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Knowledge-Based Image Retrieval
with Spatial and Temporal Constructs

Wesley W. Chu, Fellow, IEEE, Chih-Cheng Hsu, Alfonso F. Cardenas, and Ricky K. Taira

Abstract—A knowledge-based approach to retrieve medical images by feature and content with spatial and temporal constructs is
developed. Selected objects of interest in a medical image (e.g., x-ray, MR image) are segmented, and contours are generated from
these objects. Features (e.g., shape, size, texture) and content (e.g., spatial relationships among objects) are extracted and stored

in a feature and content database. Knowledge about image features can be expressed as a hierarchical structure called a Type
Abstraction Hierarchy (TAH). The high-level nodes in the TAH represent more general concepts than low-level nodes. Thus,
traversing along TAH nodes allows approximate matching by feature and content if an exact match is not available. TAHs can be
generated automatically by clustering algorithms based on feature values in the databases and hence are scalable to large
collections of image features. Further, since TAHs are generated based on user classes and applications, they are context- and
user-sensitive. A knowledge-based semantic image model is proposed that consists of four layers (raw data layer, feature and
content layer, schema layer, and knowledge layer) to represent the various aspects of an image objects’ characteristics. The model
provides a mechanism for accessing and processing spatial, evolutionary, and temporal queries. A knowledge-based spatial
temporal query language (KSTL) has developed that extends ODMG’s OQL and supports approximate matching of feature and
content, conceptual terms, and temporal logic predicates. Further, a visual query language has been developed that accepts point-
click-and-drag visual iconic input on the screen that is then translated into KSTL. User models are introduced to provide default
parameter values for specifying query conditions. We have implemented a Knowledge-Based Medical Database System (KMeD) at
UCLA, and it is currently under evaluation by the medical staff. The results from this research should be applicable to other

multimedia information systems as well.

Index Terms—Image database systems, visual query language, multimedia data modeling, knowledge-based query processing,
temporal and spatial data modeling medical images, cooperative query answering content based image retrieval.

1 INTRODUCTION

new generation of intelligent database systems must

emerge, in order to effectively disseminate, integrate,
retrieve, correlate, and visualize multimedia medical infor-
mation. Many medical Picture Archiving and Communica-
tion Systems (PACS) [25] have several terabytes of image
data on-line, yet utilization of data for research and teach-
ing is very limited. Search engines for medical images are
needed that can support content-based image retrieval. Ex-
actly matched content-based retrieval will almost never
yield any answer; further, it is especially difficult when the
task involves searching for image data that contain impre-
cise descriptors. To illustrate some of these difficulties, con-
sider the following queries:

QUERY 1. Find patients with similar lesions to that of patient
with ID “P000-01" based on their shape and locations.

QUERY 2. Find African-American patients with similar post-
therapy lesion development to the image sequence shown on
the screen.
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QUERY 3. Find patients treated either by Dr. Smith or Jones
whose lesions exhibit a decrease in size by at least
50 percent for every scheduled examination.

QUERY 4. Find all cases in which a tumor decreased in size for
less than three months post treatment, then resumed a
growth pattern after that period.

QUERY b. Retrieve the image frames in which a micro-lesion is
nearby the lateral ventricle and approximately 9 mm in di-
ameter. The micro-lesion evolves into a macro-lesion with
diameter equal or larger than 25 mm and invades the lat-
eral ventricle in approximate one year.

Some of the problems that must be addressed include:

1) How do we communicate these natural language
queries to a computer system? Conventional database
query languages are limited in their expressibility, es-
pecially concerning fuzzy correlations (e.g., in the vi-
cinity of), spatial concepts (e.g., INSIDE, NEARBY,
FAR AWAY), and temporal concepts (e.g., size dou-
bled since initial diagnosis);

2) What methods are used to match cases stored within
the raw image repository (e.g., PACS) to the condi-
tions specified in the user query? The system needs
to be able to mimic the response of a trained expert
in the medical field. That is, the system must know of
all subclasses of a specified object (e.g., a malignant
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Fig. 1. An example representation of brain lesions. SR(, b), SR(l, Iv), and SRl f) represent the spatial relationships of lesion and brain, lesion and
lateral ventricle, and lesion and frontal lobe, respectively. The lesion stream entity represents a temporal sequence of lesions.

tumor’ could be an adenocarcinoma, or any number
of other cancerous growths), reference variations (e.g.,
synonyms, lexical variants, abbreviations, etc.), con-
ceptual terms (e.g., large, small), and context sensitive
terms (e.g., SIMILAR TO);

3) How does the system intelligently relax certain con-
straints when no exact query solutions exist? For ex-
ample, in order for the system to find a solution, it
may need to relax the shape of the mass from spheri-
cal to elliptical;

4) What kind of user interface is suitable for users? A
flexible user interface is required to allow the user to
express the query and navigate through the presented
query solutions. The user requires tools to visualize
the presented answers in a specific format.

