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ABSTRACT

In this paper, we investigate the possibility of monitoring traf-
fic without using any motion features. The goal of our system
is to process videos with ultra-low frame rate, i.e. videos for
which reliable motion features cannot be computed. In this
work, we investigate how 2D spatial features combined with
a machine learning method can assess traffic conditions such
as fluid traffic, dense traffic, and traffic jam. The underlying
hypothesis that we ought to validate is that traffic images are
heavily characterized by their 2D spatial textures. In that per-
spective, we tested different 2D texture features and machine
learning methods to see how accurate such an approach can
be. We also performed a regression on the image descriptor
in order to estimate traffic density.

Experimental results obtained on the UCSD traffic dataset
reveal that our approach generalizes well to various weather
and lighting conditions. It even outperforms state-of-the-art
traffic analysis methods relying on spatio-temporal features.

Index Terms— Traffic analysis, SVM, codebook, convo-
lutional neural network.

1. INTRODUCTION

Video surveillance systems are often used for traffic moni-
toring and to characterize traffic load. Knowing in real time
when the traffic is fluid or when it jams is a key information
to help authorities re-route traffic and thus reduce congestion.

As far as we know, current traffic monitoring systems all
rely on spatio-temporal features. These features are typically
used to segment and track vehicles and/or to compute traffic
flow [1, 2, 3, 4, 5, 6, 7, 8, 9]. These informations are generally
used to estimate traffic speed, count the number of vehicles on
the road and recover motion trajectories.

But these traffic monitoring systems share a fundamental
limitation: for it to work, they need high frame rate videos
with stable environmental conditions. Without these condi-
tions, reliable motion features cannot be extracted thus lead-
ing to corrupted results. Although a bit old, the survey by
Kastriaki et al. [10] describes well these limitations.

Unfortunately, low frame rate videos are very common as
many large-scale camera networks cannot stream and store
high-frame rate videos gathered by hundreds (if not thou-
sands) of cameras. This is mainly due to bandwidth and stor-
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Fig. 1. Images taken from our Motorway Dataset and showing
different traffic density.

age limitations. Instead, cameras often send to the server one
frame every 2 or 3 second (if not less). It is also the case for IP
cameras transmitting over a WIFI network. The limited band-
width makes it hard to have more than 2 frames per second.
One might also think of a non-stationary low-altitude UAV
which can only take a limited number of images of a given
road when it flies over it. In such case, one can only analyze
traffic based on a limited number of unregistered images.

In this paper, we explore the possibility of using only spa-
tial texture features to classify traffic. Figure 1 shows exam-
ples of four different traffic configurations. Since no such
work has been done in the past, we tested different texture fea-
tures with different machine learning methods and show that
modern pattern recognition methods can outperform state-of-
the-art video-based traffic analysis methods.

2. RELATED WORKS

Traffic classification methods can be roughly divided into two
groups: the vehicle-oriented ones and those relying on a holis-
tic approach.

Vehicle-based methods assess traffic activity by track-
ing every moving vehicle on the road. For these methods,
vehicles are first localized with a background subtraction
method [1, 11, 12] or with moving feature keypoints [7, 9]
and then followed with a tracking method such as mean-shift,
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a Kalman filter tracker, or a background-subtraction-based
tracking method [3, 9]. Resulting tracks are bundled together
in order to identify traffic lanes and/or the average traffic
speed and/or the average traffic density [7, 3, 13]. Note that
traffic density can also be obtained by simply counting the
number of detected cars [7, 8].

Unfortunately, tracking simultaneously a large number of
moving objects is still a challenge nowadays. As a solu-
tion, other methods focus on understanding the traffic flow
from a macroscopic (or holistic) point of view and thus avoid
tracking. The global representation of a scene is obtained
by accounting for spatio-temporal features other than track-
ing and background subtraction. For example, Derpanis and
Wildes [6] use 3D spatio-temporal filters based on the third
derivative of a Gaussian function. Porikli and Li [14] use fea-
tures from the MPEG compressed domain, i.e. the DCT co-
efficients and the motion vectors used for compression. Lee
and Bovik [4] accumulates optical flow over time in order
to get a temporally average vector field which is then used
to classify traffic flow. Other methods [5, 15] analyze traffic
flow as a dynamic texture classification problems. Chan and
Vasconcelos[5] defined an autoregressive stochastic process
over the spatial and temporal components while Derpanis and
Wildes [15] associates different distribution to different traffic
flow status in spatial-temporal orientation domain.

