Theme Feature

Chabot: Retrieval from
a Relational Database
of Images

Virginia E. Ogle

Michael Stonebraker
University of California at
Berkeley

Selecting from a large,
expanding collection of
images requires carefully
chosen search criteria. Here's
an approach that integrates

a relational database retrieval
system with a color analysis

technique.

Computer

and retrieval of a vast collection of digitized images. These

images are from the State of California Department of Water
Resources (DWR), which oversees the system of reservoirs, aqueducts,
and water-pumping stations throughout California known as the State
Water Project. DWR maintains a growing collection of over 500,000 pho-
tographs, negatives, and slides, primarily images of State Water Project
(SWP) facilities but also many images of California’s natural resources
(see Figure 1 for examples).

Since DWR made its collection available to the public, it has devoted
increasing resources to filling requests for prints and slides. The agency
receives 100 to 150 requests per month from various sources, including
other government agencies, regional magazine or encyclopedia publish-
ers, university libraries, wildlife organizations, and individuals. Requests
vary from those that cite a specific ID number to general requests for scenic
pictures of California lakes and waterways. DWR keeps the most fre-
quently requested slides in lighted display boxes for browsing; the rest are
housed in archival containers and slide drawers.

To facilitate retrieval, DWR began a project last year to digitize all of its
images using Photo CD technology; so far, about 15,000 prints and slides
have been scanned to Photo CD. Several years ago the agency began to
enter descriptive data about each image into a single-user PC database. To
process a request, the staff uses keyword lookup on the text descriptions
stored in the database to find an ID number for the requested image. This
number is then used to locate the container or drawer where the print or
slide is stored.

However, DWR is facing some problems. First, although the staffis try-
ing to annotate each image with as much descriptive information as pos-
sible, keyword indexing for an image collection has significant limitations.
Nonspecific requests, such as “Find a scenic photo of Lake Tahoe,” may
entail looking through an unmanageable set of Lake Tahoe images to find
the desired prints. Misspelled keywords, such as “azalia” for “azalea,”
thwart successful retrieval, even when close matches can be culled from
adictionary. And dictionaries offer no help for inaccurate descriptions: A
photo of a bright red anemone in full bloom with the stored description
“close-up of a pansy” will never be retrieved via any spelling of the key-
word “anemone.” A thesaurus might compensate for some incorrect
descriptions, but not incomplete ones. Many images in the DWR collec-
tion are old and cannot be identified, so they are digitized and loaded into
the database with minimal or no descriptive data.

As a result, most of DWRs retrievals rely on a staff member’s being famil-
iar enough with the collection to know where to find the desired prints. One
goal of the Chabot project is to integrate image analysis techniques into the
retrieval system so that image requests do not depend solely on stored tex-
tual information. As a first step, we have implemented a simple method for
color analysis, which we describe in this article. By using both color and tex-

T he Chabot project was initiated at UC Berkeley to study storage

0018-9162/95/$4.00 © 1995 IEEE

tual information for the images, we can locate pictures of
red flowers (like anemones and azaleas) and Lake Tahoe
sunsets.

Another problem is that DWR’s database system cannot
support complex data types such as time, geographical
location, or the images themselves. Nor does it let the user
compose queries that combine several attributes of an
image. Therefore, the Chabot project also aims to provide
DWR with a system that can store and search for diverse
data types using the functionality of an advanced rela-
tional database management system (DBMS) that has fea-
tures such as a high-level query language, query
optimization, and flexible indexing. Postgres,'? an object-
relational DBMS developed at the University of California
at Berkeley, allows for user-defined functions and types
and thus serves this purpose. We use Postgres to perform
runtime image analysis during the querying process.

DWR wants to load and edit its database remotely and
enable browsing of its images by off-site users interested
in ordering prints or slides. The current database does not
meet the agency’s needs for on-line, multiuser access.
Furthermore, it will not scale to accommodate the
500,000 images in the collection. The Chabot project was
initiated to replace the existing system with a better system
that includes

* an advanced relational database for images and data,
large-scale storage for images,

* on-line browsing and retrieval of images,

* aflexible, easy-to-use retrieval system, and

* image retrieval by content.

