

Week 4-b

Knowledge-based Event Modeling

Motion Detection Analysis Iconic-based Grouping & Browsing

Image Recognition Video Parsing and Segmentation

Low

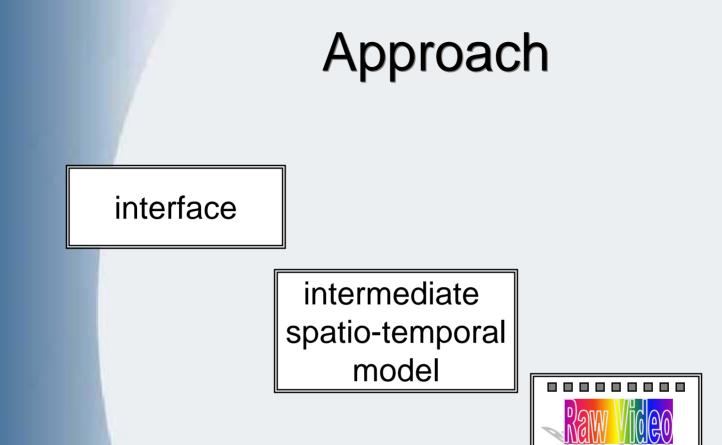
High

Level of Abstraction

Fine

Coarse²

Video DBMS


Design and development of a video database management system that allows intelligent querying and searching

- Content-based searching of video data based on object motion
- A visual query interface to describe complex events in an intuitive manner

Example Video Queries

- "Find video clips where four T-33A's fly in an arrow formation"
- "Find video clips where a Blue Angels aircraft draws a spiral trajectory"
- "Search for football clips that contains a touch-down"

Querying such events requires motion-based content description along with the use of conventional image features

- Video parsing and segmentation
- Low-level image-based searching by representative frames
- Motion-based modeling and indexing of video objects
- Spatial semantics based indexing of video objects

Video Parsing

Scene change detection (uncompressed)
Abrupt vs. Gradual
Color histogram- and/or pixel-based difference.
Abrupt:

Nagasaka & Tanaka, Otsuji, Akutsu et al. Hsu et al.

Gradual:

Tonomura et al., Zhang et al., Shahraray, Zabih et al.

Scene change detection (compressed)

DC Image Sequence Based (Princeton)
DC Coefficients Based (Siemens)

Object Motion Tracking

- Color segmentation
 - Divide frame into predefined number of regions
 - Identify the individual color areas
- Motion analysis
 - Estimate motion between two consecutive frames

Object Motion Tracking

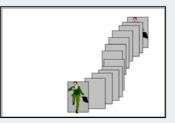
Motion segmentation

- Segment motion vector field
- Identify the aggregate displacement of regions
- Motion compensation
- Rule-based technique to refine boundaries and distinguish between stationary and moving objects.

Motion-based Modeling and Indexing

Current Approaches

- STL & algebraic models: Italy, Purdue, MIT
- Trail model (VSDG): Purdue
- Trajectory model: ASU (Gulshani)


These formalisms have been extended by several researchers

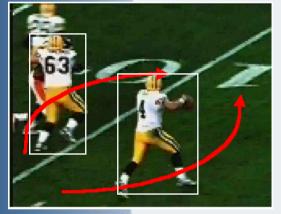
Spatio-Temporal Logic

Formal semantic modeling approach Efficient query processing Searching by exact comparisons Restricted to pre-defined formalisms Insufficient visual query support

Trail-based Modeling

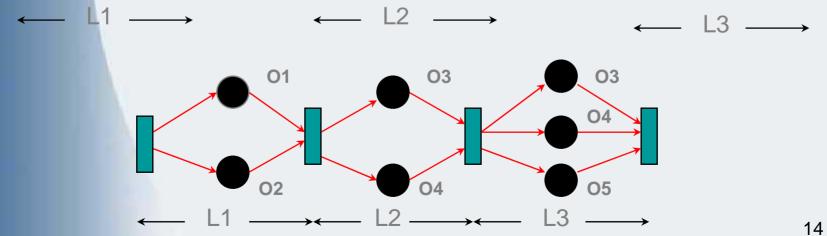
- Bounding box salient objects
- Spatio-temporal information about objects
 - Mosaic representation of object motion
 - Attached time duration: added flexibility
- Object relationships can be represented in a graphical data structure (VSDG)

Trail Model: VSDG


Video Semantic Directed Graph

VSDG is a directed bipartite G=<V1, V2, E> V1= Set of nodes representing objects in a video clip D: V1 ---> I, mapping from nodes to set of duration in terms of number of frames

where Z = Set of motion vectors associated with the bounding boxes of objects


V2 = Set of nodes marking the appearances of new object(s) of interest.

