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Abstract—We develop a new rank-minimized -matrix-based
representation of the dense system matrix arising from an inte-
gral-equation (IE)-based analysis of large-scale 3-D interconnects.
Different from the -representation generated by the existing in-
terpolation-based method, the new -representation minimizes
the rank in nested cluster bases and all off-diagonal blocks at all
tree levels based on accuracy. The construction algorithm of the
new -representation is applicable to both real- and complex-
valued dense matrices generated from scalar and/or vector-based
IE formulations. It has a linear complexity, and hence, the com-
putational overhead is small. The proposed new -representa-
tion can be employed to accelerate both iterative and direct solu-
tions of the IE-based dense systems of equations. To demonstrate
its effectiveness, we develop a linear-complexity preconditioned it-
erative solver as well as a linear-complexity direct solver for the
capacitance extraction of arbitrarily shaped 3-D interconnects in
multiple dielectrics. The proposed linear-complexity solvers are
shown to outperform state-of-the-art -based linear-complexity
solvers in both CPU time and memory consumption. A dense ma-
trix resulting from the capacitance extraction of a 3-D intercon-
nect having 3.71 million unknowns and 576 conductors is inverted
in fast CPU time (1.6 h), modest memory consumption (4.4 GB),
and with prescribed accuracy satisfied on a single core running at
3 GHz.

Index Terms—Direct solver, fast solvers, -matrix, inte-
gral-equation (IE)-based methods, interconnect extraction,
iterative solver.

I. INTRODUCTION

T HE INCREASED level of integration and higher signal
speeds have made the analysis and design of integrated

circuits and packages increasingly challenging. Existing fast in-
tegral-equation (IE) solvers for solving large-scale circuit prob-
lems are, in general, iterative solvers [1]–[6], the optimal com-
plexity of which is , where is the number of
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right-hand sides, is the number of iterations, and is the
matrix size. When or is large, iterative solvers become
inefficient. Recently, an -matrix-based mathematical frame-
work [7]–[11] was introduced and further developed to reduce
the computational complexity of IE-based solutions [12]–[16].
In [13] and [14], a linear-complexity -based inverse was ob-
tained for IE-based capacitance extraction with arbitrary 3-D
geometry and nonuniform materials. In [15], it is shown that an
-based LU factorization can also be accomplished in linear

complexity. Later in [16], a more general linear-complexity di-
rect solution is developed to solve a highly irregular system ma-
trix mixed with both dense and sparse blocks for impedance ex-
traction of arbitrarily shaped 3-D nonideal conductors in a di-
electric medium.
In [12]–[16], the -matrix-based representations of

IE-based dense matrices are all generated by an interpola-
tion-based method. The rank of each admissible block is
determined by the number of interpolation points. Due to the
limitation of an interpolation-based method, the resultant rank
for each admissible block is not the minimal rank required
by accuracy. If the rank can be minimized based on accuracy,
the linear-complexity solutions reported in [13]–[16] can be
further accelerated. In mathematical literature, a total cluster
basis algorithm [19] has been developed to construct optimal
cluster bases. Local Schur decompositions have also been used
to eliminate redundant functions from an original -approxi-
mation [17], [18].
In this work, we develop a new algorithm to generate a

rank-minimized -representation for IE-based large-scale
3-D interconnect extraction. Interconnect extraction refers
to the circuit model generation of interconnects including
capacitance ( ), resistance ( ), inductance ( ), impedance pa-
rameter, -parameter, and other network-parameter extraction.
This new algorithm is built upon the mathematical framework
of [17]–[19], but goes beyond [17]–[19]. In addition to solving
complicated 3-D interconnect problems; algorithm wise, it has
the following differences and merits.
• It compresses all the off-diagonal blocks (including off-di-
agonal inadmissible blocks) in an matrix to admissible
blocks having a minimal rank for the prescribed accuracy.

• It minimizes the rank of both nested cluster bases and cou-
pling matrices for the prescribed accuracy.

• It is applicable to vector-based integral formulations
and complex-valued system matrices in addition to
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scalar-based IE formulations and real-valued system ma-
trices.

• It has a linear complexity for 3-D interconnect extraction,
and hence, the computational overhead is small.

• It is worth mentioning that both equations and pseudo-
codes of the proposed algorithm are original, which cannot
be found anywhere else.

The proposed rank-minimized -representation can be em-
ployed to accelerate both iterative and direct solutions of the
IE-based dense systems of equations arising from 3-D intercon-
nect extraction. To demonstrate its effectiveness, in this work,
both linear-complexity iterative and direct IE solvers with the
new -representation are developed for capacitance extrac-
tion with arbitrary 3-D geometry and nonuniform materials. We
show that they significantly outperform the linear-complexity
IE solvers constructed based on the original interpolation-based
-representation [12]–[16].
To be specific, with the new -representation, a linear-com-

plexity iterative solver has been developed.
• It has significantly reduced storage and CPU time for one
matrix-vector product.

• An effective preconditioner is built from the -based in-
verse of the new -representation in linear complexity. It
further accelerates the iterative solver by greatly reducing
the number of iterations.

With the new -representation, a linear-complexity direct
solver is also completed.
• It outperforms the state-of-the-art linear-complexity direct
IE solver [13]–[16].