SYSTEM MOTIVATION AND GOALS

Chabot’s design was influenced by DWR’s existing sys-
tem of metadata storage, the types of requests it receives,
and the query and update methods currently used.

Integration of data types

Each image is accompanied by extensive metadata.
Below is a sample entry for one image from DWR’s exist-
ing database.

0162 A-9-98 6/1/69 SWP Lake Davis Lahontan
Region (6) Grizzly Dam, spillway and Lake Davis,
ascenicimage. DWR 35 mm slide Aerial 2013 0556
18

This example includes the first four digits of the CD num-
ber (0162), the DWR ID (A-9-98) followed by the date the
photo was taken (6/1/69), the category (SWP), the subject
(Lake Davis), the location (Lahontan Region (6)), the image
description, the source of the image (DWR), the type of film

Figure 1. Random images from the State of California Department of Water Resources (DWR).

BEST copy 4

used, the perspective of the photo, the last eight digits of
the Photo CD, and the image number on the Photo CD.

DWR needs a DBMS that can support various complex
data types, including text, numerical data, relative and
absolute time, and geographical location. It must be capa-
ble of retrieving any combination of the complex data
types associated with the images as well as the content of
the images themselves.

Scalability and storage concerns

Since each multiresolution Photo CD image is 4 to 6
Mbytes, the entire database of 500,000 images and asso-
ciated textual data will require more than 2.5 terabytes of

storage. The desire for fast access to browse images must

be balanced with storage cost considerations. Therefore,
we need a multiple-level storage plan with a tertiary mem-
ory device for storing images.

Simplicity of use and design

The browser must be simple enough for nontechnical
staff use yet must protect against accidental modification
of data already in the database. The user interface should
be similar in structure to the existing system and as intu-
itive and self-documenting as possible. The system design
should use existing functions and established models to
simplify implementation and future modifications.

Flexible query methods

The retrieval system must be flexible enough to handle
complex queries that combine several image attributes.
To process a query such as “Find a picture of a sunset taken
near San Francisco in 1994,” the retrieval system must be
able to search on the basis of multiple data types such as
geographical location (San Francisco), time (after
12/31/93 and before 1/1/95), and content (a sunset).

Querying by image content

Because of the DWR collection’s scope, queries that are
too general might return a result set of unmanageable size,
as in the “scenic picture of Lake Tahoe” example. Hence,
we must increase the precision of retrievals, thereby reduc-
ing the set of images through which a user must browse.
More importantly, since this database’s primary data type
is the image, standard querying by stored descriptive data
will not always yield satisfactory results. Therefore, the
system must integrate stored textual information with

image content information. Ideally, the user could regis- .

ter a conceptual description like “sunset” with the retrieval
system, and it would initiate the appropriate functions to
analyze the content of the images stored in the database
that meet the user’s expectation of a “sunset.” Concepts
should embody textual metadata on the image as well as
image feature information.

September 1995

U-m

-1
VAILABLE

Current research

Determining how to store many digitized images and
retrieve pictures from those image collections is an active
area of research for many computer science fields, including
graphics and image processing, information retrieval, and
databases. The Chabot project takes a database approach to
the problem. We use a database management system
(DBMS) that allows us to include image analysis and infor-
mation-retrieval tools in the query process.

Extensive work is under way in the area of image feature
indexing, especially color indexing, "2 where image features
such as dominant color, shapes, lines, and texture are pre-
computed and stored for later analysis. An index is created
to provide quick access to the feature information. Runtime
computations determine the degree of similarity between
a sample image and other images stored in the collection.
Usually, a ranked list of matches is returned from queries.
However, indexing presupposes similarity matching for
retrievals (for example, “Find other pictures that look like
this one”) and pre-identification of interesting features. If
the goal is to fish from the database rather than present a
sample image for matching, indexing might not be useful.
Moreover, image-by-image review to delineate content fea-
tures is not feasible when the collection contains a large
number of images.

