A Decision Model for Psychophysics: Two-Interval Experiments

Procedures for the 1-I and 2-I Exps.

One-interval

- S_{1}, S_{2}
- $\mathbf{R}_{1}, \mathrm{R}_{2}$
- $\mathbf{P}\left(\mathrm{S}_{1}\right), \mathrm{P}\left(\mathrm{S}_{2}\right)$
- \mathbf{R}_{1} for $S_{1}, R_{\mathbf{2}}$ for $S_{\mathbf{2}}$
- Payoffs (k)?

■ Feedback?

Two-interval

- $\mathrm{U}_{1}=\left(\mathrm{S}_{2}, \mathrm{~S}_{1}\right), \mathrm{U}_{2}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- R_{1}, R_{2}
- $\mathbf{P}\left(\mathrm{U}_{1}\right), \mathbf{P}\left(\mathrm{U}_{2}\right)$
- R_{1} for U_{1}, R_{2} for U_{2}
- Payoffs (k)?
- Feedback?

	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$
\mathbf{U}_{1}		

In-Class Demo: 2-I Exp.

- Go to "Online Expeirments"
- Go down to "Part II. Decision Model for Psychophysics"
- Go to "Two-interval Experiment"
- Select "1. Curvature detection"
- Click on "Start Experiment"
- Select the default setting of short session, with feedback and temporal order.

1-I

2-I

Decision Model for 2-I Experiments

- S_{1} determines x_{1}, S_{2} determines x_{2}
- $U_{1}=\left(S_{2}, S_{1}\right)$ determines $\left(x_{2}, x_{1}\right)$, $\mathbf{U}_{2}=\left(S_{1}, S_{2}\right)$ determines $\left(x_{1}, x_{2}\right)$
- Assumption:
$\mathrm{y}_{1}=\mathbf{x}_{1}-\mathbf{x}_{2}$ for $\mathrm{U}_{1}, \mathrm{y}_{2}=\mathbf{x}_{2}-\mathbf{x}_{1}$ for U_{2}
- It follows that $V_{1}=M_{1}-M_{2}, V_{2}=M_{2}-M_{1}$

$$
\begin{array}{ll}
p\left(x \mid S_{1}\right)=N\left(M_{1}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-M_{1}\right)^{2}}{2 \sigma^{2}}} & p\left(x \mid S_{2}\right)=N\left(M_{2}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-M_{2}\right)^{2}}{2 \sigma^{2}}} \\
p\left(y \mid U_{1}\right)=N\left[\left(M_{1}-M_{2}\right), 2 \sigma^{2}\right] & \left.p\left(y \mid U_{2}\right)=N\left(M_{2}-M_{1}\right), 2 \sigma^{2}\right]
\end{array}
$$

Decision Model for 2-I (cont.)

Data Analysis

- Form a 2-by-2 matrix using data from a 2I-2AFC experiment
- Calculate (H, F)

■ Calculate $\mathbf{z}(\mathbf{H}), \mathbf{z}(\mathbf{F})$
■ Calculate d^{\prime} and c
■ How are the results from one-interval and two-interval experiments related?

Comparing 1-I and 2-I Results

■ Given the same S_{1} and S_{2}
\bullet Run a 1-I experiment
\rightarrow Run a 2-I experiment using $\mathrm{U}_{1}=\left(\mathrm{S}_{2}, \mathrm{~S}_{1}\right)$ and $U_{2}=\left(S_{1}, S_{2}\right)$

- Theoretically, the results are related
$\rightarrow \mathbf{d}^{\prime}{ }_{2 \mathrm{I}}=\sqrt{ } \mathbf{2} \times \mathrm{d}^{\prime}{ }_{1 \mathrm{I}}$
$\rightarrow \mathrm{c}_{2 \mathrm{I}}<\mathrm{c}_{1 \mathrm{II}}$

Comparing Results of 1-I and 2-I Curvature Detection Demos

■ Does the 2-I exp. feel easier than the 1-I exp.?
$\square \mathrm{d}^{\prime}{ }_{2 \mathrm{I}}>\mathrm{d}^{\prime}{ }_{1 \mathrm{I}}$? By how much (ratio)?

- $\mathrm{c}_{2 \mathrm{I}}<\mathrm{c}_{1 \mathrm{I}}$?

Question

■ $\mathrm{DL}_{2 \mathrm{I}}=\mathrm{DL}_{1 \mathrm{I}}$?

$\mathrm{DL}_{21}=\mathrm{DL}_{1 I}$?

- Assuming that
$-\mathbf{d}_{2 \mathrm{I}}=\sqrt{ } \mathbf{2} \times \mathrm{d}^{\prime}{ }_{1 \mathrm{I}}$
$\rightarrow \mathrm{DL}_{1 \mathrm{II}}=\Delta \mathrm{S} @ \mathrm{~d}_{{ }_{1 \mathrm{II}}}=\mathbf{1}$
$-\mathrm{DL}_{2 \mathrm{I}}=\Delta \mathrm{S} @ \mathrm{~d}^{\prime}{ }_{2 \mathrm{I}}=1$ $\left(\operatorname{or} \mathrm{DL}_{2 \mathrm{I}}=\Delta \mathrm{S} @ \mathrm{~d}^{\prime}{ }_{2 \mathrm{I}}=\sqrt{ } 2\right)$
\rightarrow where $\Delta \mathrm{S}=\mathbf{S}_{2}-\mathrm{S}_{1}$
- Then
$\rightarrow \mathrm{DL}_{21}=\mathrm{DL}_{11} / \sqrt{ } 2$
 $\left(\right.$ or $\mathrm{DL}_{21}=\mathrm{DL}_{11}$)
- Otherwise, we don't know.

Readings

- Chapter 7.
N. A. Macmillan and C. D. Creelman,

Detection Theory: A User's Guide. New York: Cambridge University Press, 1991.

