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Abstract—Digital video now plays an important role in medical
education, health care, telemedicine and other medical appli-
cations. Several content-based video retrieval (CBVR) systems
have been proposed in the past, but they still suffer from the
following challenging problems: semantic gap, semantic video con-
cept modeling, semantic video classification, and concept-oriented
video database indexing and access. In this paper, we propose a
novel framework to make some advances toward the final goal to
solve these problems. Specifically, the framework includes: 1) a
semantic-sensitive video content representation framework by using
principal video shots to enhance the quality of features; 2) se-
mantic video concept interpretation by using flexible mixture model
to bridge the semantic gap; 3) a novel semantic video-classifier
training framework by integrating feature selection, parameter
estimation, and model selection seamlessly in a single algorithm;
and 4) a concept-oriented video database organization technique
through a certain domain-dependent concept hierarchy to enable
semantic-sensitive video retrieval and browsing.

Index Terms—Database, video analysis, video browsing, video
indexing, video retrieval.

I. INTRODUCTION

S STORAGE and bandwidth capacities increase, digital

video now plays an important role in a wide range of mul-
timedia applications. As large-scale video collections come into
view, there is an urgent need for characterization efforts on se-
mantic video classification, so that the users can select the rel-
evant video clips at the semantic level. Unfortunately, our cur-
rent ability on semantic video classification is so far primitive
because of the following challenging issues.

* Semantic-Sensitive Video Analysis: The performance of
semantic video classifiers largely depends on the quality
of features (i.e., the ability of the selected low-level per-
ceptual features to discriminate among various semantic
video concepts). On the other hand, the quality of fea-
tures also depends on the effectiveness of the underlying
video patterns that are selected for video content repre-
sentation and feature extraction. Most existing content-
based video retrieval (CBVR) systems select video shots
[1]-[5], homogeneous video regions, or semantic video
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objects [5]-[9] as the underlying video patterns for video
content representation and feature extraction. The diffi-
culty of using the video shots and homogeneous video
regions for video content representation and feature ex-
traction is the lack of means to relate the low-level per-
ceptual features to the semantic video concepts [11]-[13].
The major problem for using the semantic video objects
for video content representation and feature extraction is
that automatic semantic video object extraction in gen-
eral is very hard, if not impossible [14]-[28]. Moreover,
most existing CBVR systems only use the shot-based or
region-based low-level visual features. However, original
video is a synergy of multimodal inputs such as audio,
vision, and image-text [29]-[32]. Thus, new video con-
tent representation frameworks, that can not only provide
more discriminating multimodal perceptual features, but
also avoid performing uncertain semantic video object ex-
traction, are strongly expected to enhance the quality of
features.
Semantic Video Concept Modeling: The major difficulty
of the existing CBVR systems is that they are unable to
support video access at the semantic level because of the
semantic gap. Thus, bridging the semantic gap may be the
biggest challenge that we face in supporting content-based
video retrieval and it has recently received much attention
[33]-[53]. To bridge the semantic gap, the rule-based (i.e.,
model-based) approaches use domain knowledge to define
the perceptional rules for extracting semantic video con-
cepts [33]-[41]. Some researchers also used the relevance
feedback to bridge the semantic gap in the retrieval loop
[59]-[65]. Statistical machine learning has also been used
to bridge the semantic gap by discovering nonobvious
correlations (i.e., hidden rules) among multimodal inputs
[42]-[53]. However, no existing work has addressed the
underlying multimodal context integration model that can
be used to explore the joint effects among the multimodal
inputs for semantic video concept interpretation.
Semantic Video Classification: Many semantic video-
classification techniques have been proposed in the past,
but the limited number of pages does not allow us to survey
all these related work. Instead we try to emphasize some
of the work that is most related to our proposed work.
The related semantic video-classification techniques can
be classified into two categories [32].
1) Rule-based (i.e., model-based) approach by using
domain knowledge to define the perceptional
rules and achieve semantic video classification
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[33]-[41]. One advantage of the rule-based ap-
proach is the ease to insert, delete, and modify the
existing rules when the nature of the video classes
changes. However, effective semantic video-clas-
sification techniques should discover not only
the perceptional rules that can be perceived by
human inspection, but also the hidden significant
correlations (i.e., hidden rules) among multimodal
inputs. Therefore, the rule-based approach is only
attractive for the video domains such as news and
films that have well-defined story structure for the
semantic units (i.e., film and news making rules)
[36]-[41].

2) Statistical approach by using statistical machine
learning to bridge the semantic gap [42]-[53].
The statistical approach can support more effec-
tive semantic video classification by discovering
nonobvious correlations (i.e., hidden rules) among
different video patterns. However, its performance
largely depends on the success of the underlying
classifier training framework and the ability of the
selected low-level multimodal perceptual features
on discriminating among various semantic video
concepts.

 Feature Selection and Dimension Reduction: Theoreti-
cally, having more features should give us more discrimi-
nating power to enable more effective semantic video clas-
sification [72]-[75]. However, the time requirements for
classifier training often grow dramatically with the feature
dimensions, thus including more features makes it very
difficult to obtain good estimates of many parameters for
the classifier and renders the classifier training algorithm
impractical. An important question for supporting more
effective semantic video classification is how to select a
good subset of features. A good choice of feature subset
may not only improve the classifier’s performance (i.e.,
accuracy), but also aid in finding smaller classifier models
and result in better understanding and interpretation of the
classifier.

* Concept-Oriented Video Database Organization and
Access: Research developments in Computer Vision and
Database related disciplines have traditionally been inde-
pendent and unrelated [10]. Even today, there is a lack
of research synergy between the two fields. When truly
large video data sets come into view, database indexing
can no longer be ignored to support more effective CBVR
systems. However, the traditional database indexing struc-
tures are unsuitable for video database organization be-
cause they suffer from the problems of the curse of dimen-
sions [54]-[58].

The essential goal of concept-oriented video database
organization is to enable video access at the semantic level
and to support naive users to specify and evaluate their query
concepts more effectively and efficiently [57], [58]. There
are three widely accepted approaches to achieving semantic
video retrieval: 1) query-by-example via online relevance
feedback [59]-[65]; 2) query-by-keyword [57], [58]; and 3)
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video database browsing [76]-[82]. Each approach represents
a useful way of accessing a video database. Approach 1) allows
a user to specify his/her query concept and retrieve the database
via an example video clip. Approach 2) is convenient for users
who want to search for video clips based on semantic concepts
as described in keywords. Approach 3) is attractive for naive
users who have no prior knowledge of the video collections
in a video database and no precise query concepts in mind.
However, each of these approaches has its limitations. For
Approach (1), most existing techniques have not yet achieved
the level that allow a naive user to specify his/her initial query
concept effectively when he/she does not have good examples
at hand. For Approach 2), the main obstacle is the lack of means
for automatic text annotation of large-scale video collections.
For Approach 3), browsing based on semantic concepts is yet
to be realized due to the lack of suitable concept-oriented video
database organization structure.

Based on these observations, this paper proposes a novel
framework to address these challenging problems in a certain
medical education video domain, which has strong applica-
tion impact but has never been addressed by other researchers.
In summary, the contributions of this paper include:

* a novel semantic-sensitive video content characterization
framework by using principal video shots to enhance the
ability of the low-level multimodal perceptual features on
discriminating among various semantic video concepts;

* a probabilistic semantic video concept modeling frame-
work by using flexible mixture model to bridge the se-
mantic gap;

* a novel classifier training framework by integrating fea-
ture subset selection, parameter estimation and classifier
model selection seamlessly in a single algorithm;

* a novel concept-oriented video summarization and data-
base organization technique to enable semantic-sensitive
video retrieval and browsing over large-scale video
collections.