The Photobook project® at the MIT Media Lab seeks to
circumvent the issue of predetermined search criteria by
storing enough information about each image to make run-
time computations possible. images are classified at load
time as having face, shape, or texture properties; techniques
have been developed to automate this process—for exam-
ple, foreground extraction. Once classified, the image is
compressed by encoding salient semantic information
according to category. These smaller encoded versions are
used at query time to reconstruct the image and to com-
pute any additional search criteria such as a color histogram.
Photobook has been used to match faces and to identify
hand tools in a small collection of images.

One of the most closely related projects to Chabot is the
QBIC (Query by Image Content) project*s at IBM Almaden,
which uses image analysis to process queries for an image
database. This project uses color, shape, and texture to
match images in the database to a user query of the form
“Find more pictures like this one.” The user can sketch a
shape, select colors and color distributions from a color
wheel, or select textures from a predetermined range. The
system returns a ranked list of best matches to the user

DESCRIPTION OF CHABOT

implemented a method for image color analysis.

Postgres

Computer

Chabotincludes a top-level user interface that handles both
queries and updates to the database. Our querying mecha-
I nism retrieves images on the basis of stored textual data and
complex relations among that data. As a first step toward inte-
grating content analysis into the retrieval system, we have

To store the images and textual data, we use Postgres,
which is particularly attractive for a database like Chabot.

query. However, some applications, such as the State of
California Department of Water Resources (DWR) collec-
tion, may require the underlying relational database to han-
dle diverse types of textual metadata and support
integration of image features with text and other data
types.

In the DBMS community, image database research focuses
on storage methods for large objects. Spatial data such as
geographical maps can be stored in structures such as R-
trees.® Current work includes Digital Equipment
Corporation’s multimedia object support for its relational
database, Rdb.” Multimedia object files are physically stored
in segments on a WORM (write-once, read-many) device
and in the database as binary large objects. This guarantees
DBMS functionality such as transactions and concurrency
for these objects.

The Chabot application’s particular needs make a pow-
erful relational database model a top priority, because most
retrievals involve each image’s stored textual data, which
encompasses diverse data types. The features that a rela-
tional DBMS can provide—query optimization, complex
types, and a rich query language—become even more
important as collection size increases. Moreover, the flexi-
bility to implement concept queries that use image content
in conjunction with text-based queries is essential.

_ References

1. M.A. Stricker and M. Orengo, “Similarity of Color Images,”
SPIE Proc., Vol. 2,420, 1995.

2. M.J. Swain, “Interactive indexing into Image Databases,” SPIE
Proc., Vol. 1,908, 1993, pp. 95-103.

3. A. Pentland, R. Picard, and S. Sclaroff, “Photobook: Tools for
Content-Based Manipulation of Image Databases,” SPIE Proc.,
Vol. 2,185, 1994, pp. 34-47.

4. C.Faloutsos et al., "Efficient and Effective Querying by Image
Content,” Tech. Report RJ 9453, IBM Research, San Jose, Calif.,
1993.

5. W. Niblack et al., “The QBIC Project: Querying Images by Con-
tent Using Color, Texture, and Shape,” Tech. Report Ri 9203,
IBM Research, San Jose, Calif., 1993.

6. A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. 1984 ACM SIGMOD Conf. Management of
Data, ACM, New York, 1984.

7. M.F.Riley et al., “The Design of Multimedia Object Supportin
DEC Rdb,” Digital Technical J., Vol. 5, No. 2, Spring 1993.

Besides the standard relational database features, it pro-
vides features not found in traditional relational DBMSs:

* Object-oriented properties. Classes can be defined for
objects in a Postgres database, and attributes can be
inherited among classes.

Complex types. Postgres provides a flexible assortment
of data types and operators useful for a database like
Chabot—for example, time (absolute and relative),
variable-length arrays, and images. In addition, users
can define new data types for a database, along with

Table 1. Attributes for the photocd_bib class.

