Data Analysis for an Absolute Identification Experiment

Randomization with Replacement

- Imagine that you have \boldsymbol{k} containers for the \boldsymbol{k} stimulus alternatives
- The $i_{\text {th }}$ container has a fixed number of copies (n_{i}, proportional to $P\left(S_{i}\right)$) of the $i_{\text {th }}$ stimulus
- On each trial, one of the $\Sigma n_{i}(i=1, \ldots, k)$ stimuli is selected to be presented to the subject
- That stimulus is immediately replaced in its corresponding container
- Then, the a priori probability for $\mathrm{S}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{k})$ remains the same for all trials
- The stimulus uncertainty remains the same on all trials

$$
I S=-\sum_{i=1}^{k} P\left(S_{i}\right) \log _{2} P\left(S_{i}\right)
$$

Randomization without Replacement

- Imagine that you have \boldsymbol{k} containers for the \boldsymbol{k} stimulus alternatives
- The $i_{\text {th }}$ container has a fixed number of copies (n_{i}, proportional to $P\left(S_{i}\right)$) of the $i_{\text {th }}$ stimulus
- On each trial, one of the $\Sigma n_{i}(i=1, \ldots, k)$ stimuli was selected to be presented to the subject
- That stimulus is NOT replaced in its corresponding container
- Then, the a priori probability for S_{i} may change from trial to trial
- The stimulus uncertainty $I S$ may change from trial to trial
- On the last trial, the subject knows exactly what stimulus to expect (whichever stimulus is the last one left in a container)

More on Randomization

- We prefer the method of "randomization with replacement" because
- It ensures constant $I S$ for each trial
- It makes data analysis easier
- With the method of "randomization with replacement," equal a priori probability no longer guarantees equal number of occurrences for all stimulus alternatives.
- Note that frequency of occurrence \neq probability
- The advantage of "randomization without replacement" is that the experimenter controls the exact number of times each stimulus alternatives is presented.

	\mathbf{R}_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	\mathbf{R}_{4}	\mathbf{R}_{5}	
S_{1}	14	3	2	0	1	20
S_{2}	0	13	2	3	1	19
\mathbf{S}_{3}	4	3	11	1	0	19
S_{4}	2	0	2	15	1	20
\mathbf{S}_{5}	5	3	2	0	12	22
	25	22	19	19	15	100

Estimation of IT - IT est

- Average information transfer:

$$
I T=\sum_{j=1}^{k} \sum_{i=1}^{k} P\left(S_{i}, R_{j}\right) \log _{2} \frac{P\left(S_{i} \mid R_{j}\right)}{P\left(S_{i}\right)}
$$

■ Its maximum-likelihood estimate:

$$
n_{i j}
$$

$I T_{\text {est }}=\sum_{j=1=1}^{k} \sum_{i=1}^{k}\left(\frac{n_{i j}}{n}\right) \log _{2}\left(\frac{n_{i j} \cdot n}{n_{i} \cdot n_{j}}\right) \quad$ where

$$
\begin{aligned}
& n_{i}=\sum_{j=1}^{k} n_{i j} \quad n_{j}=\sum_{i=1}^{k} n_{i j} \\
& n=\sum_{j=1}^{k} \sum_{i=1}^{k} n_{i j}=\sum_{i=1}^{k} n_{i}=\sum_{j=1}^{k} n_{j}
\end{aligned}
$$

$■$ Interpretation of $2^{I T}$ or $2^{I T_{e s t}}$ (compare with $k=2^{\boldsymbol{U}}$)

Percent-correct scores and IT ${ }_{\text {est }}$

$$
I T_{\text {est }}=\sum_{j=1}^{k} \sum_{i=1}^{k}\left(\frac{n_{i j}}{n}\right) \log _{2}\left(\frac{n_{i j} \cdot n}{n_{i} \cdot n_{j}}\right)
$$

(A)
(B)
(C)
(D)

25	25
25	25

$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$
$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$
$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$
$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$
25% 0 bits			

$\mathbf{2 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 5}$
100% 2 bits			

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 5}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{2 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
0% 2 bits				

Channel Capacity

Maximum Information Transmission

$■$ Mathematically, $I T \leq I S$.
■ Intuitively, if the input and output are perfectly correlated, then $I T=I S(=I R)$.

- Assume that there exists a maximum information transmission
For small values of $I S, I T=I S$.
\bullet As $I S$ increases, $I T=$ constant regardless of the value of $I S$.
- This maximum $I T$ is accepted as the channel capacity.

The Magic Number 7 ± 2

What does the "Magic Number" Mean?

- The "magic number" is derived from an $I T$ range of 2.3-3.2 bits
- The "magic number" summarizes the typical channel capacity for uni-dimensional stimuli
- Uni-dimensional stimuli
- Only one physical variables (target) is manipulated to form the stimulus set
- Other physical variables (background) are either held constant or randomized

```
How "Magic" is the Magic Number?
■ The "Magic Number" does NOT apply to - Absolute pitch
- Over-learnt stimuli
- Human face recognition
\({ }^{\circ}\) Multi-dimensional stimuli
```


Reading

■ G. A. Miller, "The magical number seven, plus or minus two: Some limits on our capacity for processing information," The Psychological Review, vol. 63, pp. 81-97, 1956.