This paper is organized as follows. Section II introduces a
novel framework to support semantic-sensitive video analysis.
Section III proposes a probabilistic semantic video concept
modeling framework to bridge the semantic gap. A novel se-
mantic video-classification algorithm is proposed in Section I'V.
Section V presents a concept-oriented video summarization and
database organization technique to enable semantic-sensitive
video retrieval and browsing. Section VI gives the theoretical
analysis of the performance of our framework. We conclude in
Section VII.

II. SEMANTIC-SENSITIVE VIDEO CONTENT ANALYSIS

While a CBVR system for medical education is not neces-
sarily capable of understanding semantics of medical video clips
as medical experts do, it is necessary to understand: what are
the suitable concept-sensitive video patterns for interpreting the
semantic medical concepts in a certain domain for medical ed-
ucation videos? A good semantic-sensitive video content rep-
resentation framework should be able to enhance the quality of
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features (i.e., enhance their ability to discriminate among var-
ious semantic medical concepts) and avoid performing uncer-
tain semantic video object extraction.

Based on this understanding, we have developed a novel
framework by using principal video shots (i.e., concept-sensi-
tive video patterns) for video content representation and feature
extraction. In a certain medical education video domain, the
semantic medical concepts that should be indexed may be
limited and thus can be pre-defined by medical experts. On
the other hand, these pre-defined semantic video concepts
are implicitly or explicitly related to some domain-dependent
multimodal salient objects (visual, auditory, and image-textual
salient objects) because video creation in a certain medical edu-
cation domain is not really random but with the concept-driven
multimodal salient objects. Thus the concept-sensitive prin-
cipal video shots are defined as the integration units of the
concept-driven multimodal salient objects associated with the
relevant video shots.

The visual salient objects for semantic-sensitive video
content characterization are not necessary the semantic video
objects but some domain-dependent and concept-driven regions
of interest that are effective to characterize the pre-defined
semantic medical concepts. The auditory and image-textual
salient objects for concept-sensitive video content characteriza-
tion are not necessary the recognized speech and image-text but
some domain-dependent auditory and image-textual patterns
that are explicitly related to the pre-defined semantic medical
concepts. For example, the presences of semantic medical
concepts, such as lecture presentation, gastrointestinal surgery,
diagnosis, dialog, and traumatic surgery, are implicitly related
to the visual salient objects such as “human faces,” “blood-red
regions,” , “gastrointestinal regions,” and “skin regions,”
the auditory salient objects such as “single-human speech,”
“multiple-human speech (dialog talking),” “medical equipment
noise,” “silence,” and the image-textual salient objects such as
“text titles,” “slides,” and “sketch.” While the concept-driven
and domain-dependent multimodal salient objects are not
exactly the multimodal semantic objects, they can have certain
perceptual properties in common as the relevant multimodal
semantic objects have and thus they are able to relate their
low-level multimodal perceptual features to the relevant se-
mantic medical concepts under certain vision purposes.

As illustrated in Fig. 1, the “bridgeless” semantic gap be-
tween the concept-insensitive low-level multimodal signals and
the elementary semantic medical concepts is bridged by two
steps: 1) bridging the semantic gap 1 by detecting the con-
cept-driven and domain-dependent multimodal salient objects
automatically and 2) bridging the semantic gap 2 by using a
statistical classification technique to implicitly link the concept-
sensitive principal video shots into the relevant elementary se-
mantic medical concepts under certain vision purposes.

To support this novel video content representation frame-
work, the concept-insensitive video shots are first determined
automatically by using adaptive shot detection techniques
[11]-[13]. The auditory features have also been integrated with
the visual features to detect the perceptual content changes
among frames [29]-[32]. Based on the medical knowledge
given by our medical consultants, a set of multimodal salient
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by using concept-sensitive principal video shots, where the “bridgeless”
semantic gap between the concept-insensitive low-level multimodal signals
and the elementary semantic medical concepts is now divided into two “small”
bridgeable gaps.
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Fig. 2. Flowchart for our automatic salient object detection function, where
the neighboring images regions with the same semantic label are automatically
aggregated to form a certain type of the concept-sensitive salient objects.
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object detection functions have been designed and each func-
tion is able to detect one certain type of these pre-defined
concept-driven and domain-dependent multimodal salient
objects under certain vision purposes.

We use our visual salient object detection function for “gas-
troinstinal regions” as an example to show how we can design
our multimodal salient object detection functions. Our visual
salient object detection function for “gastrointestinal regions”
consists of the following three components as shown in Fig. 2.

1) Image regions with homogeneous color or texture are
obtained by using our automatic image segmentation
techniques [22], [23]. This automatic image segmentation
procedure are performed on a set of video frames that
consist of the visual salient object of “gastrointestinal
regions.” These video frames are selected from different
medical video clips with various illuminations.

2) The homogeneous image regions, that are implicitly
related to the visual salient object of “gastrointestinal
regions”, are annotated and certified by our medical con-
sultants and medical students. Region-based low-level
visual features, such as dominant colors and variances,
Tamura textures, object density (i.e., coverage ratio
between object region and relevant rectangular box for
object representation), height-width ratio for the object
rectangular box, are extracted for characterizing the
visual properties of these labeled image regions. To
generate the detection function for the visual salient
object of “gastrointestinal regions,” an automatic image
region classification technique is performed to determine
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Fig. 3. Video shot detection results from a medical education video. (a) Part of

the detected shot boundaries. (b) The corresponding color histogram difference
and the determined thresholds for different video shots, where the small window
shows the local properties of the color histogram difference.
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Fig.4. Results on visual salient object detection for “gastrointestinal regions,”
where the white lines indicate the boundaries for the gastrointestinal regions.
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Object detection results for “human face” from medical education
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Fig. 6. Object detection results for “lecture slide” from medical education
videos.

the implicit relationship between the semantic labels and
the region-based low-level visual features by using the
support vector machine (SVM). The connected homo-
geneous image regions with the same semantic label are
aggregated as the visual salient object of “gastrointestinal
regions”.

3) The temporal tracking technique is used to integrate the
visual salient object detection results of “gastrointestinal
regions” within the same video shot as a single output.

Our video shot detection results from a medical video clip
are shown in Fig. 3. Our multimodal salient object detection re-
sults for “gastrointestinal regions,” “human face,” and “lecture
slide” are shown in Figs. 4-6, respectively. We have also pro-
posed a semi-automatic salient object generation technique via
a human-computer interaction procedure [25], [26]. As shown
in Fig. 7, the human user can first define the boundary of a
salient object, and this human-defined object boundaries are
then refined by a intra-frame snaking procedure [28]. An auto-
matic image-segmentation technique is then performed on the
determined semantic objects to obtain their region relationship
graphs. The region relationship graphs tell us which regions
should be aggregated to form the salient objects and this can be
taken as an interactive object model-definition procedure. The
salient objects are then tracked among frames within a video
shot.

After these pre-defined concept-driven and domain-depen-
dent multimodal salient objects are obtained, a rule-based clas-
sification technique is used to generate the concept-sensitive
principal video shots. The concept-driven multimodal salient
objects and the associated video shots are integrated as the con-
cept-sensitive principal video shots for semantic-sensitive video
content representation and feature extraction.

III. SEMANTIC VIDEO CONCEPT AND DATABASE MODELING
It seems that no existing CBVR system has fully answered
the following questions [10].

* Which video database model can be used to support con-
cept-oriented video database organization and access?
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Fig. 7. Object extraction results via a semi-automatic approach. (a)
Human-computer interaction interface. (b) Human-defined semantic object
after intra-frame snaking. (c) Color edges of semantic object. (d) Region
boundary of semantic object. (e) Temporal tracking results, where some
background pixels are included.

e Which semantic video concept interpretation model can
be used to bridge the semantic gap?