128 x 192 pixels, to the highest resolution,
2,048 x 3,072 pixels. Since DWR wants to

allow on-line access to both images and
data, Chabot must provide reasonably fast

copyright Text Copyright information

indexer Text Person creating db entry

organization Text

description Text Description of the image
DWR job request ID
Photographer

35-mm slide

job_reg_num Text
photographer Text
filmformat Text

histogram Text Color histogram

entry_date Abstime Date of db entry
shoot_date Abstime Date photo was taken
oid Oid Postgres object ID

Attribute Type Description

abstract Text Abstract (for documents)
title Text Title (of document)
comments Text Comments

disknum Text Photo CD number

imgnum Integer Image number on CD

id Text DWR ID number

doc_type Text Nature, art, legal, and so on

Person who commissioned photo

category Text DWR category — SWP, and so on
subject Text DWR subject — “The Delta”
location Text One of 9 California regions

browsing of the stored images over a net-

number of images involved. But cheaper
alternatives, such as tape, may be so slow
that on-line browsing would be virtually
impossible.

Our solution is to use a two-level storage
scheme. We use a magnetic disk to store
the thumbnail images and text needed for
browsing the database, and we archive the
large, multiresolution image files on a ter-
tiary device, a Metrum VHS-tape jukebox.
The Metrum device holds 600 VHS tapes
of 14.5-gigabyte capacity each. With a total
capacity of 10.8 terabytes, the Metrum is a
more than adequate repository for the
DWR image library. The average time for
the Metrum to find a tape, load it, and
locate the required file is about 2 min-
utes—too slow for browsing images but
fast enough for fulfilling a request from a

perspective Char16 Aerial, ground, close-up EWR.(Ci“eI?tﬁO;lce the desired image has
tified.

color Char C (color) B (black and white) een identifie

orientation Char H (horizontal) V (vertical) The schema

The schema for the Chabot project was
designed to fit with those of other research
projects at UC Berkeley: technical reports
and videos. The image class in our data-
base is called photocd_bib, for “Photo CD
bibliography,” which inherits attributes

operators tailored to those types. For example, a user
can define a type “PhotoCD” that includes operators to
manipulate the image at runtime.

User-defined indices. A secondary index can be defined
via user-specified access methods. The index can be
implemented as either a B-tree or an R-tree. Partial
indices that include a qualifying operator can be
extended incrementally. For image analysis, an index
can be created for all pictures that are predominantly
red, for example, via the stored color histograms for
each image.

User-defined functions. Functions written in C can be reg-
istered with a Postgres database. The first time the func-
tion is invoked, Postgres dynamically loads that function
into its address space. Since the function remains in main
memory, additional overhead for repeated execution is
negligible. For the Chabot database, we have written a
function to analyze, at retrieval time, color histograms
previously computed and stored in the database.

Storage
Each of our images is received in Photo CD format
in five different resolutions, ranging from a thumbnail,

from a doc_reference class shared by the

technical-report and video object classes. Table 1 lists the
photocd_bib class’s attributes.

Most attributes for the image class are stored as text

strings, including the color histogram. However, two fields |

have type abstime (absolute time): the photo’s shoot_date
and the information’s database entry_date. These fields let
us perform time-relative searches—for example, “Find all
shots of Lake Tahoe that were taken after January 1, 1994.”

The user interface

We have implemented a graphical point-and-click,
Motif-like interface for Chabot written in Tel/Tk.? The
interface is designed to prevent accidental data corrup-
tion during database browsing. The main screen gives the
user three options: find, edit, and load. The database can
be modified only via the edit and load screens, and user
authorization for these screens is required. The find screen
is used for running queries and browsing the database.

