Practical Issues in Designing and Conducting an AI Experiment

Five Issues to be Considered

- Range of stimulus parameter (R)

■ Number of stimulus alternatives (k)
$■$ Spacing between the \boldsymbol{k} stimuli (linear vs. log)

- Total number of trials (n)
- Training procedure

Issue \#1:
 Range of Stimulus Parameter (R)

■ Problem
\rightarrow At small R, where $R=\log \left(I_{\text {max }} / I_{\text {min }}\right)$, information transfer < channel capacity

- Strategy
- Use largest possible range given the experimental setup
Examples of "largest possible range"
Sound levels: AL to "too loud"
Curvature: straight line to arc of the smallest circle that can be drawn
-Weight: AL to "too heavy"

Issue \#2: Number of Stimulus Alternatives (k)

- Small k limits $\boldsymbol{I T}$ est
- Large k requires too many trials
- One strategy: increase \boldsymbol{k} until $\boldsymbol{I} \boldsymbol{T}_{\text {est }}$ asymptotes

Issue \#3: Linear or Log Spacing?

- Objective
- Equal perceptual distance between adjacent stimuli
- If Weber's law applies, logarithmic spacing is preferred
- Problem
- Many discrimination experiments are required before an absolute identification exp can be designed and conducted
- Lucky Solution
- In most cases, information transfer is not sensitive to stimulus spacing

An Example (Tan, 1997)

- Identification of sphere size:

Range of radius (fixed): $\mathbf{1 0 . 0}$ to $\mathbf{8 0 . 0} \mathbf{~ m m}$
\rightarrow Linear (e.g., $k=3$): 10.0, 45.0, 80.0 mm
\checkmark Logarithmic (e.g., $k=3$): 10.0, 28.28, 80.0 mm

S1, S2, S3: Linear S4, S5, S6: Log

Issue \#4: How Many Trials?

- The issue:
$\bullet I T_{\text {est }}$ is subject to statistical fluctuations
$\bullet I T_{\text {est }}$ is biased ($\mathrm{E}\left[I T_{\text {est }}\right]>I T$)
\rightarrow bias $>$ sampling errors
- Need sufficient number of trials to overcome bias and sampling errors

Miller's (1954) Formula

- $I T_{\text {est }}$ is an over-estimate of $I T$

- With large $n\left(>5 \mathrm{k}^{2}\right), \Delta$ is small (0.14 bit)
- With small n, Δ can over-correct i.e., $I T_{\text {est }}-\Delta<I T$

Miller's (1954) Formula (cont.)

- When performance level is high, Δ overcorrects

25	0	0	0
$\mathbf{0}$	25	0	0
$\mathbf{0}$	$\mathbf{0}$	25	0
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	25

$$
P(C)=100 \%
$$

$$
\begin{aligned}
& \mathbf{I S}=\mathbf{I R}=\mathbf{I T}_{\text {est }}=\mathbf{I T}=\mathbf{2} \text { bits } \\
& \text { yet } \Delta \neq 0
\end{aligned}
$$

- Bottom line: $n>=5 \boldsymbol{k}^{2}$ is needed.

An Experiment where $\boldsymbol{k}=\mathbf{1 2 5}$
 (Rabinowitz et al., JASA, 1987)

■ For $k=125,5 k^{2}=\mathbf{7 8}, 125$ total trials!!

- 3-D stimulus set - pulsed sinusoidal vibration
\rightarrow Five values of intensity
- Five values of contact area
\rightarrow Five values of frequency
■ One-interval AI paradigm with feedback
■ 3-tuplets as responses (e.g., 111, 254, etc.)
- Data: 125-by-125 confusion matrix!!

Houtsma's Computer Simulation (JASA, 1983)

- Assumption
- 1-D experiment with $\mathrm{k}=125$
- Procedure
- Randomly pick an S from 1-125; $S \in[1,125]$
$-R_{\text {raw }}=S+$ noise ($\pm s$)
$-R$ is reset to 1 or 125 if $R_{\text {raw }}$ is too small or too large; $R \in[1,125]$
Collect enough number of "trials", n
- Estimate $I T_{\text {est }}$ as a function of n
- The value of \boldsymbol{s} is used to control the asymptotic value of $\boldsymbol{I} \boldsymbol{T}_{\text {est }}$

So How Many Trials are Enough?

- Collect $\boldsymbol{n}>=\mathbf{5} \boldsymbol{k}^{\mathbf{2}}$ trials if possible
- For one-dimensional stimuli, k is usually reasonable (7 ± 2).
- For multi-dimensional stimuli,
- Additivity: $I T(m u l t i-D)=\Sigma I T(I D)$?

Usually, $\boldsymbol{I T}(A, F)<\boldsymbol{I T}(A)+\boldsymbol{I T}(F)$

- A general additivity law (Durlach et al., 1989)

Issue \#5: Training

■ Training is usually needed for AI paradigms
■ Criterion for termination of training

Further Readings

- H. Z. Tan, "Identification of sphere size using the PHANToM ${ }^{\text {TM }: ~ T o w a r d s ~ a ~ s e t ~ o f ~ b u i l d i n g ~ b l o c k s ~ f o r ~}$ rendering haptic environment," in Proceedings of the ASME Dynamic Systems and Control Division, vol. 61. Dallas, TX: American Society of Mechanical Engineers, 1997, pp. 197-203.
- G. A. Miller, "Note on the bias of information estimates," in Information Theory in Psychology, H. Quastler (Ed.), 1954, pp. 95-100.

References (cont.)

■ W. M. Rabinowitz, A. J. M. Houtsma, N. I. Durlach, and L. A. Delhorne, "Multidimensional tactile displays: Identification of vibratory intensity, frequency, and contactor area," Journal of the Acoustical Society of America, vol. 82, pp. 1243-1252, 1987.

- A. J. M. Houtsma, "Estimation of mutual information from limited experimental data," Journal of the Acoustical Society of America, vol. 74, pp. 1626-1629, 1983.

References (cont.)

■ N. I. Durlach, H. Z. Tan, N. A. MacMillan, W. M. Rabinowitz, and L. D. Braida, "Resolution in one dimension with random variations in background dimensions," Perception \& Psychophysics, vol. 46, pp. 293-296, 1989.

- N. I. Durlach and L. D. Braida, "Intensity perception I. Preliminary theory of intensity resolution," The Journal of the Acoustical Society of America, vol. 46, pp. 372-383, 1969.