All these methods end up classifying the traffic into a cer-
tain number of traffic classes (typically low, medium, heavy,
and traffic jam). To do so, various machine learning meth-
ods have been used such as K-nearest neighbors, SVM, and
decision trees to name a few.

From our perspective, the main limitation of these previ-
ous methods is their need for high-frame-rate videos to com-
pute reliable motion features. As a consequence, none of
these methods can be used to process low-frame rate videos,
i.e. videos with less than 1 or 2 fps.

The reader should note that although some method uses
spatial features to process road scenes, to our knowledge none
of them have been used to assess traffic condition. For ex-
ample, Ess et al. [16] process video frames acquired from the
front view of a moving vehicle to determined the environment
in front of the car (e.g. parking, highway, side road, tunnel,
etc.). Similarly, Sikiric et al.[17] implemented a bag of visual
words pipeline to segment road images. As for Ess et al. [16],
the resulting segmentation map is used to identify in which
scene the car is.

3. PROPOSED METHOD

The goal of this paper is to validate the hypothesis that a well-
designed and well-trained 2D pattern recognition system can
correctly assess traffic condition without using motion fea-
tures. In that perspective, we tested different SVM methods
together with four different codebook visual descriptors as
well as two convolutional neural network (CNN) features.

3.1. Codebook Descriptors
Image classification systems always involve a training and
testing phase. The training phase is often carried out in three
steps: 1) extract local image features of all training images
(e.g. HOG or SIFT), 2)generate a codebook from these fea-
tures (e.g. k-means, GMM ) and 3) encode local image fea-
tures into visual descriptors and train a classifier (e.g. SVM).
As for the testing phase, it typically follows three steps : 1)
extract local features from the test image, 2) encode a visual
descriptor vector with the local features and the codebook,
and 3) classification of the visual descriptor vector [18].

In this paper, we tested four different visual descrip-
tors, namely a bag of visual words (BOVW), Vector of Lo-
cally Aggregated Descriptors (VLAD) [19], improved Fisher
Vector (IFV) [20] and Locality-constrained Linear Coding
(LLC) [21]. For all these methods, we used the same set of
dense 128-dimension SIFT features (~x1, ~x2, ..., ~xN ).

BOVW: starting from the SIFT features, we first compute
a dictionary of K visual words (~µ1, ~µ2, ..., ~µk) following
a k-means method. Then, a histogram of visual words is
computed for each image. The resulting histogram is a K-
dimension visual descriptor which contains the number of
times a visual word has been seen in an image. The his-
togram vector is then used for both training and testing.

VLAD: as for BOVW, we first learn a dictionary of K vi-
sual words with K-means and assign each SIFT descriptor ~xi
to its nearest visual word ~µk = NN(~xi). Then, VLAD ac-
counts for the residual distance to the nearest visual word:

vjk =

K∑
~xi such that NN(~xi)=~µk

(xij − µkj). (1)

Note that v is a 128×K matrix where 128 is the SIFT vector
size and K the total number of visual words. Matrix v is then
concatenated into a 1D 128 ∗K vector and used for training
and testing.

LLC: starting from the same dictionary than VLAD and
BOVW, LLC computes a visual descriptor by accounting for
sparse coding. That is, instead of assigning each SIFT fea-
ture ~xi to its X nearest visual words µk, it assigns a soft
weight to the nearest visual words (in our case, we use X=5).
The weights are computed with the following sparse coding
scheme :

argmin
C

N∑
i=1

||~xi −BCi||2 + γ||~di � Ci||2 (2)

where C is a N ×K weight matrix, B is the K-dimensional
codebook, � is an element-wise multiplicator and ~di is a dis-
tance vector to the nearest visual words. Once calculated, the
columns of C are summed in order to get a 1D vector which
we then use for training and testing.
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IFV: here, visual words are expressed with a Gaussian mix-
ture model (GMM), restricted to diagonal variance matrices.
Then, for each visual word ~vk consider the mean and covari-
ance deviation vectors:

vkj =
1

N
√
πk

∑
~xi

qik
xij − µkj
σkj

(3)

wkj =
1

N
√
2πk

∑
~xi

qik

[(
xij − µkj
σkj

)2

− 1

]
(4)

where πk is the prior probability of visual word k, qik the
posterior probability that vector ~xi is an element of the vi-
sual word k and σkj is a standard deviation. The ~vk and ~wk
vectors are then stacked up into a 2D ×K matrix which we
concatenate into a 1D descriptor for training and testing.

