A Decision Model for Psychophysics

Reading: Macmillan \& Creelman, Chaps. 1 \& 2

Three Things to Learn

- Procedure

What are the stimuli?

- How do you present them?
- What are the responses?
- How do you organize the data?
- Model
- What are the assumptions?
- What is the model based on these assumptions?
- Data Processing
- How do you process the data?
- What are the results (e.g., threshold)?

Introduction to Signal

Detection Theory (SDT)

- Tanner \& Swets, 1954
- Key Properties of SDT
- Noise in perception

Probabilistic / stochastic approach
\bullet Decision process (a priori info, bias)
Experimental procedure
Popular in literature

Why Do We Care About SDT?

■ It provides a means to separate decision processes (e.g., bias) from perception.

- We will develop a decision model for psychophysics

The Procedure for

One-Interval (1-I) Experiments

- Name:

One-Interval, Two-Alternatives (1I 2A)

- Also known as the "yes-no" experiment (see Macmillan\&Creelman's book)
- There are two stimuli $\mathrm{S}_{\mathrm{i}}(\mathrm{i}=1,2)$; e.g., $-\mathrm{S}_{1}=$ "softer tone", $\mathrm{S}_{2}=$ "louder tone" $\bullet S_{1}=$ "softer spring", $S_{2}="$ harder spring" - $\mathrm{S}_{1}=$ "new face", $\mathrm{S}_{2}=$ "old face" (M\&C) $\bullet S_{1}="$ noise", $S_{2}=$ "signal embedded in noise"

(cont.)

- On each trial, $\mathrm{S}_{\mathbf{i}}$ is presented with an a priori probability of $P\left(S_{i}\right)$, where $P\left(S_{1}\right)+P\left(S_{2}\right)=1$
- There are two admissible responses $\mathrm{R}_{\mathrm{j}}(\mathrm{j}=1,2)$; e.g.,
$\rightarrow \mathbf{R}_{1}=$ "softer tone", $\mathbf{R}_{2}="$ louder tone"
$\rightarrow R_{1}=" 1 ", R_{2}=" 2 "$
$\forall R_{1}=" n o ", R_{2}=" y e s "$ (hence "yes-no" exp.)
- For simplicity, we assume that R_{1} is the correct response to S_{1}, and R_{2} is the correct response to S_{2}
- Trial-by-trial correct-answer feedback is optional

Data from a 1-I Experiment

	R_{1}	\mathbf{R}_{2}
S_{1}		n_{12} False alarms
\mathbf{S}_{2}	n_{21} Misses	n_{22} Hits

- $f\left(R_{1} \mid S_{1}\right)=n_{11} /\left(n_{11}+n_{12}\right)$: frequency of responding R_{1} given S_{1}. We use frequency to estimate probability.
- $\mathrm{P}\left(\mathrm{R}_{1} \mid \mathrm{S}_{1}\right)$: probability of responding R_{1} given S_{1}
- $p\left(\mathbf{R}_{1} \mid \mathbf{S}_{1}\right)$: probability density function
- There are only two independent measures: F and H.

Three Examples

(1)

(2)
(3)

		\mathbf{R}_{1}
$\mathbf{R}_{\mathbf{2}}$		
	S_{1}	48
S_{2}	1	2
		49

	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$
	S_{1}	5
S_{2}	45	
S_{2}	1	49

	\mathbf{R}_{1}	\mathbf{R}_{2}
	2	48
S_{1}	2	49
S_{2}	49	1

In-Class Lab: 1-I Experiment

- Go to "Online Experiments"
- Go down to "Part II. Decision Model for Psychophysics"
- Go to "One-interval Experiment"
- Select "1. Curvature detection"

Discussion of In-Class Demo

- Summarize the procedure
-What are the stimuli?
- How do you present them?
-What are the responses?
- How do you organize the data?
- Sample output

	$R 1$	$R 2$
S1	37	13
S2	14	36
$H=0.72$		
$F=0.26$		
$d^{\prime}=1.22$		
$c=0.03$		

(Please write down your own results in a notebook)