• It is capable of inverting a dense matrix involving 3.71 mil-
lion unknowns associated with a large-scale 3-D on-chip
interconnect, embedded in multiple dielectrics, having 576
conductors, in fast CPU time (1.6 h) and modest memory
consumption (4.4 GB) with prescribed accuracy satisfied,
on a single 8222SE AMD Opteron processor running at
3 GHz.

The basic idea of the proposed work has been presented in
[22], while this paper completes [22] from the perspectives of
both algorithm development and numerical experiments.

II. BACKGROUND

A. On Matrix

Consider a dense system of linear equations

(1)

The -matrix representation of dense matrix shown in (1)
is generally associated with a strong -admissibility condition
[7]. We denote the index set of the basis functions used in the
discretization of (1) by , where is the total
number of unknowns. Two subsets and of are admissible
if they satisfy the following strong admissibility condition [7, p.
145]

are admissible

True if
False otherwise

(2)

where and are the supports of the union of all the basis
functions in and respectively, is the Euclidean di-
ameter of a set, is the Euclidean distance between two
sets, and is a positive parameter that can be used to control
the admissibility condition. When the admissibility condition is
satisfied, the submatrix in (1) can be written in a factorized
form as

(3)
where (or ) is called a cluster basis, subsets and are
called clusters of a cluster tree [7], and is called a coupling
matrix; and are the cardinality of and , respectively;

is the rank of , which is smaller than and . In
an interpolation-based representation, is , where

is the dimension of the problem and is the number of
interpolation points along each dimension. The cluster basis
only needs to be stored in the leaf clusters since is nested,
which can be written as

(4)

where children , , and are transfer matrices
associated with a nonleaf cluster , which are used to build a
connection between and its two children. If two subsets and
of do not satisfy the admissibility condition given in (2),

matrix block is inadmissible and represented in its original
full matrix form. The low-rank approximation of given in (3)
together with the nested property shown in (4) constitutes an
-matrix representation of .
It is shown in [7]–[11] that the total storage of an ma-

trix is , where (sparsity constant) is the max-
imal number of matrix blocks formed by one cluster in a block
cluster tree [7]. An -based matrix-vector multiplication has
the same complexity as the storage. In [13]–[15], we show that
-based inverse and LU factorization both have a complexity

of .

B. IE Formulations for 3-D-Interconnect Extraction

1) Capacitance Extraction: Consider a multi-conductor
structure embedded in an inhomogeneous material, an IE-based
solution to capacitance extraction results in the following dense
system of equations [1], [6]:

(5)

where , , and , in which

and are the charge vectors of the conductor panels and
the dielectric–dielectric interface panels, respectively, and is
the potential vector associated with the conductor panels. The
entries of and are

(6)

where and are the areas of panel and , respectively,
is static Green’s function, and and are the permittivity of
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two adjacent regions and , and is normal to the dielectric-
interface pointing to dielectric . The diagonal entries of
are .
As can be seen from (5) and (6), the IE formulation for ca-

pacitance extraction is a scalar-based one, and the matrices
and are both real-valued matrices.
2) Impedance Extraction: The impedance extraction

includes both resistance–inductance (RL)-extraction and
full-wave impedance extraction. From impedance parameters,
one can also obtain any other network circuit parameters such as
-parameters. The impedance extraction involves vector-based
IE formulations and complex-valued system matrices.
In [13], we extracted the impedance of a 3-D structure with

ideal conductors. In [16], we developed a direct IE solver of
linear complexity to extract the impedance of 3-D lossy conduc-
tors in a dielectric medium. In both cases, one essential compo-
nent in the IE formulation is the electric field integral equation
(EFIE), which is a vector-based formulation. In the following,
we use EFIE as an example to explain the -representation of
an IE-based dense matrix arising from a vector-based formula-
tion. The EFIE can be written as

(7)

where is the angular frequency, is the surface current den-
sity, is the full-wave
Green’s function with being the wavenumber, and the sub-
script denotes a tangential component. By expanding the
unknown using RWG basis functions [21], and applying
Galerkin’s method to (7), we obtain

(8)

where the matrix elements of can be seen in [12] and [16].

C. Interpolation-Based -Representation of IE-Based Dense
System Matrices

In [13]–[16], the dense system matrices shown in (5) and
(8) are represented by matrices using an interpolation-based
method. The details are summarized below.
If two subsets and of satisfy the strong admissibility

condition (2), the original kernel function in (6) and (7) can
be replaced by a degenerate approximation with a controlled
accuracy

(9)

where is a family of interpolation points in ,
is a family of interpolation points in , and

and are corresponding Lagrange polynomials satis-
fying for all and for
all .