3.2. Pre-Trained CNN Features
Since traffic scenes may contain a wide variety of structured
and unstructured texture from urban to country scenes, we
also tested CNN features trained on imageNet, one of the
largest image dataset currently available. The architecture of
our CNNs starts from an image which is fed to a cascade of
convolutional layers, the last layer being a fully connected
softmax layer whose output gives a log probability for each
class. In our case, we use as features the output of the last
layer right before the softmax. In this paper, we tested fea-
tures from two different pre-trained deep models, the Caffe
reference model [22] as well as the VGG model [23]. The
Caffe’s model consists of five convolutional layers and three
fully connected layer while the VGG’s model has a similar
architecture but with different filter sizes and stride steps. For
both models, the resulting feature vector contains 4096 di-
mensions.

3.3. SVM
Once the image descriptors are computed, a linear SVM as
well as 3 different kernel SVM (Hellinger, Chi2 and HIK)
have been trained for classification. The equation of these
kernels are khellinger (~v,~v′) =

∑N
i=1

√
viv′i, kchi2 (~v,~v

′) =∑N
i=1

2viv
′
i

vi+v′i
and khik (~v,~v

′) =
∑N
i=1min(vi, v

′
i) where ~v

and ~v′ are image descriptors.

4. EXPERIMENT RESULTS
4.1. Experimental Setup
Three datasets have been used to gauge performances. The
first one is the UCSD traffic dataset [5] which has been widely
used to assess traffic activity. This dataset contains 254 high-
way video sequences, all filmed by the same camera. These
videos contains light, heavy and traffic jams filmed at differ-
ent periods of the day and under different weather conditions.
The UCSD videos have a 320*240 resolution and come with
a frame rate of 10 fps.

We also built our own dataset (the Motorway dataset, cf.
Fig. 1) which contains 400 images all taken from different
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Fig. 2. Performance comparison on the Motorway dataset
of all our methods testes on different codebook sizes and the
CNN descriptors.

highway cameras deployed in UK. These images were di-
vided into 4 categories, namely empty, fluid, heavy and jam.

In order to analyze some more traffic videos, we took
highway videos from the ChangeDetection.net dataset[24].
The main advantage with these videos is that they come with a
pixel-accurate groundtruth which allows to precisely measure
traffic density.

We used the VLFeat toolbox[25] to extract SIFT features
on a dense grid with a step size of 4 pixels under three differ-
ent patch sizes 16*16, 24*24 and 32*32. All codebook and
CNN features were also L2 normalized to unit length and the
liblinear toolbox was used for training and testing. We used a
fix SVM slack parameter of C = 1.

4.2. Classification Results
4.2.1. Motorway Dataset
For this first set of experiments, we trained on 200 randomly
selected images taken from the Motorway dataset and tested
on the remaining 200 images. We repeated that experiment
10 times and kept the mean classification accuracy.

Figure 2 shows results of different codebook descriptors,
different codebook sizes as well as the two CNN descriptors.
As one can see, as the number of visual words increases, the
overall accuracy of BOVW and LLC also increases. As for
VLAD and IFV, since they account for very high dimension
descriptors, the codebook size and the type of kernel have a
marginal influence on the accuracy. Results for BOVW and
LLC are also much better with kernel SVM than with lin-
ear SVM. That being said, the CNN features outperform the
codebook descriptors for all SVM implementations.
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Table 1. Classification accuracy on the UCSD dataset for 4
different image descriptors and 4 SVM kernels.

