Image Databases

- Indexing Content-based features
- Querying the exact vs Similar matches

Content Based Search and Retrieval

- Index multimedia data based on the contents of the data, not the description
- Contents may include, e.g. in images:
 - Structure of physical objects
 - Patterns of color intensities
 - Spatial relationship among objects
- Search indexed data archives using contents of the query.
- Retrieval based on similarity NOT exact match

Characteristics of Internet Data

 Documents consist of multiple media: audio, image, video

• Volume: huge

 Manipulation: requires diverse computational techniques, ranging from simple algebra to signal processing to artificial intelligence.

Content Based Search and Retrieval

- Index multimedia data based on the contents of the data, not the description
- Contents may include, e.g. in images:
 - Structure of physical objects
 - Patterns of color intensities
 - Spatial relationship among objects
- Search indexed data archives using contents of the query.
- Retrieval based on similarity NOT exact match

Search and Retrieval in Today's Internet

- Keywords: okay for text documents
- Images, audio, and video: textually annotated
- Search based on textual descriptions

Difficulties of Annotation

- Perceptual differences
- Limited information can be attached to each picture
- Necessary information may not be covered
- Annotation time and effort

Challenges

- Similarity Criteria
 - closer to the human perception
 - difficult in the presence of multiple features

- Information Abstraction
 - indexing and retrieval of real time media requires abstractions at multiple levels
 - unbiased abstractions are difficult
- Query Modeling and Interface

 expressing knowledge and concepts

Challenges

- Scalability
 - response time
 - response time should scale linearly only with the number of objects similar to the query NOT with the database size.
 - -quality
 - robustness of the feature spaces should scale linearly with the database size.

Issues Involved

- Multiplicity of users
 - (250,000 unique users/day for Hotbot)

- Database size !
 - Hotbot (110 million documents)
- Multiple Databases

Semantic Modeling and Knowledge Representation in Image Databases

Feature Extraction Layer

- Image Features: colors, Textures, Shapes, Edges, ..etc.
- Features are mapped into a multidimensional feature space allowing similarity-based retrieval.
- Features can be classified into two types: Global and local.
- Global features generally emphasize "coarsegrained" pattern matching techniques.
 - Transform the whole image into a functional representation.
 - Finer details within individual parts of the image are ignored.
 - Color histograms, Fast Fourier Transform, Hough Transform, and Eigen values are well known functional techniques.

Images Databases

- Requirements:
 - Image Processing Capability
 - Image understanding Capability (knowledge-based)
- Image Representation
 - Local Features:
 - Pixels
 - Edges
 - Shape
 - Texture
 - Colors
 - Global Features:
 - Histograms
 - FFT
 - Hough Transform
 - Eigenvalues

Different features are useful for different types of queries.

Global Features

- Advantages
 - Simple
 - Low computational complexity

- Disadvantage
 - Low accuracy

Local Feature

- Images are segmented into a collection of smaller regions, with each region representing a potential object of interest (fine grained)
 - An object of interest may represent a simple semantic object (e.g. a round object)
 - Choice of features is domain specific.
 - X-ray imaging, GIS, ..etc require spatial features (e.g. shapes and dimensions).
 - Paintings, MMR imaging, ..etc may use color features.

Segmentation and feature extraction (example)

Original Image

Segmented Image

After Morphological Filtering

Labeled Image

Binary Object Features

Object	Area	Xc	Yc	Orientation	Perimeter	Euler No.	Aspect Ratioo
1	2588	213	247	-0.703	200	202	0.932
2	855	194	207	-0.752	100	190	1.114
3	406	172	170	0.780	63	170	0.957
4	787	203	159	0.663	114	202	1.615
5	468	225	157	0.554	145	231	0.892
6	7449	177	79	0.393	413	182	1.061
7	2554	144	193	-0.625	343	134	1.730
8	521	247	128	0.393	78	243	1.333
9	693	250	193	0.625	115	249	1.800
10	4338	16	77	0.000	338	19	4.833
11	16496	142	168	-0.687	1615	94	1.199

Similarity Based Retrieval

Minkowsky Distance

- $\begin{array}{l} d(Hq,Ht) = \left\{ \begin{array}{l} n \\ \sum |h_q(i) h_t(i)|^p \end{array} \right\}^{1/p} \\ h_q \text{ and } h_t \text{ are th} \underbrace{e_1} \text{histograms} \text{ of query and target} \end{array} \right.$
 - h_q and h_t are the the last ograms of query and target images.
- 'n' is the total number of bins.
- $-h_x(i)$ is the average height of the ith bin.

Similarity Based Retrieval

Histogram intersection

$$\sum_{i=1}^{n} \min(h_q[i] - h_t[i])$$

- used to find known Q by precess within images using color histogram
- The object (q) size is less than the image (t) size.

Similarity Based Retrieval

Histogram Euclidean Distance

$$d = (h_q - h_t)^T (h_q - h_t) = \sum_{i=1}^n \left(h_q(i) - h_t(i) \right)^2$$

- h_q and h_t are the histograms of the query
and target images respectively.

Information Retrieval from Satellite Imagery and GIS Data

Segmented Image

Ref: http://gis.esri.com/library/userconf/proc01/professional/papers/pap271/p271.htm

Querying GIS Data (Example)

Query: Find the satellite Images of all downtowns that are similar to (Seattle Downtown)

Similarity is based on level of concrete, vegetation, terrain etc.

Result

Vancouver Downtown

South Seattle Downtown

North Seattle Downtown

Victoria Downtown

Ref: http://gis.esri.com/library/userconf/proc01/professional/papers/pap271/p271.htm

Existing Systems

- Query by Image Content (QBIC) (IBM)
- VisualSEEK (EE, Columbia Univ)
- Blobworld (CS, UC-Berkeley)
- WBIIS (CS, Stanford Univ)
- Multiresolution Wavelets (CS, Univ of Washington)
- Virage (CS, UC-San Diego)
- Chabot
 - Uses color and textual annotation.
 - Improved performance due to textual annotation (concept Query).
- KMeD
 - Uses shapes and contours features.
 - Features are extracted automatically in some cases and manually in other cases.

27