Unlike traditional relational databases, video documents are
generally unstructured. In order to support more efficient video
database management in our system, the principal video shots
in database are classified into a set of multi-level manageable
units (i.e., semantic medical concept nodes) as shown in Fig. 8.
In order to build this multilevel video database management
structure, we have to face two critical problems.

* How many /evels should be included and how many nodes
should be used at each level?

e How should the model for each database node be deter-
mined for decision-making (i.e, video classification and
video retrieval)?

In this paper, we have proposed a novel framework to orga-
nize the large-scale video collections according to a certain do-
main-dependent concept hierarchy, thus the database manage-
ment structure (number of levels and number of nodes at each
level) is derived from the concept hierarchy for a certain medical
education video domain. The concept hierarchy defines the con-
textual and logical relationships between a upper semantic con-
cept cluster (i.e., high-level database manageable unit) and its
relevant deeper semantic medical concepts (i.e., sub-level data-
base management units) [58]. The deeper the level of the con-
cept hierarchy, the narrower the coverage of the subjects, thus
the database manageable units at the deeper level can represent
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more specific subjects of a video. On the other hand, the data-
base manageable units at the upper level can cover more distinct
subjects of videos. In our current works, the deepest level of the
concept hierarchy (i.e., leaf nodes of the database) is defined as
the domain-dependent elementary semantic medical concepts.

To classify the principal video shots into the most relevant se-
mantic medical concept nodes, we have also proposed a novel
multimodal video context integration model for semantic med-
ical concept interpretation via flexible mixture model as shown
in Fig. 9. The class distribution of the principal video shots that
are implicitly related to the elementary semantic medical con-
cept C; is approximated by using a flexible mixture model with
+ Gaussian functions

P(X'/Oj?h‘“/w(fj?@c]‘) :ZP(X |Si7wsi795i)P(Si) (H
=1

where x indicates the optimal number of Gaussian functions,
O, = {0, =1,...,k} is the set of the parameters (i.e.,
mean and co-variance) for these Gaussian functions, w., =
{ws,,1=1,...,Kk} is the set of the relative weights among
these Gaussian functions, w,s, = P(S;) is the relative weight
for the ith Gaussian function, and X = (z1,...,2,) is the
n-dimensional multimodal perceptual features which are used
for representing the relevant principal video shots. For example,
five different types of concept-sensitive principal video shots
(i.e., principal video shots consist of the multimodal salient
objects such as human faces, slides, text titles, sketch, and
human speech) are explicitly related to the elementary semantic
medical concept “lecture presentation.” The data distribution for
each type of these relevant concept-sensitive principal video
shots is approximated by using multiple mixture Gaussian
functions.

The fundamental assumptions of our flexible mixture model
are: 1) there is a many-to-one correspondence between mix-
ture Gaussian functions and different types (classes) of various
principal video shots and 2) different types (classes) of var-
ious principal video shots are independent in their multimodal
perceptual feature space. For a certain semantic medical con-
cept, the optimal number of mixture Gaussian functions and
their relative weights are acquired automatically through a ma-
chine learning process. Using the flexible mixture model for
probabilistic semantic medical concept interpretation enables to
remain the variability (heterogeneity) among various semantic
medical concepts, thus it will offer a number of additional the-
oretical advantages.

IV. SEMANTIC VIDEO CLASSIFICATION

As described in Figs. 8 and 9, our hierarchical video-classifi-
cation framework includes two major steps.

1) First Classification: classifying the principal video shots
into the most relevant elementary semantic medical con-
cepts.

2) Second Classification: assigning the principal video
shots to the relevant high-level semantic concept clus-
ters according to a certain domain-dependent concept
hierarchy.
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Fig. 9. Composition relationships between the elementary semantic video concepts and the relevant concept-sensitive principal video shots.

To enable more effective semantic medical video classifica-
tion, the central goal of this paper is to automatically deter-
mine the optimal multimodal context integration model (i.e.,
flexible mixture model). We use one-against-all rule to label
the training samples Q., = {X;,C;(X;) |l =1,..., N}: posi-
tive samples for a certain elementary semantic medical concept
C; and others are negative samples. Each labeled sample is a
pair (X, C;(X;)) that consists of a set of n-dimensional mul-
timodal perceptual features X; and the semantic label C; (X))
for the corresponding sample.

The posterior probability P(C;|X, s, w.,,0O,,;), that a
principal video shot with the multimodal perceptual features X
can be assigned to the elementary semantic medical concept
C; is determined by a Bayesian framework. However, the
traditional classifier induction techniques only estimate the
Gaussian parameters ©., and the relative weights w., by using
maximum likelihood (ML) criterion but ignore the estimation
of the optimal model structure « by using a fixed number of
mixture Gaussian functions. On the other hand, the classifica-
tion accuracy (posterior probability) P(C; | X, k,w.;,O.,) is
implicitly related to both the likelihood and the optimal model
structure x. If the given Gaussian mixture model does not
match the real class distribution, a better estimate of the like-
lihood may not correspond to a higher classification accuracy
P(C;| X, k,wc,, B, ). Instead of using ML criterion, we use
maximum a posterior probability (MAP) as the criterion for
classifier induction, as follows:

N
(/%, We; écj) =argmin —Z log P (Cj | Xy, Ky we;, O, )
=1

@

The MAP estimation can be achieved automatically by using the
expectation-maximization (EM) algorithm [83]—[87]. Unfortu-

nately, the EM estimation of  is not well defined. Minimum de-
scription length (MDL) criterion has been widely used to deter-
mine the optimal model structure (i.e., the optimal number « of
mixture Gaussian functions) by penalizing the complex model
candidates with a large « [48]. However, determining the op-
timal model structure by using MDL may not be appropriate and
our main concern for semantic video classifcation is to achieve
higher classification accuracy not just to minimize the descrip-
tion length.

To estimate the optimal flexible mixture model, we propose
an adaptive EM algorithm by integrating feature selection, pa-
rameter estimation and model selection (i.e., selecting the op-
timal number x of Gaussian functions) seamlessly in a single
algorithm and it takes the following steps.

Step 1) The class distribution of various principal video
shots, that are explicitly related to the elementary
semantic medical concept Cj, is approximated by
using a flexible mixture model. The data distribution
for a certain type (class) of principal video shots is
approximated by using multiple Gaussian functions.
Thus the number of mixture Gaussian functions is
initially set as k = m + 1, where m is the total
number of different types (classes) of various prin-
cipal video shots that are explicitly related to the
semantic medical concept C; (i.e., m is obtained
from the domain knowledge given by our medical
consultants). One more Gaussian function is added
for the hidden video patterns.

To hold the many-to-one correspondence assump-
tion, the optimal number x of mixture Gaussian
functions is adapted to the underlying class dis-
tributions of various principal video shots that
are explicitly related to the elementary semantic
medical concept C;.

Step 2)
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To determine the most discriminating features
for representing the elementary semantic medical
concept C;, a feature subset with large discrimina-
tion power is selected by making the intra-concept
distance small but the inter-concept distance large.
Based on a number of labeled positive and negative
samples, this discriminative feature subset ch
is determined automatically from the intersection
of the intra-concept and inter-concept distance
distributions

N-1 N

ch = argminz Z 5lk%

W = arg max{

Step 3)

=1 k=Il+1
N-1 N D

N ¢ arg max Z Z (1- 6”6)# 3)
=1 k=I+1 v

where 6, = 1 iff C;(X;) = Cj(Xyg), else
o1 = 0,Dy is the similarity distance between
a pair of labeled positive and negative sam-
ples X; and Xj. N, = fi;l Zsz_l 61 and
N, = ;\;Il Zi\;H_l(l — &1x;) are the numbers of
labeled sample pairs for the positive and negative
cases.

