Media Requirements in Telemedicine

Application	Media Requirements	Remote Control
Teleradiology	Large Images	None
Telepathology	Still Images	Microscope, camera
Teledermatology	High-quality video or Still Images	Camera
Telecardiology	High-quality video	None
Tele-endoscopy	High-quality video	None
Telepsychiatry	Teleconferencing video	Camera

Networking Requirements of Multimedia Streams

Multimedia Streams	MultimediaDescriptionStreams		Range of bitrates
System	SessionNoconnection/disconnectionnomouse/pointer controlsynchronization		Negligible
Audio conferencing	Full Duplex, G.72x audio		10 - 128 kb/s
Diagnostic audio	One-way, CD-quality, stereo audio	Yes	32 - 768 kb/s
Video conferencing	Two-way, H.261 video	Yes	64 kb/s - 1.92 Mb/s
Diagnostic video	ideo One-way, MPEG-2 video		3 - 15 Mb/s
Image transferImage transmission for consultation		No	7 Mb/s

Multimedia Networking in Medicine

- The KANS-A-N network for Telemedicine:
 - Kansas State wide network
 - Connects various divisions of Kansas University Medical Center (Departments of Oncology, Neurology, and Pediatric Cardiology) for outreach medical services throughout the state
 - Uses two-way interactive video systems
- The Georgia Interactive Network for Medical Information (GaIN):
 - To provide on-line delivery of medical information and educational services to rural areas that are underserved and has a shortage of primary care physicians.
- The West Virginia CONSULT network:
 - To provide access to biomedical information to rural areas and hospitals with inadequate local resources, and to health professionals with limited computer literacy.

Multimedia Networking in Medicine

- HEALTHCOM of New York State Department of Health:
 - Connects all of the 272 New York State hospitals, 635 nursing homes, and 59county health clinics.
 - Services: Data collection for epidemiological, and regulatory studies, hospital reimbursement program, and training programs for counties.
- The Wisconsin Health Information Network (WHIN):
 - Connects eleven hospitals and a large number of physicians to provide medical information.
- United States Military Telemedicine Project:
 - To support a 40 bed inpatient facility in Croatia to support United Nations medical operations

Digital Libraries

The Second	Inter- national	D	I	G
	Т	A	L	Conference on the
Theory & Practice	L		B	of Digital Libraries
R	A	R	Austin Texas	-
Ε	5	June 11-13 1995	9	5

- Paper available online at http://www.csdl.tamu.edu/DL95
- For R & D information see http://www.dlib.org/dlib.html

Digital Libraries Initiative

- Carnegie Mellon University Informedia Project
- Stanford University Digital Libraries Project
- UC Berkeley Environmental Library Project
- UC Santa Barbara Alexandria
- University of Illinois at Urbana-Champaign -Digital Library Initiative Project
- University of Michigan Digital Library Project (UMDL)
- Many more

Informedia Project

- On-line multimedia digital library
 - contain over a thousand hours of digital video, and audio, images, text and other related materials.
- Automatic population mechanisms
 - automatically encoding, segmenting and indexing data.
 - Image understanding techniques are employed for segmenting, or video paragraphing, video sequences by automaticallylocating boundaries for shots, scenes, and conversations.
- Knowledge-based Search
 - Conceptual queries.
- Speech Queries Interface

http://www.informedia.cs.cmu.edu

Informedia: User Perspective

Speech query

"I've got to put something together on culture and satellites. What are they?"

Research Areas defined in the Informedia Project

- Speech recognition
- Image processing
- Natural language processing
- Human computer interaction
- Network accounting of copyright usage

Informedia Digital Video Library System Overview

Informedia Communication Fabric

Stanford Digital Libraries Project

- \$24 million Digital Library Initiative, started in 1994
- Projects
 - information finding
 - user interfaces
 - legal and economic issues
 - the testbed or agents
- http://www-diglib.stanford.edu/diglib

UC Berkeley Digital Library Project

- Document collection
- The "multivalent document" model
- titlebars access
- full-text searching
- http://elib.cs.berkeley.edu

The Alexandria Project

Distributed digital library for geographically-referenced information

http://alexandria.sdc.ucsb.edu

UIUC Digital Library Initiative Project Goals

- Semantic Federation (research) of
- Distributed Repostories (internet) of
- Scientific Literature (testbed)
- evaluate large testbed
- perform technology research
- http://www.grainger.uiuc.edu/dli

Interdisciplinary Technologies

- Why do we need a multimedia DBMS?
 - Dealing with more than text
 - Archival data
 - Searching, sharing
 - Multiple presentations
 - Data exchange

Differences Between Conventional and Multimedia Data

Conventional Data		Multimedia Data	
7	Types known to programming languages (character, integer, real)	Not generally known	
	Relatively small size	Large size (memory & bandwidth)	
	Fixed size atomic units	Variable size atomic units	
	Not highly interactive	Highly interactive	
	No special spatio/temporal requirements	Spatio-temporal synchronization requirements exist	
No special interface is needed for querying and presentation		Special interfaces are needed for querying and play-out	
Frequent updating		Mostly archival	

Characteristics of Multimedia Data

- Text and formatted data (static data)
- Audio and music data (transient data)
- Images and pictures data (static data)
- Full-motion video data (transient data)

- Semantic modeling of multimedia information
 - Identification of contents, objects, features, events, etc.
 - Formal specification of contents, objects, features, events, etc.
 - Grouping and linking of information based on semantics, association or referencing
- Indexing and Data Representation
 - Feature-based representation and indexing
 - Segmentation and partitioning, eg., B-trees, Quadtrees, Video scenes and shots, VSDG model, etc.
 - Management of indices for events, contents, features etc.

- Media Synchronization
 - Spatio-temporal synchronization models
 - Logical structuring
- Schema Management (semantics, synchronization, representations)
 - Relational vs. object-oriented models
 - Quality management information
 - Heterogeneity of schema
 - Data exchange capabilities
 - Mono-media processing requirements
 - Inter-operatability of shemas for mono-media and composed multimedia data.

- Multimedia querying
 - Modes of querying (formal language, Byexamples, natural language)
 - Query processing facility and retrieval algorithms.
 Real-time considerations.
- User Interface
 - Browsing and navigation tools
 - Interactive functionality
 - Presentation layouts
 - Media editing facilities

- Storage management
 - Data placement strategies
 - Data loading and input facilities
 - Compression/Decompression techniques
 - Scalability

Software Architecture for a Multimedia DBMS

Indexing of Multimedia Data (Layer 1)

- Approaches:
 - Automated vs. Manual
- Consideration:
 - Cost vs. Complexity and Robustness
- Driving force:
 - The volume of data requiring inspection and indexing can be very large.
- Content Representation and Image/Video Database

Image Databases

- Indexing Content-based features
- Querying the exact vs Similar matches

Images Databases

- Requirements:
 - Image Processing Capability
 - Image understanding Capability (knowledge-based)
- Image Representation
 - Local Features:
 - Pixels
 - Edges
 - Shape
 - Texture
 - Colors
 - Global Features:
 - Histograms
 - FFT
 - Hough Transform
 - Eigenvalues

Different features are useful for different types of queries.