With (9), the submatrix in (5) can be written in a factor-
ized form as

(10)

where

is composed of conductor panels

is composed of dielectric panels

for and (11)

If we use the same space of polynomials for all clusters, then
is nested. As can be seen from (11), is a scalar-based cluster
basis, and is a real-valued coupling matrix.
Similarly, with (9), the submatrix in (8) can be repre-

sented as

(12)

where

with , , , , and being RWG basis
functions.
The -representation shown in (12) is composed of a

vector-based cluster basis , a scalar-based cluster basis ,
and complex-valued coupling matrices and . If we expand

the vector-based as

with
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then the vector-based (12) can be decomposed into a scalar-
based one,

with

and

(13)

D. Interpolation-Based -Representation is not
Rank-Minimized -Representation

For a given admissibility condition, and hence, -partition,
the sparsity constant is a fixed constant. Thus, theoretically
speaking, to minimize the storage and computational cost as-
sociated with an -based matrix for a given -partition, the
-representation must possess a minimal rank in both cluster

bases and coupling matrices for a prescribed accuracy require-
ment.
Given an accuracy requirement , it has been proven that the

rank- representation ( ) generated from singular value decom-
position (SVD) is a minimal rank approximation of the original
matrix that fulfills [23]. The SVD-based
minimal-rank approximation does not separate observation and
source coordinates. It treats the entire matrix as a whole and
finds a minimal number of vectors, and hence, rank, to represent
the matrix with prescribed accuracy. In contrast, an interpola-
tion-basedmethod separates source and observation coordinates
in approximating Green’s function, as can be seen from (9). As
a result, the Green’s function , which only depends on
the distance between source and observer , is approximated
by , thus becoming a function of the full coordi-
nates of and . Once it becomes a function of complete source
and observation coordinates, the accuracy of (9) is always re-
stricted by the Nyquist sampling theorem, hence leading to a
much larger rank than that obtained from an SVD-based min-
imal-rank representation for the same accuracy. A detailed rank
study of electromagnetics-based IE operators can be found in
[24].
To find a minimal rank based on accuracy for a single matrix

block , as shown in (10), we can compute its SVD directly.
We can also compute the Gram matrix of , and then per-
form Schur decomposition of the Gram matrix to obtain a min-
imal rank based on prescribed accuracy [19]. Denoting the Gram
matrix of by , which is . Since
is Hermitian, the Schur decomposition of yields

by Schur decomposition
(14)

where the superscript denotes a conjugate and transpose oper-
ation, is a unitary matrix, and the diagonal matrix
with is comprised of all singular
values of with . Hence, given

Fig. 1. Block cluster tree formed between a cluster tree and itself.

an accuracy requirement , one can generate a low-rank repre-
sentation of with rank determined from the following to
satisfy the prescribed accuracy:

(15)

where denotes the first columns of . The Schur decom-
position is computationally expensive for large matrices. In Sec-
tion III, we present a detailed algorithm to compute the minimal
rank of eachmatrix block in an matrix based on the Schur de-
composition of Gram matrices in linear complexity, from which
we construct a new -rerpesentation with its rank minimized
for the prescribed accuracy.

III. LINEAR-COMPLEXITY CONSTRUCTION OF A NEW
RANK-MINIMIZED -REPRESENTAION

A. Formulate Gram Matrices of an -Based Representation

Consider a general cluster tree , shown in the left half
of Fig. 1, which depicts a multi-level partition of the entire
unknown set . This tree is built level
by level from the root level of the complete unknown set

to the leaf level where the number of
unknowns in each node is no greater than a predetermined
constant leafsize. Each node in the cluster tree is called a
cluster. It denotes a subset of unknowns. The nodes in the leaf
(bottom) level are called leaf clusters, while others are called
nonleaf clusters. It is evident that the total number of clusters
in the cluster tree is .
The block cluster tree that characterizes the interaction be-

tween unknowns is built between and itself when Galerkin’s
method is used for discretizing the IE operator. A cluster in
a cluster tree, based on the admissibility condition (2), forms
admissible blocks in its tree level, as
illustrated by the links shown in Fig. 1. The cluster basis as-
sociated with cluster is used for the representation of all the
admissible blocks formed by . Due to nested property shown
in (4), is also indirectly used for all the admissible blocks

formed by ’s ancestors , as shown in Fig. 1. There-
fore, based on the total cluster basis algorithm [19], for each
cluster in the cluster tree, regardless of leaf level or nonleaf
level, we collect all the -related matrix blocks including those
horizontally formed by the cluster in the same tree level, as
well as those vertically formed by the ’s ancestors across the
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tree level. All these blocks are stored in a matrix as the fol-
lowing:

(16)

where each matrix block in (16) is a single matrix block that is
either admissible or inadmissible, and denotes ’s ancestors.
Note that is not the entire block formed by , but a part
of the block corresponding to . Based on the nested property
shown in (4), we can derive as the following:

(17)

which is only the -related part of the admissible block formed
by and . We next compute the Gram matrix of as

(18)

which can be efficiently evaluated as the following:

(19)

where

(20)

is the conjugate of , , , and denote a
set of column clusters that can form matrix blocks, admissible

Fig. 2. -matrix example. (a) Block cluster tree built between cluster tree
and itself. (b) Matrix structure.

blocks, and inadmissible blocks, respectively, with . A full ma-
trix block is denoted by in (19).
To give an example, consider a problem of un-

knowns, the cluster tree of which, , has four levels, as shown
in the left half of Fig. 2(a), with leafsize being 2. In Fig. 2(a),
each link represents an admissible block formed between a row
cluster and a column cluster. Due to space limit, not all the ad-
missible links are shown in Fig. 2(a). The -matrix structure
corresponding to Fig. 2(a) is shown in Fig. 2(b), where each
shaded block is a full-matrix block, while each white block is
an admissible block that has a low-rank form. Now, consider a
leaf cluster : shown in cluster tree . in (16) is ,
which is the union of all the admissible blocks and inadmissible
blocks formed by cluster in the same tree level, as well as
the admissible blocks formed by cluster ’s ancestors at all
the other levels. As can be seen from Fig. 2, cluster forms
an inadmissible block with clusters and , respectively,
in the same tree level. Meanwhile, cluster forms an admis-
sible block with clusters , and , respectively, in the same
tree level. In addition, cluster ’s ancestor forms an ad-
missible block with clusters , and , respectively, at
one level above the leaf level, and beyond that level, no more
admissible blocks are formed by cluster ’s ancestors. Hence,