An example of the current implementation for the find
window appears in Figure 2 on the next page. The user
can build queries by clicking on the appropriate buttons
and typing text into the entry fields next to the search
criteria. Pull-down menus, indicated by a downward-
pointing arrow next to the entry field, are provided for

September 1995

work. Arandom-access medium, suchasa
magnetic disk fast enough for remote |
browsing, is too expensive to store the large | -

search criteria that have limited options—for example,
Region, Film Type, Category, Colors, and Concept. The
user selects one or more of these fields and clicks on the
“Look Up” button to initiate the query. A Postquel query is
then constructed and issued to the database. Postquel is
a query language similar to SQL (Structured Query

- Image Finder
Look Up | Define Concept | Clear All |

I”_Photographer 4|
.” Fitm Format | 4f
W Shoot Date [aniisss
I~ Perspective !J
oI ‘
™ Entry Date | [. 3
I Indexer ﬂ
[~ Comments !
‘!_Locatinn HJ(Z) San Francisco Bay Region
™ Colors }JSomeOrange

{f” Concepts | ﬂ

LlAﬂer

4 Help

Quit | 1
Figure 2. The Chabot find screen for browsing the
database.

Language) that is written for Postgres. As an example,
using the search criteria from the find screen shown in
Figure 2, the Postquel query would be

retrieve (q.all) from q in photocd_bib where
q.shoot_date>*“Jan 1 1994” and
q.location ~ ”2” and
MeetsCriteria(“SomeOrange”, q.histogram)

This query returns all images in the database that were
taken after January 1, 1994, in the San Francisco Bay area
and that have the color orange in them. Figure 3 shows
some of the images that met this query’s criteria—orange
poppies, fire, and interior shots.

When a query is processed, the resulting data is dis-
played in a pop-up “Query Result” window. The user can
print the data, save it to a file, or click on a “Show Image”
button to display the selected images; up to 20 images can
be displayed at once. In the example above, eight images
were selected from the “Query Result” window, with the
resulting display shown in Figure 3.

MeetsCriteria

Implementing concept queries involves two Postgres
capabilities: storing precomputed content information
about each image (a color histogram) as a database
attribute, and defining functions that can be called at run-
time as part of the regular querying mechanism to analyze
this stored information. The function MeetsCriteria is the
underlying mechanism for performing concept queries.
The sample Postquel query presented earlier shows how
MeetsCriteria is used in a query. This function takes two
arguments: a color criterion, such as “Some Orange,” and
a color histogram. The user selects a color criterion from a
menu on the find screen, and a call to MeetsCriteria is incor-
porated into the query using the selected color. Figure 4
shows the colors implemented thus far.

For the histograms, we experimented with quantizing
the colors in our images to a very small number to accel-
erate the runtime analysis. We found that quantizing to
as few as 20 colors let us find the predominant colors in a
picture for the “Mostly” queries yet still provided a glimpse
of the minor colors for the “Some” queries. For example,
a picture of a field of purple flowers having tiny yellow cen-
ters qualifies as “Mostly Purple,” but we can also retrieve
this picture using the search criterion “Some Yellow.”

Figure 3. Partial results from “Some Orange” query.

Amp/1677-0034 ppm

U-M-1
BEST COPY AVAILABLE

The Postgres query executor calls the function
MeetsCriteria for each histogram in the database, check-
ing for compliance with the presented criterion. Postgres’s
query-optimization facility minimizes the histogram
search set. The function returns true if the histogram
meets the criterion, false if it does not. Although the
method for finding histograms that meet the criterion
varies according to the color being checked, the algorithm
generally employs two metrics: compliance and count.

COMPLIANCE. Each color in the histogram is checked
for compliance with the requested color’s predefined val-
ues. For example, in the RGB model, the color white is rep-
resented by 255, 255, and 255 for red, green, and blue,
respectively; with our approach, a color whose RGB val-
ues are all above 241 qualifies as white.

COUNT. As we check each color in the histogram for
compliance, we count the number of colors in the current
histogram that match the criterion. We also count the
number of pixels in the matching colors as a function of
total image pixels. The former count is used when we are
looking for “Some” colors. Thus, in the “Some Yellow”
example, we get a true result if only one or two of the 20
colors in the histogram qualify as yellow. We use the total
pixel count for the “Mostly” matches. For instance, more
than 50 percent of an image’s total pixels must be red for
the image to meet the “Mostly Red” criterion.