To hold the independence assumption, linear dis-
criminant analysis is performed to obtain a trans-
formed feature space such that the independence
among different classes of various principal video
shots can be maximized [87]

(W7 S,W|

LA | Y. =WT'X, @
|WTSwW|}’ i 5 @

where S,, is the intra-concept scatter matrix and S
is the inter-concept scatter matrix, W is the feature
transformation matrix, D'e ¢ is the set of the original
multimodal perceptual features, and ch is the set of
the representative features in the transformed feature
space.

Linear discriminant analysis has reduced the ob-
scuring noise (i.e., irrelevant multimodal perceptual
features with less important influences to the rele-
vant elementary semantic medical concept) and has
discovered a more expressive feature subset by using
a linear combination of the original multimodal per-
ceptual features. This linear feature transformation
also represents the video contents more compactly
in a transformed features space where the data are
clustered and easier to select more accurate model
structure. Our experimental results have confirmed
that using linear discriminant analysis for feature
transformation not only increases the classification
accuracy (i.e., decrease the misclassification ratio),
but also dramatically reduces the optimal number of
principal Gaussian functions and the amount of la-
beled samples that are needed for accurate classifier
training (shown in Figs. 10 and 11).

The traditional EM algorithm is used to estimate the
parameters for the given x Gaussian functions iter-
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Fig. 10. Surface of misclassification ratio (i.e., missing-recall) for skin
classification with different number of mixture Gaussian components, where
the original perceptional features (i.e., without KLT) is used and thus multiple
local minimum points appear and a bigger optimal number of mixture Gaussian
components £ = 216 is obtained.

atively [83]-[87]. The E-step calculates the proba-
bilistic labels (concept membership) for the training
samples by using the current estimate of w.,, ;.
The M-step calculates a new estimate for w.,, @Cj
by using all the labeled samples. After a point of
(local) maximum is reached, a weak Bayesian clas-
sifier is built by using the estimated parameters. The
performance of this weak Bayesian classifier is ob-
tained by testing a small number of labeled samples
that are not used for classifier training. If the average
performance of this weak classifier is good enough,
P(C; |ch,/<a,wcj,®cj) > 01, go to step 6). Other-
wise, go to step 4).

Step 4) A new Gaussian component, P(ch | Sty Wepyrs
0s,... ), is added to the flexible mixture model with
the relative weight w,1. The class distribution of
the principal video shots that are implicitly related
to the elementary semantic medical concept C; is
refined as

P (ch,cj,ﬁ n 1,ocj,écj)
= wn—i-lP (KJ | Sn+17ws~+1 3 05K+] )
+(1_w’(/'i'l)P(}A/cj?Cj?K'?ij?@Cj)' Q)

The traditional EM algorithm is then used to es-
timate the Gaussian parameters @c]. and the rel-
ative weights @., = {wi,...,weqp1} for K + 1
Gaussian functions. The Kullback—Leibler distance
A is used to quantify the “closeness” between two
probability distributions P()A/C]. Ci e+ 1,0, @Cj)
and P(ch ,Cj, K,we,, O;). The Kullback-Leibler

distance is calculated as [88]

A= /P (ch,cj,m,wcj@cj)

P (}A/c]wojvﬁﬂwcj'v@cj-)

x log dY. (6)

r (}A/c]'aojﬂql'l' 17(2)61-7@(:]-)
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Step5) If A < 65 or the iteration times (k — m) > 03,
go to step 6). Otherwise, one more relevant feature
F is added to ch and linear discriminant analysis
is performed on ch U F' to obtain a new repre-
sentative feature set Y’cj. This additional feature
F' is selected by maximizing the posterior prob-
ability P(C;|Y"e;,k,0e;,Oc,). If the classifier
accuracy with one more feature F' is decreased,
P(Cj|YA;j7H7ij7®Cj) > P(leylcjv’ﬁ‘:}c]-v
6. ,)» go to step 6). Otherwise, the “closeness” A
between two distributions P(Y ;> Cjy Ky We, @c])
and P(YCJ ,Cj, K w.,,0,,) is calculated by using
(6). If A < 89, set XC]. = ch U F, go back step 3.
Output mixture Gaussian parameters r,©O.,, and

We; -

Step 6)

We have also achieved a theoretical justification for the con-
vergence of the proposed adaptive EM algorithm. In our pro-
posed adaptive EM algorithm, the parameter spaces for the two
approximated models that are estimated incrementally have the
following relationship:

k= 1
‘:j = {(1 "‘}S»c+1) wca>w5x+1}
@ = c] ’ s,c+1 }
We, = {w1,...,ws }
{ Ou = {01,...,0, ) )
p (chvcﬁK' + 17(2101'7@6]‘)
= wli-{—lP (Y/c]- | Sn+1> 95K+1 )
+ (1= wes)P (Ve Gy, 00, )
The real class distribution P(YC]. Ol K Wy @zj) is defined

as the underlying optimial model that our proposed adaptive
EM algorithm should converge to. Thus, we put the real class
distrbution P()A/C]. ,Cj, K, w; , ©7 ) as the first augument in the
following discussion. Given the approximated class distributions
P(YC]. , Gy, Ry Qe @cj) and P(Y.,,Cj, k,w.,,0,;) that are
estimated sequentially, the Kullback—Leibler distances, between
the real class distribution P(Y,,,C;,r* w} . ©%) and the
approximated class distrbutions, is calculated as

Aq :/P<}A/ijcj>"<'*7w:j7®zj)

P (}A/Cj7oj7’<'*7wzj7®;-)

x log dy

r (YAYCﬂCjaH)wC]‘a@C]‘)

AzZ/P(chCﬁn*v‘”;’@;)

P (¥, Cont 0z, 07
x log

. —Lay ®)
P (Y., Cjoise,. O,)

where the Kullback-Leibler distances, A; and Ao, are always
nonnegative [88].
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Fig. 11.

Surface of misclassification ratio (i.e.,
classification with different number of mixture Gaussian components, where
KLT is used to derive more expressive feature subset and thus only few local
minimum point appears and a smaller optimal number of principal Gaussian
components k = 76 is obtained.

missing-recall) for skin

Thus, the difference D between A; and As is able to reflect
the convergence of our adaptive EM algorithm. The difference
D is calculated as

D=A, - A,

:/P(YC],C K wph G):j)

P (Y., Con,wr,, 07

x log 4y

p(yow@)

_/P(ﬁﬁcﬁﬁ*)w;v@;)

(3 0)
)

x log
( CJ7C_]7H"‘}CJ7 cj

+/P(YCJ,C KWl 07
x10g P (Yo, Cjs e, O,
:/P(YCJ,C K, W @:jj)
P(ch,cj,n,wcj,ecj)
(YCJ,C']7 ,ij,(:)C])

)

x log P (Y/Cj,o i wcj,é%) 4y
)
)

x log

dy. )
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By considering the implicit relationships
among Ky Ry K We W, , W G)CJ,G)CJ,@* and
P(}A/chCj,K' 7(4)6]_,@;_)7 (Yc]70_77 écj)
P(YCJ. ,Cj, K, we;, O, ), we can prove
D <0, ifik,k<k*
{D>0, if &,k > K" (10)

Hence, our adaptive EM algorithm can reduce the divergence
sequentially and thus it can be converged to the underlying op-
timal model incrementally. By selecting a suitable threshold 62,
we can also control its convergence rate. Our experimental re-
sults also match our theoretical proof convincingly as shown in
Fig. 12. Before our adaptive EM algorithm converges to the op-
timal model, adding more Gaussian functions will increase the
classifier’s performance, while after our adaptive EM algorithm
converges to the optimal model, adding more Gaussian func-
tions will decrease the classifier’s performance.