As shown in (17), for the block formed at nonleaf levels by
cluster ’s ancestors , we take the part corresponding to cluster
into using the nested property of cluster bases. Now,
and . Hence,
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From the components of , it can be clearly seen that ,
, and for cluster in (19) are, respec-

tively,

B. Computing New Nested Cluster Bases With Rank Minimized
Based on Accuracy

To find a new set of nested cluster basis with its rank min-
imized for a prescribed accuracy, we perform the computation
level by level across the cluster tree from bottom leaf level to
top root level.
We start with the leaf clusters. Consider the general cluster

tree shown in the left half of Fig. 1. For a leaf cluster , we
can directly compute out its Gram matrix given in (19), then
perform a Schur decomposition of based on (14), which is
then truncated to rank , as shown in (15), based on prescribed
accuracy . The resultant is the new cluster basis that
has a minimal rank required by accuracy for the leaf cluster .
However, beforewecompute (19),we shouldprepare for

for every cluster in the cluster tree first. To prepare for for
everycluster ,weneed tocompute first, as canbe seen from
(20). A pseudo-code for computing is given in (21), from
whichweobtain forall clusters.We thencompute , the
pseudo-code ofwhich is given in (22). After is obtained for
every cluster, the shown in (19) canbe readily computed from

. The Schur decompo-
sition of based on accuracy requirement will produce ,
which is thenewcluster basis ,whose rank isminimizedbyac-
curacy.
For a nonleaf cluster , we cannot directly use the aforemen-

tioned procedure since the new cluster basis is required to pre-
serve the nested property in addition to having a minimal rank
required by accuracy. As can be seen from (16), when con-
structing the cluster basis for a child cluster , we have already

collected all the upper-level matrix blocks formed by ’s an-
cestors . Therefore, we can utilize the child cluster basis to
accurately project the cluster basis of the upper-level blocks.
For example, assuming and are two children of a nonleaf
cluster , since the minimal rank cluster bases are constructed
from bottom level to top level, the minimal-rank cluster bases

and have been computed. Hence, the matrix block
can be accurately projected as the following:

(23)

We then update for a nonleaf in (16) by replacing all
the admissible blocks with . This update does not
affect the inadmissible-block-based computation shown in the
second underlined part of (19) since all the full-matrix blocks
are only formed by leaf clusters. Based on (23) and nested prop-
erty shown in (4), for a nonleaf cluster , the computation of (18)
becomes

(24)

with , and the underlined part

Next, we only need to perform a Schur decomposition of
, the size of which is that is much smaller

than the size of . This generates an orthogonal space . The
rank- column space of can then be written as

(25)

Clearly, (25) has an exact form of (4) with the new transfer ma-
trices and being and , respectively. Hence, the
nested property is preserved. The pseudo-code for computing
the minimal-rank cluster bases for both leaf clusters and non-
leaf clusters are shown in (26).
To help understand the aforementioned procedure for non-

leaf clusters better, consider the example shown in Fig. 2. To
compute the nested cluster basis for nonleaf cluster ,
we do not need to directly compute the Gram matrix (18) using
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since the dimension of can be large, especially
for closer to the root level of the cluster tree.

Instead, the in (18) has been transformed to (24). Thus,
we only need to compute the underlined part
in (24), which is a matrix of size by regardless of the
tree level of . To obtain , it only costs opera-

tions since ,
, , , and each is of size

by . After is obtained, due to its size, performing its
Schur decomposition also only costs operations. The re-
sultant split into and provides the transfer matrices
of the cluster basis for nonleaf cluster . In addition, for
nonleaf clusters, as shown in pseudo-code (26), is obtained
by adding the contributions from ’s one-level-down children
as instead of computing di-
rectly. Hence, the cost of computing is also for any
cluster .

C. Computing New Coupling Matrices With Rank Minimized
Based on Accuracy

After obtaining the minimal-rank cluster basis for a pre-
scribed accuracy, we can use it to update the coupling matrices.
If the matrix block is an admissible block, we compute

(27)

where the is computed by

(28)
If the matrix block is an off-diagonal inadmissible block, we
compute

with

(29)

where denotes the conjugate of .

The pseudo-code to compute the minimal-rank admissible
blocks and inadmissible blocks are shown in (30) as follows:

Based on the procedure in (26) and (30), a new -represen-
tation is generated with a minimal rank in both cluster bases and
coupling matrices for a given accuracy requirement . The re-
sultant new is unitary with satisfied for each
cluster . In addition, the proposed procedure generates an effi-
cient -matrix partition with only diagonal blocks being full
matrix and all the other blocks being admissible since all the
off-diagonal inadmissible blocks have been compressed as ad-
missible blocks, as shown in (29).
It is worth mentioning that if the original system matrix is

not symmetric, its row cluster basis and column cluster basis are
different. In such cases, we construct new cluster bases for row
clusters and column clusters, respectively, and then use both to
update the coupling matrices based on the procedure given in
the above.

