Rating Experiment

Outline

\square Procedure
■ Decision Model

- Data Analysis

Procedure

- Same as the procedure for 1-I experiments, except that
- There are >2 admissible responses
- Subjects decide not only which one of the two stimuli was perceived to have been presented, but their confidence in such decisions.

Procedure (cont.)

- Three types of response sets
\rightarrow Numerals - simplest
- Verbal categories
- 2 sub-responses
${ }^{-} \mathbf{R}_{1}$ or R_{2}, then
- Grade the certainty of response with numerals or verbal categories
- All three types are equivalent in functionality

Decision Model

Data Analysis

- Stimulus-response matrix for experimental data
- Calculate d ${ }^{\prime}$
- Derive ROC (iso-sensitivity curve)
- Calculate response bias c_{i}
- The key is to find the appropriate pair of (H, F) values, then
$\rightarrow \mathrm{d}^{\prime}=\mathbf{z}(\mathbf{H})-\mathbf{z}(\mathbf{F})$
$\rightarrow \mathbf{c}=-[\mathbf{z}(\mathbf{H})+\mathrm{z}(\mathbf{F})] / 2$

An Example (from M\&C, chap.3)

■ Word recognition (old vs. new, highfrequency vocabulary)
■ "Detection" of old words

- Old is S 2 , New is S 1

	"old 3"	"old 2"	"old 1"	"new 1"	"new 2"	"new 3"	Total
Old	49	94	75	60	75	22	375
New	8	37	45	60	113	113	376

(from Table 3.1, M\&C, Chap. 3, p. 1)

Proportions

	"old 3"	"old 2"	"old 1"	"new 1"	"new 2"	"new 3"	Total
New $\left(\mathrm{S}_{1}\right)$.021	.098	.120	.160	.301	.301	1.00
Old $\left(\mathrm{S}_{2}\right)$.131	.251	.200	.160	.200	.059	1.00

(from Table 3.2, M\&C, Chap. 3, p. 3)

Cumulative Proportions: Hit and False-Alarm Rates

	"old 3" $\left(k_{5}\right)$	"old 2" $\left(k_{4}\right)$	"old 1" $\left(k_{3}\right)$	"new 1" $\left(k_{2}\right)$	"new 2" $\left(k_{1}\right)$	"new 3" $(k=-\infty)$	Total
F	.021	.119	.239	.399	.700	1.00	1.00
H	.131	.382	.582	.742	.942	1.00	1.00

(from Table 3.3, M\&C, Chap. 3, p. 4)

9

Z-scores

	"old 3" $\left(k_{\mathbf{5}}\right)$	"old 2" $\left(k_{4}\right)$	"old 1" $\left(k_{3}\right)$	"new 1"" $\left(k_{2}\right)$	"new 2" $\left(k_{1}\right)$	"new 3" $(k=-\infty)$	Total
$\mathrm{z}(\mathrm{F})$	-2.035	-1.180	-0.705	-0.255	0.525	-	1.00
$\mathrm{z}(\mathrm{H})$	-1.125	-0.300	0.205	0.645	1.575	-	1.00

(from Table 3.4, M\&C, Chap. 3, p. 5)

Calculation of \mathbf{d}^{\prime}

- Two conceptually different methods

1. Collapse the data matrix into a 2×2 matrix, by combining responses for the same stimulus

	"old 3"	"old 2"	"old 1"	"new 1"	"new 2"	"new 3"	Total
Old	49	94	75	60	75	22	375
New	8	$\sqrt{7}$	45	60	113	113	376

	$"$ old"	"new"
Old $\left(\mathrm{S}_{2}\right)$	218	157
New $\left(\mathrm{S}_{1}\right)$	90	286

	R_{1}	\mathbf{R}_{2}
S_{1}	286	90
S_{2}	157	218

$d^{\prime}=0.910$
$c=0.25$

Calculation of \mathbf{d}^{\prime} (cont.)

