Multidimensional Scaling

© Hong Z. Tan & Zygmunt Pizlo

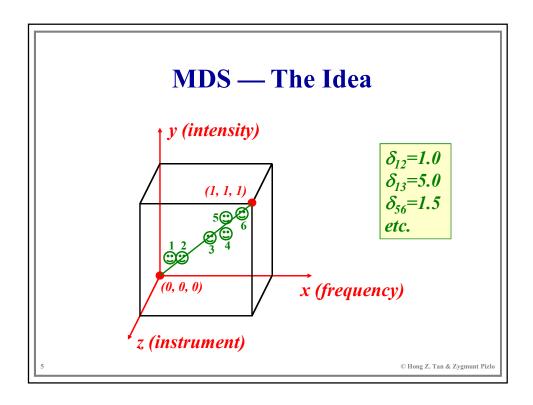
Outline

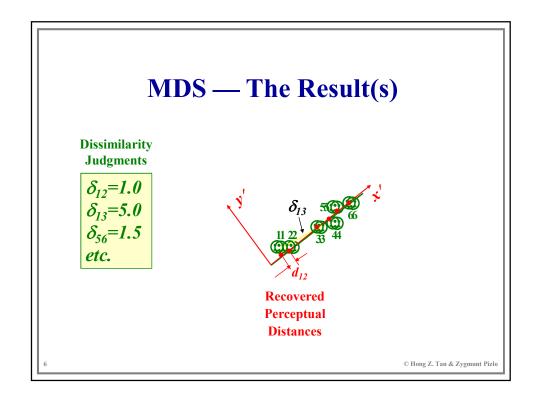
- Motivation
- An Example on Haptic Texture Perception
- Summary

© Hong Z. Tan & Zygmunt Pizlo

Motivation

- In general, multidimensional stimuli lead to higher *information transfer*
- Perceptual dimensionality is related to, but not necessarily identical to, physical dimensionality
- Real-world stimuli are usually complex and multidimensional. How do we determine their associated *perceptual* dimensionality?
 - **◆** Example 1. Face recognition
 - **◆ Example 2.** Color perception
 - **◆ Example 3. Haptic surface texture perception**


© Hong Z. Tan & Zygmunt Pizl


_

Multidimensional Scaling (MDS) — An Overview

- MDS is a technique that lets us investigate the underlying dimensionality associated with a stimulus set.
- Given a set of *n* objects
 - Obtain "dissimilarity" measures δ_{rs} for each pair of objects (r, s)
 - Search for a low dimensional perceptual space, where each object is represented by a point
 - Ensure that the distances between the points in perceptual space, $\{d_{rs}\}$, match the original dissimilarities $\{\delta_{rs}\}$.

O Hong Z. Tan & Zygmunt Pizlo

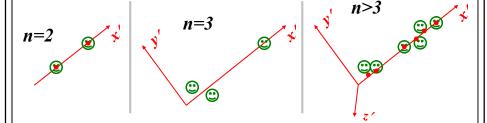
An Example: Texture Perception

- Hollins et al., *P&P*, 1993.
- Stimuli: 17 texture samples
- **■** Procedure: passive stimulation
- **Dissimilarity Scores**
 - Grouping (i.e., similarity scores)
 - ◆ Co-occurrence scores (0.0 or 1.0)
 - ◆ Dissimilarity = 1 Co-occurrence
- MDS analysis (ALSCAL, SAS)

© Hong Z. Tan & Zygmunt Pizlo

Co-occurrence Matrix Average over All Subjects

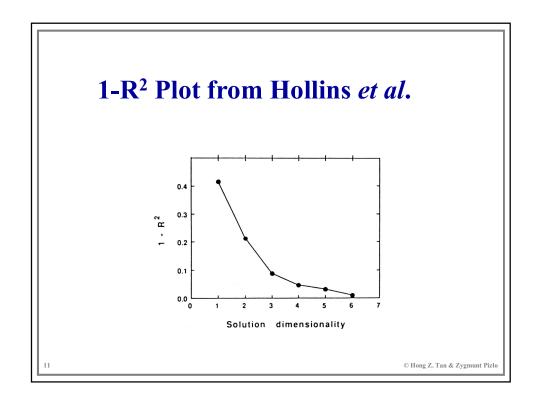
			Wax		Card-		
Stimulus	Felt	Straw	Paper	Cork	Tile	board	
Felt	1.00		4, 1	7 ()	7 19.4		
Straw	.00	1.00					
Wax paper	.05	.00	1.00				
Cork	.10	.05	.30	1.00			
Tile	.05	.00	.60	.55	1.00		
Cardboard	05	00	60	60	95	1.00	

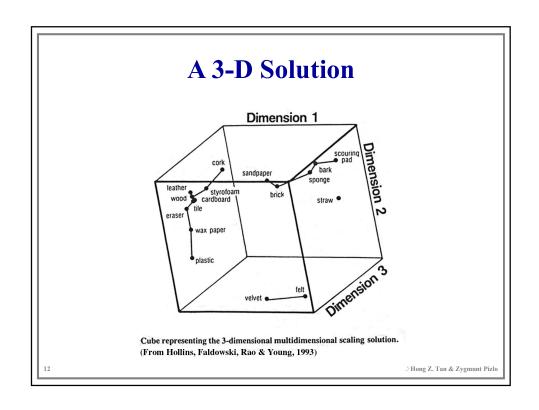

© Hong Z. Tan & Zygmunt Pizlo

(cont.)

- Dissimilarity = 1 Co-occurrence
- MDS analysis (ALSCAL, SAS)

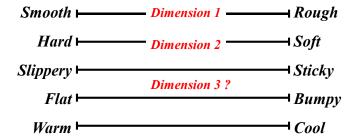
How many dimensions?


■ Given *n* objects, MDS analysis recovers (*n*−1) underlying dimensions



■ Dimensionality is determined by examining S-Stress, Stress, and 1–R², as a function of dimensions

© Hong Z. Tan & Zygmunt Pizlo


© Hong Z. Tan & Zygmunt Pizlo

Interpreting the MDS Solution

Adjective Rating

© Hong Z. Tan & Zygmunt Pizlo

Summary of MDS

- **■** Experimental procedures
 - **♦** Key is to obtain dissimilarity scores
 - ◆ Grouping, similarity, dissimilarity
 - Ordering (non-metric)
 - etc.
- Data analysis
 - ◆ Use statistical packages such as SAS
 - For n objects, (n-1) dimensional solution

14

O Hong Z. Tan & Zygmunt Pizlo

- Select solution dimensionality
 - S-Stress, Stress, and $1 R^2$
- Interpretation of MDS solutions
 - Adjective rating
- Known problems and limitations
 - ♦ Invariant to translation, rotation, reflection
 - ♦ May "discover" non-existent perceptual spaces
- **■** Verification of MDS solution
 - **◆**Adjective rating
 - Matching experiments

Color perception: X + rR = gG + bB

15

© Hong Z. Tan & Zygmunt Pizlo

Readings

- T. F. Cox and M. A. A. Cox, *Multidimensional Scaling*. New York: Chapman & Hall, 1994.
- M. Hollins, R. Faldowski, S. Rao, and F. Young, "Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis," *Perception & Psychophysics*, vol. 54, pp. 697-705, 1993.

16

O Hong Z. Tan & Zygmunt Pizlo