D. Techniques for Handling Vector-Based IE Formulations

In a vector-based IE formulation, each admissible block in
the representation is composed of multiple sub-blocks, as
can be seen from (13). This complicates the operations associ-
ated with this block such as matrix–vector multiplications and
matrix–matrix multiplications. To overcome this problem, we
develop a procedure to merge multiple matrix blocks associated
with to a single admissible block, and make the resultant
block have a minimal rank in both cluster basis and coupling
matrix. The detailed procedure is as follows.
First, we minimize the rank of each sub-block of by the

method described in Sections III-A–III-C; we then merge the
first two sub-blocks into a single block. We continue to merge
the resultant block with the third sub-block. Such a procedure
continues until only one matrix block is left for each . Take
(13) as an example, this process is shown in the equation shown
at the bottom of the following page.
In order to efficiently merge two submatrix blocks, we per-

form

We then minimize the rank of the above representation with

being its cluster basis at a leaf level,

being its transfer matrix at a nonleaf level, and its

coupling matrix, by the rank minimization procedure described
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in Sections III-A–III-C. In addition, we derive the following fast
techniques to speed up the computation.
1) Fast Computation of in (20): Since

and are all orthogonal, we can make use of this property to
speed up the computation of in (20). For a leaf cluster ,

(31)

where is a constant associated with the cluster . When is
a leaf cluster, . Therefore, the diagonal blocks and

can be directly obtained based on the orthogonality of

and . In addition, is satisfied in (32). Hence,
we only need to compute one of them. For a nonleaf cluster
with two children and , can be computed as follows:

(32)

As can be seen, when is at a nonleaf level, we only need to get
and stored in the children level and directly use them to

obtain the diagonal blocks, as shown in (32). is
also satisfied, and hence, we only need to compute one of them.
2) Fast Computation of Shown in (20): Based on the

fast computation of , we can further accelerate the computa-
tion of as follows:

(33)

Similarly, is satisfied, and hence, only
one of them needs to be computed.
The aforementioned procedure generates a new repre-

sentation that has the following advantages over the conven-
tional one in (13). First, multiple matrix blocks are merged into
a single matrix block, which greatly simplifies the computation
associated with block. Second, we remove linearly depen-
dent vectors in the space of , , , and in (13)
by merging them into a single admissible block. The rank of the
resultant single block is minimized based on the prescribed ac-
curacy.

E. Treatment of Complex-Valued Cluster Bases

The original cluster bases obtained from an interpolation-
based method are real valued, as shown in (10) and (12), while
the cluster bases resulting from the aforementioned rank mini-
mization procedure, such as in (27) and (29), become com-
plex valued since they take kernel functions into account. In
many applications, it is desirable to keep the cluster bases real
valued. For example, the basic operation involved in a matrix
inverse is the block matrix multiplication

(34)

the fast equality of which utilizes the orthogonality of cluster
bases, i.e., . If is a complex-valued orthogonal
matrix, we have instead of . There-
fore, the product cannot be eliminated from (34), and
the block matrix multiplication will involve cluster-basis asso-
ciated computation, which can slow down the computation. To
overcome this problem, in the following, we develop a method
to convert complex-valued cluster-bases to real-valued cluster
bases.
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First, we expand the new block shown in (27) as

(35)

where and represent the real and imaginary parts of
, respectively. We put the real and imaginary parts into one

matrix , which is a real-valued cluster
basis. The transfer matrix for at a nonleaf level can be
obtained using the following formula:

Put the above into one matrix

(36)

where the underlined part of (36) is the new transfer matrix
for at a nonleaf level. Next, we use the linear-time
orthogonalization procedure shown in [11] to orthogonalize

, which removes the redundant information carried by
and , and obtain the minimal rank representation

of and for a prescribed accuracy. This procedure
generates an orthogonal cluster basis .
and are the best approximation of and

in the space of the new cluster bases, respectively. Next,
we perform

(37)

to update the coupling matrices, where the original complex-
valued unitary cluster basis is replaced by the new real-valued
orthogonal cluster basis .

F. Complexity and Accuracy Analysis

Before analyzing the complexity, we summarize the basic
steps of the proposed algorithm as follows.
Step 1) Prepare in (20) for all clusters in

linear time by using the cluster basis product algo-
rithm in [11, p. 12.]. Take Fig. 2 as an example,
cluster refers to eight leaf clusters at the bottom
level and seven nonleaf clusters at other levels.

Step 2) Compute for all clusters based on pseudo-
code given in (21). Again, for the example shown in
Fig. 2, there are 15 clusters for which we compute

.
Step 3) Compute for all clusters based on pseudo-

code given in (22).
Step 4) Compute new nested cluster bases for all clusters

with rank minimized by accuracy, based on pseudo-
code given in (26).

• For all leaf clusters , compute and perform
the Schur decomposition of for a given ac-
curacy. The resulting new cluster basis is .
This step corresponds to the section of code after
“else” in (26). Take Fig. 2 as an example, this step
is done for all leaf clusters , and .