Concept queries

Besides using color directly for content analysis, users
can compose higher level content-based queries to the
database that embody contextual information such as
“sunset” and “snow.” These queries are called concept
queries. The Concepts selection on the interface’s find
screen lists available concept queries, each one previously
defined by the user (see Figure 5).

Selecting a concept from the pull-down menu gener-
ates a Postquel query. This query incorporates a combi-
nation of the search criteria satisfying the concept. The
query typically employs MeetsCriteria for color analysis
plus some other textual criteria. For example, when “sun-
set” is chosen from the Concepts menu, the following
query is sent to the database:

retrieve (q.all) from q in photocd_bib where
g.description ~ “sunset” or
MeetsCriteria(“MostlyRed”, q.histogram) or
MeetsCriteria(“MostlyYellow”, q.histogram) or
MeetsCriteria(“MostlyPurple”, q.histogram)

In this case, the user has defined the concept “sunset”
as including images that have the stored keyword “sun-
set” associated with them or have red, yellow, or purple
as their predominant color. Concept queries can be used
in conjunction with other criteria. For example, we can
generate the query “Find pictures of Lake Tahoe at sunset”
by choosing “sunset” from the Concept menu and setting
Location to “Lake Tahoe.”

Users can define a new concept and add it to the
Concepts menu by selecting from the find screen the cri-

color criterion.

I Location | _1_1
Cows 1Y

Figure 5. Available concept queries in the find
screen’s Concepts menu.

I” Organization |4 I

| [

[dob Roquestier | [P

W Keywords flower m.:?'nmmw
! —— changes in the PostQuel query.

T~ Film Format _J ' Concept name: Bpurple flowers
" ShootDate | l ? description~*flover” and MeetsCriteri
[e als

| SomePurple”, q. histogram)
[Porspective |4
I

roe
M EntryDate |
I Indexer W
''''' ' Define | Cancet J
I Comments‘ 1 I
[tocation [4f
W Colors | 4fsomePurple
T Concepts 4
L. 1
1 Hew Quit |

Figure 6. The “Define Concept” dialog box accessed
from the find screen.

teria that should be included in the new concept. Clicking
on the “Define Concept” button on the find screen brings
up a dialog box prompting the user for the new concept’s
name, as illustrated in Figure 6. After editing the Postquel
query, the user clicks on the “Define” button to register the
new concept. The query is written to a file in the user’s
home directory. Hence, the new concept becomes imme-
diately available and will remain so for future browser
invocations. The editing capability also lets the user add
Postquel constructs that might not otherwise be avail-
able—for example, disjunctive conjunctions. The user can

September 1995

Zfanpil 624 -0030 ppm

frap/1624 -0040 ppre

#oap/1624 ~0044 ppm

Aanp/1686-0035 ppm

fanp/0807 -0047 ppm

Axapi1202-0060.ppm

#onp/1202-0014 ppm Auropi1 2020028 ppm

funp/1239-0079.ppm

fanp/1239-0081 ppra

Figure 8. Return set using keywords “flower” and “yellow.”

edit the concept file, make copies of the file available to
other users, and incorporate others’ concepts in the file.

Testing

To test our content analysis. we measured the recall and
precision* of some concept queries. Recall is the propor-
tion of relevant materials retrieved, while precision quan-
tifies the proportion of retrieved materials that are
relevant to the search. For each concept query, we identi-
fied all the images we thought belonged in the result set.
We then tried various implementations of the concept,
using different combinations of content-based and stored
textual data. And we measured recall and precision for
each implementation.

The results shown in Table 2, from a test query, are rep-

U-M-I
BEST COPY AVAILABLE

resentative of our findings: the concept “yellow flowers.”
We identified 22 pictures in the collection that were rele-
vant; we then implemented the “yellow flowers” function
in seven ways using different combinations of search cri-
teria. As Table 2 shows, queries 1 to 3 used only a keyword
search, queries 4 and 5 used only content-based informa-
tion, and queries 6 and 7 used a combination of keyword
and content-based data.

