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Abstract—A general formulation is described for time-domain
finite-element modeling of electromagnetic fields in a general
dispersive medium. The formulation is based on the second-order
vector wave equation and incorporates the dispersion effect
of a medium via a recursively evaluated convolution integral.
This evaluation is kept to second order in accuracy using linear
interpolation within each time step. Numerical examples are given
to validate the proposed formulation.

Index Terms—Dispersive medium, finite-element method.

I. INTRODUCTION

FOR any time-domain based numerical method to accu-
rately perform wide-band electromagnetic simulations,

one has to incorporate the effect of medium dispersion in its
formulation. Over the past decade, several approaches have
been proposed for the finite-difference time-domain (FDTD)
method [1]–[6]. Little work has been reported on the dispersion
modeling in the time-domain finite-element method (TDFEM)
since TDFEM is not as well developed as FDTD. This situa-
tion, however, is changing rapidly; much interest has recently
been attracted to TDFEM because of its modeling accuracy
and flexibility [7]–[9]. In this work, a general formulation is
developed to model the dispersion effect in TDFEM. This
TDFEM is based on the second-order vector wave equation,
in contrast to most FDTD schemes that solve the first-order
Maxwell’s equations. The required convolution integral is
evaluated recursively without a need to store the fields of all
past time steps. This evaluation is ensured of second order in
accuracy by adopting a linear interpolation for the fields within
each time step.The proposed formulation is shown to be valid
for plasma, Debye, and Lorentz media with a single or multiple
poles. Three-dimensional (3-D) numerical examples are given
to demonstrate its efficacy.

II. FORMULATION

The electric field in a general dispersive medium satisfies the
second-order wave equation

(1)
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where denotes the source current density andrepre-
sents an operator on the field. For plasma

(2)

where
plasma frequency;
damping frequency;
unit step function;
convolution.

For a Debye medium

(3)

where is the relaxation time, and denote the relative di-
electric constants at zero (dc) and infinite frequencies, respec-
tively. For a Lorentz medium

(4)

where
damping constant;
resonant frequency;

, and coefficient weighting the
contribution from the induced
polarization currents.

To illustrate the finite element solution of (1), we assume a
mixed boundary condition on the surface of the volume of in-
terest as

(5)

The corresponding weak-form solution is then given by

(6)
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Fig. 1. The coated sphere and the incident electric field. (a) Geometry. (b)E

versus time. (c)jE j versus frequency.

where denotes the vector basis functions. Expanding the
electric field as

(7)

with denoting the total number of unknowns, and substituting
into (6), we obtain the ordinary differential equation

(8)

where , , , , and denote matrices whose elements
can be identified from (6). Also, is a vector given by

, is a vector whose elements are given by

(9)

and finally, is a vector contributed by and .
Since the susceptibility function of a general dispersive

medium can be expressed as a rational function in frequency
domain, its time-domain counterpart inherits the feature of
exponential functions. Without loss of generality, we can write

as

(10)

where
and plasma;
and Debye medium;

and Lorentz medium.

Fig. 2. Results for a metallic sphere coated with plasma. (a) Relative
dielectric constant(! = � = 50 Mrad/s). (b) E versus time. (c)jE j
versus frequency.

Fig. 3. Results for a metallic sphere coated with a Lorentz medium. (a)
Relative dielectric constant (! = 2� = 50 Mrad/s,� = 4:0, � = 1:0,
G = 1). (b)E versus time. (c)jE j versus frequency.

As a result, the convolution in (9) can be evaluated recursively
as

(11)

Instead of assuming to be constant within the time interval
, we employ linear interpolation to guarantee
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Fig. 4. Results for a metallic sphere coated with a second-order Lorentz
medium. (a) Relative dielectric constant (! = 70 Mrad/s,2� = 50 Mrad/s,
! = 20 Mrad/s,2� = 10 Mrad/s,G = G = 0:5, � = 4:0, � = 1:0).
(b) E versus time. (c)jE j versus frequency.

the second order in accuracy. As a consequence, we obtain the
recursive relation

(12)

The above strategy can easily be extended to a general dis-
persive medium with an arbitrary order.

III. N UMERICAL EXAMPLES

To validate the proposed formulation, we consider a metallic
sphere coated with either plasma, a Lorentz, or a second-order
Lorentz medium. The metallic sphere has a radius of 0.8 m and
the coating has a thickness of 0.2 m. This coated sphere is illu-
minated by an -polarized incident plane wave, whose electric
field is plotted in Fig. 1, propagating along the-direction. The

boundary integral equation is used to truncate the finite-element
mesh accurately [9].

Figs. 2–4 display the calculated electric field at the ob-
servation point m as a function of time and
frequency. It is seen that the calculated results agree very well
with the exact solution obtained from the Mie series.

IV. CONCLUSION

A general approach was proposed to incorporate the disper-
sion effect in the TDFEM modeling of electromagnetic fields in
a general dispersive medium. This approach employs a recur-
sive evaluation of convolution integrals to avoid the storage of
all past fields and adopts linear interpolation within each time
step to achieve a second-order accuracy. Three-dimensional nu-
merical examples were given to demonstrate its validity.
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