• For all nonleaf clusters , as shown in (24), we
only need to compute the underlined part
and perform the Schur decomposition of .
This step corresponds to the section of code after
“if has children” in (26).

Step 5) Compute new coupling matrices with rank mini-
mized for accuracy based on the pseudo-code given
in (30).

With the aforementioned steps, now we can analyze the com-
plexity of the proposed algorithm step by step. Step 1) is com-
puted for all clusters by using the cluster basis product algorithm
in [11, p. 12]. This algorithm has linear complexity, as shown in
[11].
In Step 2), we compute based on the pseudo-code given

in (21). Since is obtained from Step 1 already, the computa-
tion for each admissible block in (21) only involves the com-
putation of , which costs operations, where
denotes the rank of each block. This is because each is

of size by , and so is the coupling matrix . For each
inadmissible block, we compute , as shown in (21),
the cost of which is constant since the inadmissible block is of
dimension leafsize by leafsize, and leafsize is a predetermined
constant. Since there are blocks in an -matrix, either
admissible or inadmissible, and each block is associated with a
constant computational cost in Step 2), the computational com-
plexity of Step 2) is linear.
In Step 3), we compute for all clusters based on the

pseudo-code given in (22). This procedure is essentially a top-
down traversal of the cluster tree. For each cluster , we com-
pute for its one-level-down children, add it upon

, and then go down to the next tree level. The same pro-
cedure is repeated until we reach leaf level. Since transfer ma-
trix is of size by , and so is . In (22), the com-
putation of for each cluster in a cluster tree is

. The total number of clusters in a cluster tree is ,
and each cluster is only associated with operations in
Step 3). Thus, the computational complexity of Step 3) is linear.
In Step 4), described in Section III-B, we compute the rank-

minimized cluster bases based on (26). In (26), is known
from Step 3), and hence, we only need to compute , the
size of which is , and perform the Schur decomposition
of for all nonleaf clusters, while computing of size
by and perform the Schur decomposition of for all leaf

clusters. The computation of or for each cluster
costs at most , and the computation of the Schur decom-
position of or for each cluster also costs
operations. Since the total number of clusters in a cluster tree
is , and each cluster is associated with operations,
the complexity of Step 4) is linear.
In Step 5), described in Section III-C, we update the coupling

matrices based on (30). The update of each matrix block shown
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in (30) only requires operations for each block since ei-

ther for each admissible block or for the
inadmissible block costs just operations since the total
number of matrix blocks in an -matrix is . The total
computational complexity of Step 5) is also linear.
By adding up the cost of all five steps, we obtain the total

computation cost of the proposed method for constructing the
new -representation, which is linear.
As for the accuracy of the proposed algorithm, among the five

steps, Steps 1), 2), 3), and 5) involve no approximation. Step 4)
is performed based on a prescribed accuracy. For example, if
the prescribed accuracy is , the truncation of Schur decompo-
sition in (26) is done to satisfy the prescribed accuracy based
on truncation error shown in (15). As a result, the proposed al-
gorithm is error controllable.
To construct the new -representation of in a vector-

based IE formulation, which originally contains multiple sub-
matrix blocks in each , we use the procedure shown in
Section III-D, which is to merge multiple subblocks into a rank-
minimized single block. As shown in Section III-D, the merge
operation is performed by using the proposed rank-minimiza-
tion procedure described in Sections III-A–III-C. As a result,
the procedure has the same linear complexity and the accuracy
is controlled to satisfy the prescribed accuracy. In Section III-E,
the complex-valued cluster bases are converted to real-valued
cluster bases. The cost of conversion is the same as the cost of
orthogonalization, which is linear, as shown in [11], without loss
of accuracy.

IV. LINEAR-COMPLEXITY ITERATIVE AND DIRECT
IE SOLVERS ACCELERATED

BY THE NEW -REPRESENTATION

The proposed rank-minimized new -representation can
be used to accelerate both iterative and direct solutions of the
IE-based dense system of equations.

A. Linear- Complexity Inverse-Based Direct Solver

After the rank-minimized representation of is con-
structed, we compute its inverse by using the linear-com-
plexity inverse algorithm developed in [14]. It is worth men-
tioning that although a matrix inverse and a matrix–matrix mul-
tiplication [11] share the same number of block matrix multi-
plications, there is a major difference that prevents one from
using a fast matrix–matrix multiplication algorithm to achieve
a linear complexity in inverse. The major difference is that in
the level-by-level computation of the inverse, at each level, the
computation is performed based on updated matrix blocks ob-
tained from the computation at the previous level instead of the
original matrix. In contrast, in the level-by-level computation
of the matrix–matrix multiplication, at each level, the computa-
tion is performed based on the original matrix, which is never
updated. This difference would render the inverse complexity
higher than linear if one does not address it properly. In [14],
we develop three new algorithms to render the total cost of an
inverse linear. The first algorithm is an instantaneous collect op-
eration for generating the auxiliary admissible block forms; the
second algorithm is a modified block matrix multiplication al-

gorithm; and the third one is an instantaneous split operation.
The accuracy of the aforementioned linear-complexity inverse
has been both theoretically proved and numerically verified in
[14].