In this test, two different methods for finding yellow were
tried. “SomeYellow (2)” means at least two colors in a 20-
element histogram are yellow. “SomeYellow (1)” means
only one yellow color is needed for the picture to be counted
as having “some yellow.” As query 5 in Table 2 shows, pic-
tures can be retrieved with 100 percent recall when the color
definition is broad enough. However, the precision is too

Table 2. Query “Find yellow flowers” (relevant images = 22).

No. Keywords Color content Retrieved Relevant Recall(%) Precision(%)
1 “flower” - 55 13 59.1 23.6
2 “yellow” - 1" 5 22.7 45.4
3 “flower” and "yellow” - 5 4 18.1 80.0
4 - SomeYellow (2) 235 16 72.7 6.8
5 - SomeYellow (1) 377 22 100.0 5.8
6 “flower” SomeYellow (2) 7 7 31.8 100.0
7 “flower” SomeYellow (1) 15 14 63.6 933

!
1 Computer

low. To find the pictures of yellow flowers, the 377 images
retrieved from query 5 would require the user to browse 19
screens of 20 thumbnail images each. Using the coarser def-
inition for “yellow” in conjunction with the keyword
“flower” gives the best result: Query 7 has a recall of 63.6
percent and a high precision of 93.3 percent.

Figure 7 shows the 15 images retrieved from query 7. Only
the image in the upper left corner of the group—a plant with
pink stems and leaves but with only a small amount of yel-
low in its petals—was not considered relevant. Figure 8
shows the five images retrieved from query 3, where the key-
words “flower” and “yellow” were used. The second picture
in this group was not considered relevant.

In some of our tests, a fair amount of experimentation
was necessary to discover the right combination of color

content and keywords needed to compose a successful |

query. An example is “Find a sunset on a lake.” Figure 9
shows the sunsets retrieved from this query using text
matching only; Figure 10 shows the results of text match-
ing combined with color analysis. We expected sunsets to
be “Mostly Red,” but as shown in Figure 10, we also needed
tolook for “Mostly Purple” and “Mostly Yellow.” Thus, the
efficacy of some of the concepts we define depends some-
what on our familiarity with the collection’s images. On
the other hand, concepts like “yellow flowers” are rela-
tively straightforward to implement, especially if some

friop/go/645- 0011 ppm

fenp/gol1 202-0082 ppm

faupigol0216-0011.ppm

Aaroplgod1 2020084 .pprc

funp/go/1878-0022 ppm

foroplgo1243-0035 ppm AemplgoA0705-00SS.ppm

Figure 9. Return set using keywords “lake” and “sunset.”

#Auopige/1878-0023 ppm

Aanp/god0645-0010.ppra

Aanpigol0645~0011 ppm

Aunp/gof1878~0023 ppr Amp/gor1878-0049 ppm

4

fap/go/0812-0041 ppm

fomp/go/0812-0042.ppm

famplgo1243-0035 ppm
Figure 10. Return set using color analysis and keyword “lake."”

Arnp/goXi216-0011.ppm.

fonp/go/1878-0051.ppm

Aaopigol1 2020082 ppm

Amplgol0705-00S5 ppn

#unp/go0231 -0020 ppm fp/god1231-0038 ppm

September 1995

U-M-I
BEST COPY AVAILABLE

{
\

textual information is included in the concept along with
the content-based criteria.

In summary, retrieving images on the basis of keywords
or content alone produces unsatisfactory results. For exam-
ple, recall and precision are inversely proportional. When
we retrieve a high percentage of the relevant images, such
as retrieving all “Mostly Red” images to find sunsets, we
also retrieve many more images that are not sunsets. But if
we restrict the search criteria more closely so that preci-
sion increases, fewer relevant images are retrieved. For our
application, the best results were achieved when both con-
tent and some other search criteria were used, and this is
how we implement concept queries.