In this paper, Section 2 presents the four-layered knowl-
edge-based semantic image model for representing medical
images with spatial and temporal features. Section 3 pres-
ents the language for specifying visual query with temporal
and spatial constructs. Section 4 discusses the translation
of the visual query expression into the knowledge-based
spatial and temporal query language (KSTL) which can

1. In this paper, the terms tumor, lesion, neoplasm, and adenocarcinoma are
used interchangeably.

be implemented as extension of ODMG’s OQL. Section 5
discusses the knowledge-based query answering for ap-
proximate matching images with features and contents via
relaxation. The data flow and system architecture is pre-
sented in Section 6.

2 KNOWLEDGE-BASED SEMANTIC TEMPORAL
IMAGE MODEL

Currently, images cannot be easily or effectively retrieved
due to the lack of a comprehensive data model that cap-
tures the structured abstractions and knowledge that are
needed for image retrieval. To remedy such shortcomings,
predicates should contain semantic (e.g.,, INSIDE, FAR AWAY,
etc.), conceptual (e.g., large, small, etc.), and similar-to
terms in order to retrieve medical images by feature
and content. The similar-to operators allow users to retrieve
images close to the target image based on a prespecified
set of features.

An image model is proposed which consists of a Raw
Data Layer (RDL), Feature and Content Layer (FCL), a
Schema Layer (SL), and a Knowledge Layer (KL). Fig. 1
illustrates the four-layered modeling for brain lesions.
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2.1 Raw Data Layer

The Raw Data Layer stores the actual pixel-level image data
in the database. Its main function is to abstract from the rest
of the model encoding techniques such as compression,
encryption, or special formatting. When images are ac-
cessed from the Raw Data Layer, they are translated by the
RDL into a canonical image format. Therefore, image data
formatting is uniform at any layer above the Raw Data
Layer, with low-level concerns such as compression algo-
rithms effectively hidden and autonomous from the higher-
level components of the system.

2,2 Feature and Content Layer

At the Feature and Content Layer, we store image features
such as contours, spatial relationship characteristics, and
temporal sequences. The contours can be segmented manu-
ally, semiautomatically (using techniques like active con-
tours [17] and liquid transforms in [32]), or automatically
[28], [38], [37] depending on the contrast and separability of
the image objects. Raw image segmentation will be pro-
vided by the radiologists [28]. The segmented contours are
used to compute spatial and temporal features, after which
they are integrated into the proposed model for querying
images by content and feature.

2.2.1 Spatial Feature Computation

Shape Modeling. Image objects in medical images are often
complex in shape and require detailed comparison on spe-
cific portions. Thus, we propose a decomposition approach
to describe an object’s shape. A object with a complex shape
is first decomposed into context-dependent substructures.
The decomposition is based on the fundamental line and
curve segments identified by the generated y —s function
from the chain code of the object contours [29]. These de-
composed fundamental lines and curves are then matched
to a shape model of the specific objects. These models en-
capsulate the “part-of” knowledge between the lines and
curves that constitute the object model. The shape models
are used to identify and verify contoured objects that con-
form to the general expected object shapes. They are also
used to locate key landmark features to aid in further

©Lesion 1

(items in gray are hidden
from user by defauit)

visual entity

feature analysis. Instance data is matched to model data
using an interpretation tree that utilizes unary and binary
spatial constraints [23].

Spatial Relationship Modeling. In modeling spatial re-
lationships, existing semantic constructs such as overlap and
separate [19], [13] are insufficient to fully represent spatial
relationships among objects [24]. Additional detailed varia-
tions on spatial relationships should be captured in spatial
relationship modeling. To distinguish images based on
similar spatial relationships, relevant spatial relationship
features are specified by domain experts. For example, the
spatial relationship for a lesion that is near another object
can be captured using the distance of the centroids of the
two contours on the x-axis and y-axis, the angle of coverage
(the angle for viewing a contour from the centroid of an-
other contour), and the ratio of area to classify the spatial
relationship [24]. ,

These computed features will be classified automatically
with clustering algorithms into Type Abstraction Hierar-
chies (TAH) (see Section 2.4) and conceptual terms are an-
notated at the TAH nodes to enable image querying via
conceptual predicates. '

2.3 Schema Layer

In the Schema Layer, we construct a database schema that
represents the entities and spatial relationships among ob-
jects based on the exiracted shape and spatial relationship

features from object contours in the Feature and Content

Layer. Other entities in this layer capture the temporal and
evolutionary aspects of the database.