B. Linear-Complexity Preconditioned Iterative Solver

With the new -representation, the memory and compu-
tational cost of an -based iterative solver can also be sig-
nificantly reduced. In addition, in the framework of the pro-
posed method, it is very convenient to construct an effective
preconditioner for accelerating the iterative solution. We can
set a lower order of accuracy and use the resultant less-accu-
rate cluster basis to build an approximate -repesenta-
tion. This representation serves as an effective preconditoner of
the original system matrix. Its inverse can be obtained by the
linear-complexity -inverse algorithm [14]. Since the rank of

used for the preconditioner is minimized based on a lower
order accuracy, the inverse of the preconditioner can be effi-
ciently obtained. In addition, the effectiveness of the precondi-
tioner can be adaptively controlled by the accuracy prescribed
for constructing the approximate cluster bases . Certainly,
when the accuracy setting is not low, the resultant inverse is a
good representation of the inverse of the original matrix. The
solver then becomes the direct solver described in Section IV-A.

V. NUMERICAL RESULTS

In this section, we first examine the effectiveness of the pro-
posed new -repesentation in minimizing rank for given ac-
curacy for both capacitance extraction and full-wave impedance
extraction of interconnects.We then proceed to examine the per-
formance of both the linear-complexity iterative solver and the
linear-complexity direct solver with the proposed new -repe-
sentation by extracting capacitances of a number of intercon-
nects from a small number of unknowns to 3.71 million un-
knowns involving up to 576 conductors. The computer used has
an 8222 SE AMD Opteron processor running at 3 GHz.

A. Effectiveness of the Proposed New -Representation in
Reducing Rank for Prescribed Accuracy

The first example is a package interconnect [20] composed of
lossy conductors embedded in a uniform dielectric, as shown

in Fig. 3. The is chosen as 4, 8, 16, and 32, respectively.
The simulation parameters are leafsize and . The
dense system of equations for extracting impedances is formu-
lated based on [16]. In the proposed new -representation,

is used in Schur decomposition. In the interpola-
tion-based -representation, is used.
In Fig. 4(a), we compare the original rank determined by the

interpolation method and the rank determined by the proposed
method with respect to . Since the rank may not be the same
in each matrix block, we measure the rank by using the average

rank defined as , where is the rank of the th
admissible block, is the number of admissible blocks, and the
summation represents the total storage of the admissible blocks.
In Fig. 4(b), we plot the accuracy of the proposed rank-mini-
mized -representation with respect to . The matrix accu-
racy is measured by , where is the new
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Fig. 3. Package interconnect composed of -lossy conductors.

Fig. 4. Performance of the proposed method for analyzing a package intercon-
nect structure. (a) Rank. (b) Matrix accuracy.

-representation, and is the original full matrix. For com-
parison, the accuracy of the interpolation-based -representa-
tion is also plotted. As can be seen from Fig. 4(a) and (b), the
proposed method significantly reduces the rank without sacri-
ficing the accuracy.
The second example is a four-layer bus structure in a uniform

dielectric, as shown in Fig. 5. In each layer, there are con-
ductors, and each conductor has a dimension of 1 1
m . We simulate a suite of such structures with chosen

as 5, 10, 20, and 40, respectively. The parameters used in the
simulations are leafsize , , for Schur
decomposition in the proposed method, while in the in-
terpolation method.
In Fig. 6(a), we compare the original rank determined by the

interpolation method and the rank determined by the proposed
method with respect to . In Fig. 6(b), we plot the accuracy
of the proposed rank-minimized -representation with respect
to . As can be seen from Fig. 6(a) and (b), the rank is again
significantly reduced without sacrificing the accuracy.
The proposed method for generating a rank-minimized
-representation is error controllable, and also for any

Fig. 5. Four-layer bus structure in a uniform dielectric with (the number of
conductors per layer) ranging from 5 to 40.

Fig. 6. Performance of the proposed rank-minimization method for analyzing
a suite of four-layer bus structures from to in a uniform
dielectric. (a) Rank versus . (b) Matrix accuracy versus . (c) Rank obtained
for different accuracy for case with .

given accuracy, the rank of the proposed -representation is
smaller than that of the interpolation-based -representation.
To demonstrate this point, we re-simulate one of the above
four-layer bus structures (the one with ) under various
accuracy settings. In Fig. 6(c), we plot the matrix accuracy
with respect to rank from the proposed method in comparison
with the same generated by the interpolation-based method.
It is evident that first, the error of the proposed method is
controllable; second, for the same accuracy, the rank of the
proposed new -representation is much smaller than that of
the interpolation-based -representation.
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Fig. 7. Performance of the proposed preconditioner for analyzing a four-layer
bus structure in a uniform dielectric. (a) Construction time of the proposed pre-
conditioner (seconds). (b) Number of iterations.