OUR GOAL WAS TO INTEGRATE A RELATIONAL DATABASE retrieval
system with content analysis techniques that would give our
querying system a better
method for handling
images. Our simple color-
analysis method, if used in
conjunction with other
search criteria, improves our
ability to retrieve images
efficiently. The best result is
obtained when text-based
search criteria are combined
with content-based criteria
and when a coarse granu-
larity is used for content

he best

retrieval result
is obtained when
text-based search
criteria are
combined with
content-based
criteria and when
a coarse granular-
ity is used for

analysis. Our concept content analysis.
queries use such a combina-
tion.

We are continually adding to our current collection of
11,643 images and plan to rerun our tests once the col-
lection has doubled or tripled in size. We expect that our
color analysis technique will scale, but we are interested in
determining the degree to which we have tuned our color
definitions to the current body of images.

We have begun implementing other color-analysis tech-
niques and hope to investigate other content-analysis tech-
niques, such as texture, shape, and line. Postgres provides
an easy way to introduce new functions into the querying
process through its user-defined function facility. We plan
to work with image-analysis experts to develop new con-
tent-analysis algorithms that can be registered with the
database.

Since so many of our retrievals are based on stored tex-
tual data rather than on the images, we plan to include
some information-retrieval techniques such as thesaurus
and dictionary use. We will also investigate the impact of
imposing restrictions on the return set’s size, which we
expect will become increasingly important as we add more
images to our collection. Ranking the return set’s elements
is usually associated with similarity matching, which is
not used in Chabot’s retrieval system. Nevertheless, we
are interested in how ranking can reduce return set size
as the collection becomes very large.

We also plan to integrate the Chabot schema with those
of the geographical and environmental data sets of other
research projects at UC Berkeley, such as satellite imagery,
aerial photography, and environmental reports. One

Computer

planned enhancement is to spatially locate the DWR
images using the Georeferenced Information Processing
System (Gipsy),? which generates longitude and latitude
coordinates from textual place names. |

References

1. The Postgres Group, The Postgres Reference Manual, Com-
puter Science Division, Univ. of California at Berkeley, Calif.,
1993.

2. M. Stonebraker et al., “The Implementation of Postgres,” IEEE
Trans. Knowledge and Data Eng., Mar. 1990.

3. J.K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley, Read-
ing, Mass., 1994.

4. G.Salton, Automatic Text Processing, Addison-Wesley, Read-
ing, Mass., 1989.

5. A.G. Woodruff and C. Plaunt, “GIPSY: Georeferenced Infor-
mation Processing System,” Tech. Report UCB:S2K-94-41,
Univ. of California at Berkeley, Calif., 1994.

Virginia E. Ogle works for the Electronic Research Lab at
UC Berkeley, where she is implementing the next phase of
Chabot, called Cypress, for the university’s digital library
project (see URL http://elib.cs.berkeley.edu). Her research
interests include multimedia databases, information
retrieval, and user interfaces. Ogle received an MS degree in
computer science from the University of California at Berke-
ley in 1995 and a BA degree in English literature from the
University of Alabama.

Michael Stonebraker has been a professor of electrical
engineering and computer science at the University of Cali-
fornia at Berkeley since 1971. He was one of the principal
architects of Ingres, Distributed Ingres, and Postgres. His
interests include DBMS support for visualization environ-
ments and next-generation distributed DBMSs. Stonebraker
is a founder of both the Ingres Corporation and Hllustra Infor-
mation Systems. He is a past chair of the ACM Special Inter-
est Group on Management of Data and has been the keynote
speaker at several recent conferences. He received the first
ACM SIGMOD Innovations Award in 1992 and was named
an ACM fellow in 1994.

Readers can contact the authors at the Computer Science
Division, University of California at Berkeley, 390 Soda Hall,
Berkeley, CA 94720-1776; e-mail {ginger, mike } @cs. berke-
ley.edu. The Chabot retrieval system is accessible on the Web
at URL http://elib.cs.berkeley.edu/cypress.html.