BOVW(64) BOVW(128) Caffe VGG

Linear 94.9/94.9 96.1/96.9 95.7/95.3 96.1/96.1
Hellinger 94.1/94.1 94.1/94.9 96.5/94.9 95.7/96.5

Chi2 96.5/94.5 95.7/96.5 96.5/95.3 94.9/96.1
HIK 95.7/96.1 96.5/95.7 96.5/95.3 94.5/96.5

4.2.2. UCSD Dataset
The training and testing methodology used for this dataset is
the one provided by UCSD. We thus trained and tested four
times our methods, each times with 75% of randomly selected
images for training and 25% for testing. Since we focus on
low frame rate videos, we only processed 1 frame out of 6
(∼ 1.7 fps). Once every frame of a video has been processed,
the class label for that video is obtained with a majority vote.
We also tested our method with and without the region of in-
terest (ROI) provided with the dataset. The ROI is a 180x180
windows centered on the highway.

Table 1 contains the classification accuracy obtained with
our methods. Note that due to space limitation, we only re-
port results for BOVW (with codebook size 64 and 128) and
the two CNN features, those for which we got the best re-
sults on the Motorway dataset. The left values are accuracy
obtained after processing the original images while the right
ones are those obtained after processing the 180x180 ROI.
Results with and without ROI are relatively similar although
slightly in favor of BOVW(128) + ROI with linear SVM. The
confusion matrix for that method is shown in Table 2.

Table 3 shows results obtained by other methods all re-
lying on motion features (results come from the original pa-
pers). As can be seen, results obtained with BOVW and the
CNN features outperform all previous methods thus showing
that motion features are not mandatory for assessing traffic.

Table 2. Confusion matrix on the UCSD dataset (BOVW 128
+ ROI with linear SVM)

Predicted
Heavy Medium Light

Heavy 40 4 0
True Medium 2 42 1

Light 0 1 164

Table 3. Results of various methods on the UCSD dataset
Method Accuracy

Chan[5] 94.5%
Sobral[11] 94.5%
Derpanis[15] 95.3%
Riaz[9] 95.3%

Method Accuracy

Asmaa[12] 95.3%
Caffe 96.5%
VGG (ROI) 96.5%
BOVW(128 ROI) 96.9%

Fig. 3. Traffic Density Estimation.

4.3. Traffic Density Estimation
The goal for this third set of experiments is two fold. First,
see how accurate our method can be at estimating traffic den-
sity (that is the percentage of the road occupied by a car) and
second, see if a model trained on one dataset generalizes well
to another dataset.

In that perspective, we trained our models on the Motor-
way dataset and tested 3 highway videos from ChangeDetec-
tion.net. Since these videos provide pixel-accurate groundtruth,
the density at each frame was calculated as follows: NF

NR
where NF is the number of foreground pixels and NR is
the number of background road pixels. In order to train the
regression model, we simply set the traffic density ratio as
follows : Empty=0, Fluid=0.33, Heavy=0.67, and Jam=1. We
trained a HIK kernel SVM regression model with the BOVW
descriptor with 256 words as well as the linear SVM regres-
sion model with the CNN feature from the Caffe’s model.

Figure 3 shows the density plots obtained on 1231 anno-
tated frames from the ”highway” video. As can be seen, the
output of our regression models (the red and green curves) fit
surprisingly well on the real traffic density (the blue curve).
We evaluated the correlation between these curves with the
Pearson correlation coefficient: PX,Y = Cov(X,Y )

σ
X
·σ

Y
. The

resulting correlation coefficient for the BOVW descriptor is
0.96, and the CNN feature is 0.88. We also got correlation
results for the ”tunnelExit” and the ”turnpike” videos. For
TunnelExit, BOVW is 0.82 and CNN is 0.76. Due to the per-
spective issues on the Turnpike video (this video shows traffic
on the side which is not the case for most images on the Mo-
torway dataset, c.f.Fig. 1), we got a slighly lower correlation
of 0.61 for BOVW and 0.62 for CNN.

5. CONCLUSION
In this paper, we show that highway traffic can be assessed by
accounting solely on 2D features. Accurate results have been
obtained both on a single-camera dataset (UCSD) and on a
multi-camera dataset (Motorway). We also showed that traffic
density can also be well estimated, even when the system is
trained on one dataset and tested on another one. These results
strongly suggest that traffic activities are highly correlated to
their 2D texture and that motion features such as tracking and
optical flow are not essential to solve these kinds of problems.
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