- Two methods (cont.)

2. Calculate d^{\prime} from the many (H, F) values
(from Table 3.4, M\&C, Chap. 3, p. 5)

	"old 3" $\left(k_{5}\right)$	"old 2" $\left(k_{4}\right)$	"old 1" $\left(k_{3}\right)$	"new 1"" $\left(k_{2}\right)$	"new 2" $\left(k_{1}\right)$	"new 3" $(k=-\infty)$	Total
$\mathrm{z}(\mathrm{F})$	-2.035	-1.180	-0.705	-0.255	0.525	-	1.00
$\mathrm{z}(\mathrm{H})$	-1.125	-0.300	0.205	0.645	1.575	-	1.00

\mathbf{d}^{\prime}	0.910	0.880	0.910	0.900	1.050	-	-

Data Analysis

- Stimulus-response matrix for experimental data
■ Calcullate d^{\prime}
- Derive ROC iso-sensitivity curve
- Calculate response bias c_{i}
- The key is to find the appropriate pair of (H, F) values, then
$\bullet \mathrm{d}^{\prime}=\mathrm{z}(\mathbf{H})-\mathrm{z}(\mathbf{F})$
$\bullet c=-[\mathrm{z}(\mathrm{H})+\mathrm{z}(\mathbf{F})] / 2$

Plotting the ROC

	k_{5}	k_{4}	k_{3}	k_{2}	k_{1}
$\mathrm{z}(\mathrm{F})$	-2.035	-1.180	-0.705	-0.255	0.525
$\mathrm{z}(\mathrm{H})$	-1.125	-0.300	0.205	0.645	1.575
(from Table 3.4, M\&C,					
Chap. 3, $p .5$)					

$\mathbf{z}(\mathbf{H})=\mathbf{z}(\mathbf{F})+\mathbf{d}^{\prime}$
$\mathrm{d}^{\prime}=0.93$
(from Figure 3.1, M\&C, Chap. 3)

More on Estimation of $\sigma_{d^{\prime}}$

- This is the "other" way to construct a ROC curve for estimating $\sigma_{\mathrm{d}^{\prime}}$
See lectures notes on "how to calculate $\sigma_{d \mathrm{~d}}$ "
\star Fitting based on minimum rms error is not appropriate because both abscissa and ordinate are dependent variables
- Use maximum likelihood estimation method
-See M\&C, chap.3, p. 13, for reference to the Dorfman \& Alf's algorithm

Data Analysis

- Stimulus-response matrix for
experimental data
- Calculate d'
- Derive ROC iso-sensitivity curve
- Calculate response bias $\mathbf{c}_{\mathbf{i}}$
- The key is to find the appropriate pair of (H, F) values, then
- $\mathrm{d}^{\prime}=\mathrm{z}(\mathrm{H})-\mathrm{z}(\mathrm{F})$
$\bullet \mathrm{c}=-[\mathrm{z}(\mathrm{H})+\mathrm{z}(\mathrm{F}) / 2]$

Calculation of $\mathbf{c}_{\boldsymbol{i}}$

(from Table 3.4, M\&C, Chap. 3, p. 5)

	"old 3" $\left(k_{5}\right)$	"old 2" $\left(k_{4}\right)$	"old 1" $\left(k_{3}\right)$	"new 1" $\left(k_{2}\right)$	"new 2"" $\left(k_{1}\right)$	"new 3" $(k=-\infty)$	Total
$z(H)$	-1.125	-0.300	0.205	0.645	1.575	-	1.00
$\mathbf{z}(\mathrm{~F})$	-2.035	-1.180	-0.705	-0.255	0.525	-	1.00
\mathbf{d}^{\prime}	0.910	0.880	0.910	0.900	1.050	-	-
$\mathbf{c}_{\mathbf{i}}$	1.58	0.74	0.25	-0.195	-1.05	-	-

Reading

- Chap. 3 of Macmillan and Creelman's book