After the semantic video classifiers for the N, elementary
semantic medical concepts are in place, the classifier training
for the high-level semantic concept clusters is achieved by two
steps.

1) The flexible mixture model for a certain high-level se-
mantic concept cluster is determined by using a general
combination of N,, mixture Gaussian functions for the
relevant elementary semantic medical concepts, that are
under the corresponding semantic concept cluster node
in a certain domain-dependent concept hierarchy. To de-
termine the optimal flexible mixture model for a certain
semantic concept cluster, the mixture Gaussian functions
for the relevant elementary semantic medical concepts
with less prediction power are removed iteratively.

2) The weights among the residual mixture Gaussian func-
tions are then refined automatically by learning from the
labeled training samples.

Once the hierarchical video classifier is in place, the task of
semantic medical video classification can be summarized as fol-
lows. The principal video shots and their multimodal perceptual
features are first extracted automatically from the test medical
video clips. Linear discriminant analysis is then used to obtain
more representative feature subset for video content representa-
tion and indexing. Given an unlabeled principal video shot S;
and its transformed feature values Y;, it is finally assigned to
the best matching elementary semantic medical concept C; that
corresponds to the maximum posterior probability

P(CJ)P (}/;7 Cj7 ’iawcj-a@c]')

Ej’vzel P(C])P (}/17 C]7 Ky We;, ec]-)

P(C; Y, 0) = (11)

where © = {w.,,0.,,7 =1 ,N.} is the set of the mix-
ture Gaussian parameters and relative weights for the classifier,
we; = P(C}) is the prior probability (i.e., relative weight) of the
elementary semantic medical concept C; in the database for the
labeled samples. The principal video shot .S; is then assigned
into the relevant high-level semantic concept clusters. Our se-
mantic medical video-classification results at the elementary se-
mantic medical concept level are given in Figs. 13 and 14.
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Fig. 12. Classification accuracy increases when more mixture Gaussian
components are added before it reaches the optimal model x = 76. The
classification accuracy decreases when more mixture Gaussian components are
added after it is bigger the optimal model k = 76.

resentation

Fig. 13. Principal video shot classification results for a test video which
consists of three semantic medical concepts: “Presentation,” “Traumatic
Surgery,” and “Diagnosis.”

3.5 urge

ﬁ“}ﬁ Diagnosis

B .Dialog

A NAPTREN

‘: Presentation

Fig. 14. Principal video shot classification results for a test video which
consists of four semantic medical concepts: “Traumatic Surgery,” “Dialog,”
“demo presentation,” and “Diagnosis.”

It is important to note that once an unlabeled principal video
shot is classified, the semantic labels for the relevant elemen-
tary semantic medical concept and the high-level semantic
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concept clusters that it is assigned to become the semantic
labels for the corresponding principal video shot. Moreover,
the membership between the principal video shots and the
elementary semantic medical concepts could be highly non-
linear with different probabilities. One certain principal video
shot may consist of multiple types (classes) of various mul-
timodal salient objects, thus it can be classified into multiple
elementary semantic medical concepts when these multimodal
salient objects are implicitly related to different elementary
semantic medical concepts. Thus, multiple semantic labels for
the relevant elementary semantic medical concepts and their
relevant high-level semantic concept clusters become the se-
mantic labels for the corresponding principal video shot with
different probabilities. Our probabilistic semantic video-classi-
fication and annotation algorithm could remain the variability
(heterogeneity) within the same semantic medical concept and
thus offer a number of additional theoretical advantages com-
pared with other classification techniques with a binary “hard”
decision. This probabilistic video annotation technique is very
attractive to enable semantic video retrieval such that the naive
users will have more flexibility to specify their query concepts
via different keywords. One certain medical video clip may
consist of multiple types (classes) of various principal video
shots, the semantic labels for the relevant semantic medical
concepts are finally taken as the semantic labels for the cor-
responding medical video clip. Such automatic probabilistic
video annotation via semantic classification will make it pos-
sible for semantic video retrieval via keywords.

V. CONCEPT-ORIENTED VIDEO DATABASE
ORGANIZATION AND ACCESS

After the elementary semantic medical concepts and the rel-
evant semantic concept clusters are obtained, we turn our at-
tention to use them to provide concept-oriented video database
indexing, retrieval and browsing.

A. Concept-Oriented Video Database Indexing

After all the unlabeled principal video shots are classified
into the relevant elementary semantic medical concept nodes
and the high-level semantic concept clusters, these elementary
semantic medical concept nodes become the leaf nodes of the
video database, upon which the nonleaf nodes of the video data-
base can be constructed as the high-level semantic concept clus-
ters. The parent—child relationships in the database indexing
structure correspond to the underlying inter-level relationships
in a certain domain-dependent concept hierarchy.

To support more effective video database access, it is nec-
essary to find a good way to characterize the database nodes
(i.e., semantic medical concept nodes) jointly by using their
class distributions in the high-dimensional feature space, visual
summaries and semantic labels. Thus, the following novel tech-
niques are used to support statistical video database indexing.

* We use the underlying flexible mixture model to charac-
terize and index the statistical property of each database
node (i.e., semantic medical concept node) in its discrim-
inant feature subspace. The underlying flexible mixture
model, that is used for semantic medical concept modeling
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and classification, is able to approximate the class distri-
bution for the relevant concept-sensitive principal video
shots with a certain degree of accuracy.

» Each database node (i.e., semantic medical concept node)
is jointly described by the semantic label (i.e., keyword),
visual summary, and statistical properties of the class dis-
tribution for the relevant concept-sensitive principal video
shots in their discriminant feature subspace.

Thus, the following parameters will be used to represent a data-
base node (i.e., semantic medical concept node) Q:

semantic label Lg, feature subset : Xg
flexible model parameters : ©g,wq, kg

visual summary : Vg (12)

where Lg is the semantic label for the database node (i.e.,
semantic medical concept node) @,0¢,wq, and k¢ are the
model parameters that are used for semantic medical concept
interpretation and indexing, X¢ is the feature subset that is
used for medical content representation, and Vo is the visual
summary for the database node (). Based on this proposed joint
database node representation and indexing approach, more
effective query concept specification and video database access
framework can be supported.

B. Hierarchical Semantic Video Summarization

Most existing CBVR systems do not support hierarchical
browsing [10]. Users, however, are not only interested in
searching for specific video clips (e.g., query-by-example).
They would also like to browse and navigate through the
video databases. A key issue to hierarchical video browsing is
whether the visual summaries at different database nodes and
the hierarchical relationships among different database levels
make sense to the user. Such requirements have created great
demands for effective and efficient approaches to organize the
visual summaries through a certain domain-dependent concept
hierarchy [54]-[58].

Our hierarchical video-classification framework has resulted
in a hierarchical concept-oriented video organization in a data-
base and thus more effective concept-oriented video browsing
can be supported. To enable concept-oriented video browsing,
we have developed a novel semantic-sensitive video summariza-
tion technique and it includes two parts.

1) Semantic summary at video clip level: Our semantic
video-classification technique is able to support effi-
cient context understanding for a certain medical video
clip; thus, two heuristic rules are used to generate the
concept-sensitive visual summary automatically: a) the
principal video shots, that consist of the most frequent
semantic medical concept in a certain medical video clip,
are selected as the concept-sensitive visual summary
for the corresponding medical video clip and b) as
mentioned above, one certain principal video shot could
be implicitly related to multiple elementary semantic
medical concepts. The principal video shots, that consist
of multiple elementary semantic medical concepts and
thus provide a compact but sufficient representation of
the original medical contents, are also selected as the
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concept-sensitive visual summary for the corresponding
medical video clip.