VSDG Example

Trail Model

Parallel to emerging video standards such as MPEG4 and MPEG7

Practical and natural for visual querying

Low precision

 Computationally expensive in query evaluation

Trajectory Model

- Special case of VSDG, where the centroid of each bounding box is tracked.
- Good low-level support: MPEG
 No searching technique exists.

Trail-based Search

Issues:

- Fuzziness
- Translational invariance
- Speed invariance
- Performance

Trail Search Types

Trail image comparison:

- Spatial absolute exact screen location
- Spatial invariant translation
 - Fourier-based convolution
- Scale invariant object and trail sizes
 - Mellin-based pattern matching algorithm

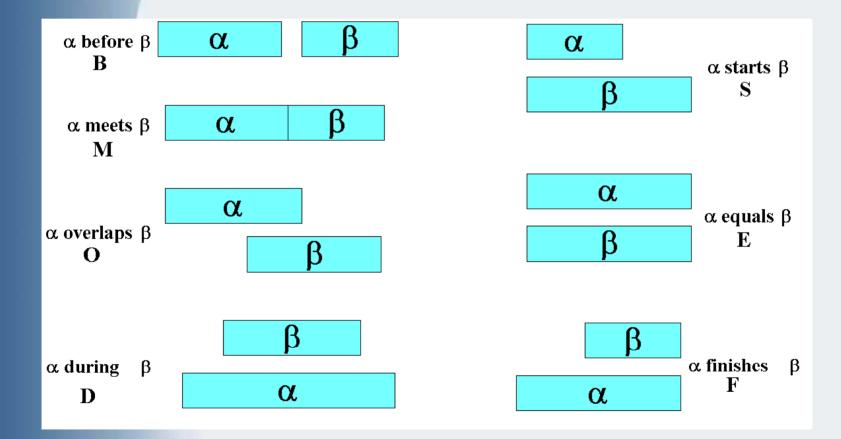
Mellin Transform - Features

 $[M(x)](u,v) = \Sigma \Sigma x(k,l) k^{-(ju+1)} l^{-(jv+1)}$

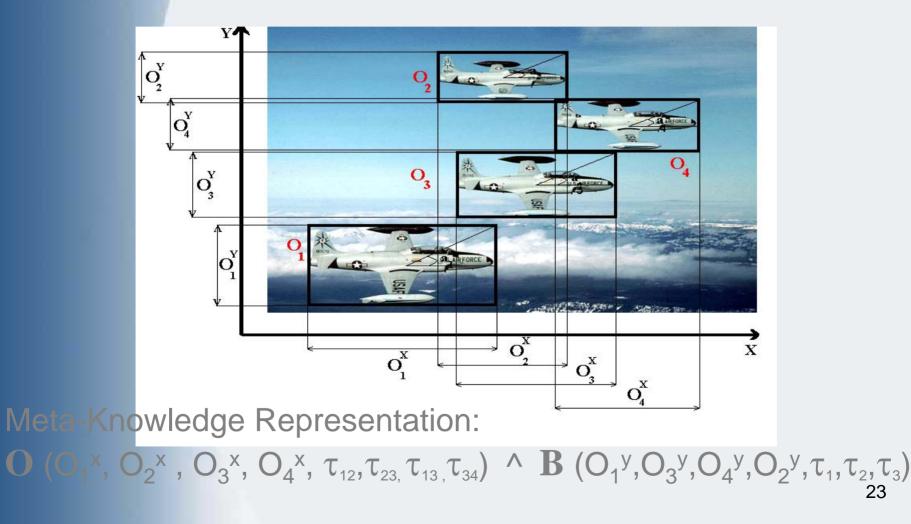
• Scale invariance:

 $\begin{aligned} x_{ab}(k,l) = x(ak,bl) \\ [M(x_{ab)}](u,v) &= a^{-ju} b^{-jv}[M(x)](u,v) \\ |[M(x_{ab})](u,v)| &= |[M(x)](u,v)| \end{aligned}$ • Computational efficiency: $[M(x_{ab)}](u,v) &= [FFT(x_{ab})](\log u, \log v) \\ O(N \log N) \text{ complexity} \end{aligned}$

Problems - Issues


- Camera motion
 - Solution: Mosaic images
- Temporal information not preserved
 - Solution: Aggregate duration specification
 - Limited control on speed information

Spatial Semantic-based Search



Spatial semantics: Arrow formation

Binary Spatio/Temporal Relations

Example of Spatial Meta-Knowledge

