Estimation of $\sigma_{d^{\prime}}$

The Problem

- $\sigma_{d^{\prime}}$ can not be estimated directly from 1-I or 2-I experiments
■ We can always find a cumulative Gaussian curve that goes through 2 points EXACTLY

- We can always find a straight line that goes through 1 point EXACTLY

\square Therefore, we can NOT measure the goodness of fit in either case with rms error

Two Ways to Estimate $\sigma_{d^{\prime}}$

- 1. When you only collect one pair of (\mathbf{H}, F)
\diamond Need assumptions to estimate $\sigma_{d^{\prime}}$
- 2. When you measure multiple pairs of (H, F)

Use the rms error of ROC curve fitting
\rightarrow There are two ways to estimate ROC
σ Run multiple experiments. Ask subjects to use different k in different sessions.
or
${ }^{\circ}$ Rating paradigm. Ask subjects to maintain multiple k in the same session.

The Main Idea

- Given that

$$
d^{\prime}=z(H)-z(F)
$$

- We have

$$
\sigma_{d^{\prime}}=\sqrt{\sigma_{z(H)}^{2}+\sigma_{z(F)}^{2}}
$$

- Therefore, to estimate $\sigma_{d^{\prime}}$, we need to estimate $\sigma_{\mathrm{z}(\mathrm{H})}$ and $\sigma_{\mathrm{z}(\mathrm{F})}$ first.

Method 1: Estimate $\sigma_{d^{\prime}}$ with One Pair of (H, F) Values

- Assumptions
- The only source of variability in d^{\prime} is sampling error (therefore we are getting a lower-bound estimate)
-Binomial distribution approximates Gaussian with sufficient number of trials. This is true if
* \boldsymbol{p} (probability of responding "yes") is not extreme; or
σN (number of trials) is large when p is extreme

■ It then follows that the variability of H and F are:

$$
\begin{aligned}
& \sigma_{F}=\sqrt{\frac{F(1-F)}{N_{1}}} \\
& \sigma_{H}=\sqrt{\frac{H(1-H)}{N_{2}}}
\end{aligned}
$$

where N_{1} or N_{2} is the number of times stimulus S_{1} or S_{2} has been presented, respectively.

- All we need to do now is to estimate $\sigma_{\mathrm{z}(\mathrm{H})}$ and $\sigma_{\mathrm{z}(\mathrm{F})}$.

Summary of Method 1

$\sigma_{z(F)}=\sigma_{F} \cdot \sqrt{2 \pi} \cdot e^{\frac{1}{2}[z(F)]^{2}}=\sqrt{\frac{2 \pi F(1-F)}{N_{1}}} \cdot e^{\frac{1}{2}[z(F)]^{2}}$
$\sigma_{z(H)}=\sqrt{\frac{2 \pi H(1-H)}{N_{2}}} \cdot e^{\frac{1}{2}[z(H)]^{2}}$
Finally,$\sigma_{d^{\prime}}=\sqrt{\sigma_{z(H)}^{2}+\sigma_{z(F)}^{2}}$
It should be clear that $\sigma_{d^{\prime}}$ is inversely proportional to $\mathbf{N}_{\mathbf{1}}$ and $\mathbf{N}_{\mathbf{2}}$!

Method 2: Estimate $\sigma_{d^{\prime}}$ with ROC

- No explicit assumptions are needed
- Estimate $\sigma_{\mathbf{z (H)}}$ and $\sigma_{\mathrm{z}(\mathrm{F})}$ as the rms error of straight line fitting
How?
- Then compute $\sigma_{d^{\prime}}=\sqrt{\sigma_{z(H)}^{2}+\sigma_{z(F)}^{2}}$

Two Ways of Obtaining ROC

- Multiple sessions with different \boldsymbol{k} values - see Pang et al. 1991
- Same session with multiple \boldsymbol{k} values
\bullet Rating Experiment