2) Semantic summary at semantic concept level: The icon
principal video shots (i.e., most informative principal
video shots) for a certain database node (i.e., semantic
medical concept node) are obtained by using independent
component analysis [72]-[74]. The icon principal video
shots are treated as the concept-sensitive visual summary
for the corresponding semantic medical concept node.

Our multiple-level semantic video summarization results are
given in Figs. 15 and 16.

C. Hierarchical Video Retrieval

To support more effective video database access, it is very
important to address two key problems. How can the video
database system provide an intuitive approach for the naive
users to specify their query concepts effectively? How can
the underlying query processor evaluate the users’ query con-
cepts effectively? Thus, it is very important to integrate three
video access approaches (i.e., query by exmaple via online
relevance feedback, query by keywords, and concept-oriented
video browsing) in a unified framework.

1) Intuitive Query Concept Specification: To provide an
intuitive approach for the naive users to specify their query
concepts, we have proposed the following.

a) Query Concept Specification via Browsing: Our pro-
posed concept-oriented database organization technique
can support the users to get a good idea of the video con-
text quickly through browsing the visual summaries for
the semantic medical concept nodes. After the naive users
browse the visual summaries, they can pick up one or
multiple video clips as their query examples.

b) Query Concept Specification via Keywords: Keywords
are most useful for the naive users to specify their query
concepts and communicate with the CBVR systems at the
semantic level. However, the keywords, which are used
for achieving automatic video annotation, may be too ab-
stract to describe the details of video contexts. The query
results, that are initially obtained by keywords, may in-
clude a large number of semantically similar video clips
sharing the same semantic medical concept node. How-
ever, the naive users can specify their query concepts by
selecting the most suitable video clips as their query ex-
amples in the browsing procedure.

c) Query Concept Specification via Pattern Combi-
nations: Our proposed semantic video analysis and
semantic medical concept interpretation techniques have
also provided a query concept interpretation language for
the naive users to specify their query concepts by using
the concept-sensitive principal video shots (i.e., building
blocks of semantic medical concepts) and the underlying
semantic medical concept interpretation models. Based
on the underlying semantic medical concept interpreta-
tion models (i.e., query concept interpretation language),
the naive users can interpret their query concepts easily
and effectively by using the general combinations of
the preattentive concept-sensitive principal video shots
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Fig. 15. Multiple-level semantic video summarization results.
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Fig. 16. Multiple-level semantic video summarization results.

that are explicitly relevant to their query concepts (one
example is shown in Fig. 17).

2) Query Concept Evaluation for Query-by-Example: After
the query concepts are interpreted by the selected video clips,
similarity search is performed through the underlying video
database indexing structure so that the most similar video
clips can be obtained. The naive users can then label these
retrieved video clips as relevant or irrelevant according to their
subjectivity [59]-[65]. Rocchio’s formula could possibly be
used to determine the new query vector for the next iteration.
However, Rocchio’s formula cannot predict the most suitable
search direction for the next iteration, thus there is no guarantee
that the search results can be improved progressively and be
converged to the “optimal” target quickly [64].

To solve this convergence problem, we have developed an
effective scheme by combining an informative sampling tech-
nique with an optimal search direction prediction method to
achieve more effective online relevance feedback. The scheme
takes the following major steps.

* Informative Sample Selection: The irrelevant video data
samples, which are obtained in a previous query and
located in the nearest neighbor sphere of the current
query seed, are used for shrinking the sampling area for
the current query iteration [64]. Specifically, the nearest
neighborhoods of these irrelevant samples (shown as dash
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Lecture Presentation

Visual Pattern

Auditory Pattern

Image-Textual Pattern

Fig. 17. Query concept specification via a general combination of the
preattentive concept-sensitive principal video shots.

circles in Fig. 18) are taken out from the sampling area of
the current query iteration. The most informative video
clips residing in the shrunk sampling area are subsequently
displayed to the naive users as the seed for next iteration
of query [64], [65] (see Fig. 18).

* Best Search Direction Prediction: Relevance feedback
with the user in the loop can improve the the query re-
sults subsequently, and thus the nearest neighbor spheres
for subsequent query iterations are be reduced in size re-
peatedly, as shown in Fig. 18. The best search direction
for the next query iteration predicted by combining such
iterative nearest neighbor sphere reduction with the above
introduced technique for informative sampling. Similarity
search can converge quickly with the prediction of the best
search direction.

* Query Refinement: Only the previous query vector and
the positive samples are used to determine the new query
vector for the next iteration based on the revised Rocchio’s
formula

Q=0aQ +f NiZVi (13)

P ieD,

where Q and Q' are the new query vector for the next it-
eration and the current query vector respectively, a and 8
are some suitable constants, V; denotes the feature vectors
for the positive samples, D, is the set of the positive sam-
ples, and IV, is the cardinality of D,,. For each query con-
cept, only the discriminating perceptual features are used
for generating the new query vector. After the query con-
cept and the relevant discriminating feature subspace are
refined, we have developed a Bayesian framework for se-
lecting the matching candidates.

3) Query Concept Evaluation for Query-by-Patterns: After
the query concepts are initially specified by the naive users with
a general combination of the preattentive principal video shots,
our query processor can first interpret the users’ query concepts
with multiple mixture Gaussian functions that are used to ap-
proximate the class distrbutions of the selected principal video
shots. The weights among multiple mixture Gaussian functions
for these selected principal video shots can be pre-defined by
the users or be learned by the system incrementally.
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Fig. 18.
scheme.

Proposed adaptive nearest neighbor search and informative sampling

In order to capture the users’ subjectivity more effectively, it
is very important to adapt the query processor to the potential
concept drift [62], [63]. For semantic video retrieval, we focus
on addressing the gradual concept drift and it can be induced by
two factors: 1) the users’ interpretation for a certain semantic
medical concept changes gradually because of the appearance
of hidden video context and 2) the users’ interpretation for a
certain semantic medical concept changes gradually because
of the disappearance of existing video context. Based on this
understanding, we have proposed an incremental EM algorithm
to adapt the query processor to the gradual concept drift
automatically.

To characterize the difference of the semantic medical
concept interpretation along the time, a new time factor is rep-
resented explicitly in the flexible mixture model for semantic
medical concept interpretation P(X,Cj, k,w.;,0.,,t) as
follows:

P (Xe,,Cj kywe,, Oc,,t) = > P (Xe,, Cj | S0, 1) ws,.
i=1

(14)
To detect the query concept drift over time, the Kull-
back-Leibler distance A is used to quantify the divergence be-
tween P(Y.,, Cj, k,we;, Oc;, ) and P(Ye;, Cj, k' w , O, 1)
by adding more training samples which are labeled recently by
the users. The Kullback—Leibler distance is calculated as [88]

A:/P(YCJ.,CJ-,n,wc].,GCj,t)
P(ch,Cj,Kl,wcj,@cj,t)

P (Yo, ot 0,1 &y (15)

x log

where the query concept model structure « is fixed but the model
parameters w,.; and O, may be changed after adding latest new
samples.

If A > 49, the gradual query concept drift is detected. To
address the gradual query concept drift induced by the appear-
ance of hidden video context, our adaptive EM algorithm is
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used to generate a new query concept model and feature subset
by adding more Gaussian functions iteratively, &, W, (:)Cj , X e

If the gradual query concept drift is induced by the dis-
appearance of existing video context, one or more existing
Gaussian functions with the least prediction power are removed
from flexible mixture model. Our adaptive EM algorithm is
performed to obtain a new query concept model and feature
subset #,w;, (:)Cj , X ¢, iteratively. If a mixture Gaussian
function P(Y,, | Si,ws,,0s,) is removed from the underlying
flexible mixture model, the weights among the residual mixture
Gaussian functions are then refined automatically by

P(YC.NCJ"/’{?“‘}CJ?@C.WIE)

i#l. (16)

1-7051-)(&)51.,

VI. PERFORMANCE ANALYSIS

Our experiments are conducted on two image/video
databases: skin database (i.e., marked face database) from
Purdue University and medical video database. The skin
database consists of 1265 face images and 150 face images
are selected as the labeled samples for classifier training. The
medical video database includes more than 35000 principal
video shots that are obtained from 45 h of MPEG medical
education videos, where 1500 principal video shots are selected
as the training samples and labeled by our medical consultant.

