnitude of -parameters. (d) Phase of -parameters.

solution error of the TDFEM is shown to be less than . The
accuracy of the proposed method is satisfactory. Meanwhile,
the slightly better accuracy of the Galerkin-based TDFEM
could be attributed to the fact that it satisfies the Maxwell's
equations in an integration sense across each element, whereas
the proposed method let the Maxwell's equations be satisfied
only at discrete and points. Furthermore, in the TDFEM,
both Faraday's law and Ampere's law are satisfied in the same
element, whereas in the proposed method, the second law is
satisfied across the elements over the loops orthogonal to the
first field unknowns. In addition, the time discretization scheme
may also contribute to the difference in accuracy.

VII. CONCLUSION
In this paper, a new matrix-free time-domain method with

a naturally diagonal mass matrix is developed for solving
Maxwell's equations in 3-D unstructured meshes, whose accu-
racy and stability are theoretically guaranteed. Its property of
being free of matrix solution is independent of element shape,
thus suitable for analyzing arbitrarily shaped structures and
materials discretized into unstructured meshes. The method is
neither FDTD nor TDFEM, but it possesses the advantage of
the FDTD in being naturally matrix free, and the merit of the
TDFEM in handling arbitrarily unstructured meshes. No dual
mesh, mass-lumping, interpolation, and projection are required.
In addition, the framework of the proposed method permits the
use of any higher-order vector basis function, thus allowing
for any desired higher order of accuracy in both electric and
magnetic fields. Moreover, the formulations presented in this
paper do not require any modification on the traditional vector
bases. Extensive numerical experiments on unstructured trian-
gular, tetrahedral, triangular prism meshes, and mixed elements
have validated the accuracy, matrix-free property, stability, and

generality of the proposed method. Comparisons have also
been made with the TDFEM in unstructured meshes in CPU
time, memory consumption, and accuracy, which demonstrate
the merits of the proposed method.

APPENDIX
FIRST-ORDER CURL-CONFORMING VECTOR BASIS FUNCTIONS
In a tetrahedral element, among the 20 first-order vector bases

[26], there are 12 edge vector basis functions, which are defined
as

(44)

where are volume coordinates, and
denote the normalized zeroth-order edge bases as

follows:

(45)

in which is the length of the th edge. The degrees of freedom
of the 12 edge vector bases shown in (44) are located respec-



YAN AND JIAO: MATRIX-FREE TIME-DOMAIN METHOD IN 3-D UNSTRUCTURED MESHES 4213

tively at the following points in each element, with their corre-
sponding projection directions defined as:

(46)

where denotes the vector pointing from node to node .
There are also two vector basis functions whose degrees of

freedom are located at the center point of each face. In total,
there are eight such bases, which are

(47)

The locations and corresponding unit
vectors associated with the above eight face vector bases are

(48)
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