B. Linear-Complexity Preconditioned Iterative Solver With
the Proposed New -Representation

Next, we show the performance of the proposed precondi-
tioned iterative solution for analyzing the suite of four-layer
bus structures shown in Fig. 5. We use the GMRES method
with the proposed preconditioner to iteratively solve the system
matrix. The convergence criterion of the GMRES iteration
is set as 10 . The accuracy requirement is chosen as 10
for constructing orthogonal cluster bases described in
Section IV-B. In Fig. 7(a), we plot the CPU time for the con-
struction of the proposed preconditioner. A clear linear scaling
can be observed. Once the proposed preconditioner is con-
structed, it can be used for all right-hand sides. The number of
iterations used in the proposed preconditioned iterative method
is shown in Fig. 7(b). For comparison, the number of iterations
required by the GMRES method without using the proposed
preconditioner is also plotted. As can be seen clearly from
Fig. 7(b), the number of iterations is significantly reduced by
using the proposed preconditioner. It can be further reduced by
setting a higher order of accuracy for constructing orthogonal
sparse cluster bases .
In Fig. 8(a), we plot the total solution time of the pro-

posed preconditioned iterative solver including the time of
constructing the new -representation, constructing the
preconditioner, and iteratively solving the matrix system
for all conductors. A clear linear scaling can be observed.
We also simulate the same bus structure using FastCap2.0,
which is a state-of-the-art preconditioned iterative capacitance
solver available in the public domain. The expansion order
of FastCap2.0 is chosen as 2, and the convergence tolerance
is set as 10 . A similar number of unknowns is used for

Fig. 8. Performance of the proposed preconditioned iterative solver. (a) Total
solution time (seconds). (b) Capacitance error.

Fig. 9. Capacitance error versus rank of the proposed method in comparison
with that of the interpolation-based solver.

comparison with FastCap2.0. As can be seen from Fig. 8, the
proposed iterative solver is much faster without sacrificing
accuracy. The capacitance error shown in Fig. 8(b) is measured
by , where is the capacitance matrix
obtained from FastCap2.0 with expansion order , and is
that generated by the proposed iterative solver or by FastCap2.0
with expansion order . Excellent accuracy can be observed
in both solvers.
To demonstrate the fact that the proposed solver is error con-

trollable and its rank is much reduced for achieving a prescribed
accuracy as compared to an interpolation-based -solver,
we select one of the four-layer bus structures simulated in the
above, whose is 5. We compute the capacitance matrix error
in reference to that generated from a full-matrix-based com-
putation that does not involve any approximation. Full-matrix
computation is used here as the reference because as a fast
solver, FastCap, utilizes approximations. In Fig. 9, we plot the
capacitance matrix error of the proposed method with respect
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Fig. 10. Performance of the proposed direct solver. (a) Construction time of
the new -representation. (b) Memory. (c) Inverse time. (d) Solution error
( used in the interpolation-based solver).

to the rank. It is evident that the capacitance error can be well
controlled by the rank used in the proposed method, which
is, in turn, controlled by in (15), which is one input used
in pseudo-code (26). In Fig. 9, we also plot the capacitance
matrix error of the interpolation-based solver versus rank. It is
clear that to achieve the same capacitance accuracy, the rank
required by the proposed method is much smaller than that of
the interpolation-based -solver.

C. Linear-Complexity Direct Solver With the Proposed New
-Representation

Next, we show the performance of the proposed linear-com-
plexity direct solver with the new -representation. The
example considered is a multilayer 3-D on-chip interconnect
structure [6], [14]. The relative permittivity of the interconnect
structure is 3.9 in M1, 2.5 from M2 to M6, and 7.0 from
M7 to M8. The structure involves 48 conductors. To test
the large-scale modeling capability of the proposed direct
solver, the 48-conductor structure is duplicated horizontally,
resulting in 576 conductors, the discretization of which leads to
3.71 million unknowns. The parameters used in the proposed
method are , , and for Schur
decomposition, with used in the interpolation-based
-representation. Fig. 10(a)–(c) shows the new -represen-

tation construction time, memory consumption, and inverse
time, respectively. A clear linear scaling can be observed in all
the figures. In Fig. 10(d), we plot the solution accuracy mea-
sured by relative residual. Excellent accuracy can be observed.
In addition, in Fig. 10(b)–(d), we overlay the cost and accuracy
of the proposed direct solver with those of the linear-complexity
direct solver in [13] and [14] that uses an interpolation-based
-representation with . The advantage of the proposed

direct solver can be clearly seen. The proposed solver achieves
higher order accuracy with even less computational cost.

VI. CONCLUSIONS

In this paper, we have developed a method to generate a new
-matrix-based representation with its rank minimized for a

given -partition and a given accuracy for an IE-based anal-
ysis of large scale 3-D interconnects. Such a representation fea-
tures a minimized rank in both nested cluster bases and coupling
matrices with prescribed accuracy satisfied. The new -rep-
resentation is constructed in linear complexity, and hence, the
computational overhead is small. It is applicable to both real and
complex-valued dense system matrices generated from scalar-
and/or vector-based IE formulations.
The proposed new rank-minimized -representation can be

used to accelerate both iterative and direct solutions of IE-based
dense systems of equations. To demonstrate this point, both

complexity direct and preconditioned iterative solvers
are developed with the proposed new -representation for
3-D capacitance extraction. They are shown to outperform
state-of-the-art linear-complexity capacitance solvers in both
memory and CPU consumption. As for the comparison between
the proposed linear-complexity direct solver and the proposed
linear-complexity preconditioned iterative solver, the former
is clearly the solver of choice when the number of right-hand
sides is large. The proposed algorithm for constructing a
rank-minimized -representation, which compresses all the
off-diagonal matrix blocks to have a minimal rank based on
accuracy, can also be applied to accelerate the solution of
full-wave and electrically large IEs, which will be explored in
the future.
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