A. Benchmark Matrics

The success of semantic video classifier depends on five
major factors: 1) the effectiveness of the underlying video
content representation framework; 2) the correction of the
basic assumption that the real data distributions can be approx-
imated by using mixture Gaussian functions; 3) the ability of
the selected multimodal perceptual features to discriminate
among various semantic medical concepts; 4) the significance
of the classifier induction algorithm; and 5) the size of labeled
samples and the relative size ratio between positive samples
and negative samples.

Our algorithm and system evaluation works focus on:

* evaluating the performances of two major video content
representation frameworks by using concept-insensitive
“pure” video shots or concept-sensitive principal video
shots;

* comparing the performance differences between our pro-
posed probabilistic classification algorithms and other
existing techniques, especially SVM because SVM was
reported to be successful for high-dimensional “hard”
binary classification;

» Comparing the performance differences for our proposed
classification and feature subset selection algorithms by
using different sizes of labeled samples and different
relative size ratios between the positive samples and the
negative samples.

The first benchmark metric is the classification accuracy (i.e.,
misclassification ratio versus classification accuracy ratio). The
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classification accuracy p and misclassification ratio p are de-
fined as

[~ T an

— _ ltvty
{ P = Thry+oty
I ]
where v is the set of true positive samples that are related to
the corresponding semantic medical concept and classified cor-
rectly, v is the set of true negative samples that are irrelevant
to the corresponding semantic medical concept and classified
correctly,  is the set of false positive sample that are related to
the corresponding semantic medical concept but misclassified,
and 7 is the set of false negative samples that are irrelevant to
the corresponding semantic medical concept but classified in-
correctly.

The second benchmark metric is the retrieval accuracy (i.e.,
precision versus recall weighted by different retrieval purposes).
The weighted precision g and recall p are defined as

_ 142027
{ 0= TR+ (I +A7)E (18)
- 14281
0= T2p7r+(1189)e
where 7 is the set of true positive samples that are relevant to
the query concept and returned by a certain query correctly, & is
the set of false negative samples that are irrelevant to the query
concept but returned by a certain query incorrectly, ¢ is the set of
false positive samples that are relevant to the query concept but
not returned by a certain query correctly, and A € [1,00) and
B € [1, 00) are the weighting parameters to specify the retrieval
purposes by controlling the influences of false positive and false
negative samples on g and g. A large value of A indicates that the
users’ retrieval purposes will focus on the total number of ture
positive samples returned by the system. A large value of 3 in-
dicates that the users’ retrieval purposes will focus on obtaining
more true positive samples but neglecting how many relevant
false positive samples residing in the database. When A = 1
and § = 1, p and g become the traditional precision and recall.

B. Implementation Issues

We have extracted a set of multimodal perceptual features to
represent the principal video shots and enable more effective se-
mantic video classification. The multimodal perceptual features
include shot-based global visual features, object-based local
visual features, shot-based auditory features, and shot-based
image-textual features. The shot-based global visual features
include 32-bin histograms of principal (dominant) colors and
color variances within the same principal video shot, 9-bin
edge histogram as the texture and structure feature. We did not
include shot-based motion features because the motion features
do not have strong impact for medical content representation
and semantic medical video classification, this property for
medical education videos is very different from that for other
video domains such as news and films. The object-based local
visual features include object density, dominant colors and
variances, height-width ratio, Tamura texture features. We
focus on the shot-based image-textual features rather than
recognizing written image-text, the image-text segmentation
outputs within the same principal video shot are integrated as a
single bitmap for extracting the suitable shot-based image-tex-
tual features such as average length ratio between the length of
the image-textual regions and the size of video frames, average
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TABLE 1
AVERAGE PERFORMANCE (LE., CLASSIFICATION ACCURACY RATIO VERSUS MISCLASSIFICATION
RATIO) OF OUR SEMANTIC VIDEO CLASSIFIER BASED ON PRINCIPAL VIDEO SHOTS

concepts lecture presentation traumatic surgery dialog diagnosis gastroinstinal surgery

adaptive 79.6% 81.7% 18.5% 74.7% 80.6%

EM 20.8% 18.9% 21.8% 25.8% 9.5%

traditional 71.6% 72.4% 69.8% 67.2% 69.8%

EM 28.5% 28.1% 30.6% 33.4% 30.3%
TABLE II

AVERAGE PERFORMANCE (LE., CLASSIFICATION ACCURACY RATIO VERSUS MISCLASSIFICATION
RATIO) OF OUR SEMANTIC VIDEO CLASSIFIER BASED ON “PURE” VIDEO SHOTS

concepts lecture presentation traumatic surgery dialog diagnosis gastroinstinal surgery
adaptive 65.4% 66.9% 71.2% 59.8% 67.1%
EM 35.1% 33.5% 29.3% 41.1% 33.0%
traditional 58.4% 59.8% 62.4% 51.7% 58.6%
EM 42.1% 40.6% 37.2% 49.2% 41.5%

width ratio, and coverage ratio within a shot. We also focus on
the shot-based auditory features, such as loudness, frequencies,
pitch, fundamental frequency, and frequency transition ratio,
rather than recognizing speech.

The thresholds for system implementation include: ¢; for
classification accuracy, - for the closeness between two data
distributions, and 63 for the maximum iteration times. In our
current implementation, we set 57 = 90.0% for skin database
and 6; = 80.0% for medical video database. We set 5 = 0.075
for defining the closeness of the data distributions that are esti-
mated sequentially with different number of mixture Gaussian
components. To control the iteration times for estimating the
optimum number x of mixture Gaussian components, we set
63 = 25 for medical video classification (i.e., with KLT). For
skin classification, §3 = 300 if the original perceptual features
are directly used for parameter estimation and model selection,
63 = 100 if KLT is used for deriving a more expressive feature
subset.

C. Performance Evaluation

Human faces in our database include various backgrounds
and illuminations, thus we extract 32-bin HSV color histogram
for each 3 x 3 image block. We have obtained very high clas-
sification accuracy 95.5% for the skin database. As shown in
Figs. 10 and 11, the optimal numbers of mixture Gaussian com-
ponents for positive and negative examples are selected with the
highest classification accuracy. From Figs. 10 and 11, we have
also found that our adaptive EM algorithm can be converged
to the underlying optimal model as described by (10). After
our adaptive EM algorithm converges to the underlying optimal
model, adding more mixture Gaussian functions to the flex-
ible mixture model will descrease the classifier performance.
This experimental conclusion matches our theoretical proof in

(10) for the convergence of our adaptive EM algorithm very
well. One can also find that the optimal number s of mixture
Gaussian components for skin classification is very large be-
cause the face images for different illumination conditions are
included in our skin database. In our experiments, we find that
k = 76 if Karhunen—Loeve transformation (KLT) is used for
deriving more expressive feature subset and x = 216 if the orig-
inal perceptual features are directly used.

The average performance of our semantic medical video-clas-
sification technique is given in Tables I and II, they are obtained
by averaging classification accuracy and misclassification ratio
for the same semantic medical concept over 33500 testing
medical video clips. We have compared the performance dif-
ferences of our semantic video classifier by using different
video content charaterization and representation frameworks
via principal video shots or “pure” video shots. We find that
our semantic video classifier based on principal video shots
has better performance than the same classifier that is based on
“pure” video shots, because the multimodal perceptual features
obtained from the principal video shots are more effective to
discriminate among various semantic medical concepts.

We have also compared the performance differences of our
classifier with and without KLT. The experimental results are
given in Tables III. One can find that our semantic video
classifier has better performance by performing KLT on the
original perceptual multimodal features, because the KLT has
reduced the obscuring noise (i.e., irrelevant multimodal per-
ceptual features with less important influences to the relevant
semantic medical concept) and discovered a more expressive
feature subset by using a linear combination of the original
high-dimensional perceptual features. This linear feature trans-
formation represents video contents in a new features space
where the data are clustered and easier to select the effec-
tive model structure of mixture Gaussian components. From
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TABLE 1II
AVERAGE PERFORMANCE (LE., CLASSIFICATION ACCURACY RATIO VERSUS MISCLASSIFICATION
RATIO) OF OUR SEMANTIC VIDEO CLASSIFIER WITH AND WITHOUT KLT

concepts lecture presentation traumatic surgery dialog diagnosis gastroinstinal surgery

without 79.6% 81.7% 178.5% 74.7% 82.1%

KTL 20.8% 18.9% 21.8% 25.8% 18.0%

with 86.8% 88.6% 85.8% 83.9% 88.9%

KLT 13.4% 11.5% 14.3% 16.4% 11.2%
TABLE IV

OPTIMAL NUMBERS k OF GAUSSIAN COMPONENTS FOR FOUR SEMANTIC MEDICAL CONCEPTS WITH AND WITHOUT KLT

concepts lecture presentation traumatic surgery dialog diagnosis gastroinstinal surgery
with 4 11 6 8 15
KLT
without 26 46 33 39 52
KLT
TABLE V

AVERAGE PERFORMANCE (LE., CLASSIFICATION ACCURACY RATIO VERSUS MISCLASSIFICATION RATIO) FOR SEVERAL CLASSIFIERS WITH KLT

concept lecture presentation traumatic surgery dialog diagnosis gastroinstinal surgery
adaptive 86.8% 88.6% 85.8% 83.9% 88.9%
EM 13.4% 11.5% 14.3% 16.4% 11.2%
SVM 83.5% 89.4% 80.5% 84.6% 89.3%
16.6% 10.7% 18.6% 15.5% 10.8%

C4.5 68.5% 67.7% 68.3% 66.6% 68.1%
27.6% 284% 27.8% 29.5% 32.0%

Tables III and IV, one can find that using KLT for feature
transformation not only increases the classification accuracy
(i.e., decreases the misclassification ratio) but also dramatically
reduces the optimal number of principal Gaussian components.
The optimal numbers ~ of mixture Gaussian components for
five semantic medical concepts with and without KLT in our
test are given in Table IV.

We have also compared the performance differences between
our classifier and other well-known classifiers such as SVM and
C4.5. The test is performed on the same medical video data
set by using the same video content characterization framework
(i.e., via principal video shots). The test results are given in
Table V. One can find that our classifier has better average per-
formance as compared with other classifiers. The testing results
have also shown that SVM is also successful for binary video
classification; however, C4.5 is not a good choice for semantic
video classification because hundreds of its inter-nodes (deci-
sion nodes) do not make sense to human beings.

The performance difference for our adaptive EM algorithm
with different feature dimensions is given in Fig. 19. Theoreti-

cally, having more features should give us more discriminating
power to support more accurate classifier training. However,
more features will also make it very difficult to obtain the good
estimates of many parameters for the classifier and thus adding
more irrelevant features will also decrease the classifier accu-
racy, as shown in Fig. 19.

The search time 7, for our CBVR system is the sum of two
times: the time 7 for comparing the relevant video clips in the
database and the time 7. for ranking the relevant results. If no
database indexing structure is used for organizing this search
procedure, the total retrieval time is

T.=T,+T, =Ng-Tpn+O(NrlogNy)  (19)

where Nt is the number of videos in the databases, 71}, is the
basic time to calculate the feature-based similarity distance be-
tween two video clips, and O(Nr log Nr) is the time to rank
N7 elements.

Our concept-oriented video database indexing structure
can provide fast retrieval because only the relevant database
management units are compared with the query example.
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Fig.20. Average performance of our query evaluation technique with different
values of A and /3.

Moreover, only the discriminating features are selected for
video representation and indexing, and thus the basic time for
calculating the feature-based similarity distance is also reduced
(T., Ts., Ts, T, < T,, because only the discriminating features
are used). The total retrieval time for our CBVR system is

T.=N. - T.+ Ngeo - Tsc + Ng - Ts + N, - T, + O(N, log N,)
(20)

where N., Ng., N, are the numbers of the nodes at the semantic
concept cluster and the most relevant subclusters and elementary
semantic medical concept levels, N, is the number of principal
video shots that reside in the most relevant elementary semantic
medical concept node, 1., 7., Ts,T, are the basic times for
calculating the similarity distances in the corresponding feature
subspace, and O(N, log IV,) is the total time for ranking the
relevant principal video shots residing in the corresponding
elementary semantic medical concept node. Since (N, + Ns.+

f
o0 Posity,

Mpblag

Fig. 21.  Surface of classification accuracy for the semantic medical concept
“lecture presentation” (with KLT) by using different s for positive and negative
training samples.

Ns+ N,) €< Ny, (T, Tse, T, Ty) < T, thus T, < T,. The
average performance of our query-evaluation technique is given
in Fig. 20.

The limitation of our semantic video-classification technique
is that it necessitates a large size of labeled samples to learn
accurately because the dimensions of the multimodal percep-
tual features for video content representation are normally very
large, but labeling sufficient video clips that are required for
high-dimensional video classification is very expensive and thus
infeasible. If only a limited number of labeled samples are avail-
able for classifier training, the learned classifier models are in-
complete and suffer from the overfitting problem, as shown in
Fig. 21.
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VII. CONCLUSION

In a certain medical education video domain, we have pro-
posed a novel framework to support more effective semantic
video characterization and classification. Our new semantic-
sensitive video content characterization framework and adap-
tive EM algorithm have improved the classification accuracy
significantly. The major contributions of this paper include the
following.

* A novel semantic-sensitive video content characterization
and representation framework via principal video shots.
The multimodal perceptual features, that are extracted
from the principal video shots, are more effective to
discriminate among various semantic medical concepts.

* Semantic medical concept interpretation via flexible mix-
ture model that can be learned from the training samples
automatically.

* Adaptive EM algorithm for model selection, parameter es-
timation and feature subset selection.

The definition of principal video shots is largely domain de-
pendent, but it can be easily extended to other video domains
such as news and films by selecting the suitable domain-depen-
dent semantic concepts and defining the relevant concept-driven
and domain-dependent multimodal salient objects. After that,
our adaptive EM algorithm will also be very attractive to enable
semantic video classification for other video domains.

The major limitation of our semantic video classifier is that
its performance largely depends on the limited size of the la-
beled training data set. To address the problem of the limited
number of labeled training samples, we are now working on the
following.

» Using unlabeled data to obtain more accurate estimation
because the limited number of labeled training samples
may lead to large generalization error when the data dis-
tribution for these limited labeled training samples is dif-
ferent from that of the large-scale unlabeled samples. Our
adaptive EM algorithm is very attractive for integrating
large-scale unlabeled training samples with the limited
number of labeled training samples to obtain a good classi-
fier because the optimal number of mixture Gaussian com-
ponents is estimated adaptively.

* More extensional studies on performance comparison be-
tween our classifier and SVM because SVM was reported
to be effective for high-dimensional data classification.
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