2.3.1 Visual Entities
Objects in an image are represented in the Schema Layer as
visual entities (VEs). Instances of VEs consist of conventional
attributes (e.g., patient ID, date, doctor name, etc.) in the
raw data layer as well as visual attributes (e.g., shape, size,
texture, etc.) of object contours in the Feature and Content
Layer. Spatial relationships among entities can also be repre-
sented in the schema, as shown in Fig. 2.

VEs maintain a list of canonical visual representations
derived from actual images. Their features and content are
extracted by the methods described in Sec¢tion 2.2.

Hand Bone Growth (predictable)

Stage A Stage B Stage |

i

¥ stream entities

&

Lesion Growth (unpredictable)

_________ i

size changs

Fig. 2. Visual notation of visual entities and streams, used in both schema diagrams and the visual query language.
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Fig. 3. A Type Abstraction Hierarchy classifies MR images based on the spatial relationship of tumors and lateral ventricle. The attributes used in
the TAH are context and user sensitive, and may be prespecified by the user.

2.3.2 Stream Entities

Multiple versions of an object over a period of time (for
example, the stages undergone by a tumor during the can-
cer process of a particular patient) can be linked to form a
stream entity for that time period.

A stream is a sequence of ordered objects [15] which can
be classified into simple streams and composite streams. The
ordered objects in a simple stream are all regular objects,
and a composite stream may have other streams as its con-
tained objects. A composite stream is composed spatially or
temporally from simple streams by composition constructors,
such as synchronization, concatenation, and evolutionary
constructors [11]. Composite streams allow cross-sectional
views across streams of different data to be viewed and
queried at the same time (Fig. 2).

2.4 Knowledge Layer

We propose to classify image shapes and spatial relation-
ship features into a hierarchical structure known as a Type
Abstraction Hierarchy (TAH) [6]. The attributes used for
classification are context and user sensitive, and are speci-
fied initially by the user when generating the TAHs. Spatial
concepts are represented as feature value ranges. Higher
nodes in the TAH represent more generalized concepts (i.e.,
wider range of feature values) than that of the lower

nodes (i.e, narrower range of the feature values). TAH
nodes generated based on shape features can be labeled
with conceptual terms (e.g., large, small, etc.), and TAH
nodes generated based on spatial relationship features can
be labeled with semantic spatial relationship terms (e.g.,
near by, far away). The value ranges and the corresponding
relaxation error are represented at each TAH node. Relaxa-
tion error is the expected pairwise feature distance between
members in a TAH node. Hence the error is a measure of
the closeness of the images under this node. Images under
the same TAH node have similar characteristics with re-
spect to a set of features and thus all of the images under
the same TAH node can be considered as similar (see
Fig. 3). By traversing up and down the nodes in the TAH
(i.e., generalization and specialization of features in the
TAH, respectively), we are able to select the best node
that approximately matches the target feature values.
Therefore, this provides a way to process queries with
similar-to operators.

TAH can be automatically generated via MDISC clus-
tering algorithm [7] which classify images with shapes
and/or spatial relationships. A TAH generated based on
spatial relationship features is shown in Fig. 3.

In addition, an ontology of spatial relationship terms
(Fig. 4) is used to guide the generation and labeling of
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Fig. 4. An ontology for semantic spatial relationship operators for topological categories between two objects with the representative icons shown.
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Fig. 5. Example of user models for two user classes for retrieving images with a brain lesion.

TAH nodes. Similar listings of commonly used terms for
shapes have been developed jointly with domain ex-
perts (e.g., radiologists). Users may edit the TAH by de-
leting and moving TAH nodes to satisfy the users’ desired
representation.

We can thus derive features from contoured objects and
classify all of their images into a TAH structure based on
these features. The TAHs can be used for visual query in-
terpretation and knowledge-based query processing. A
TAH directory will be developed which can be indexed on
TAH characteristics (e.g., attributes used, context, user
type) to retrieve TAHs for reuse.

Visual entities, spatial relationships, and stream entities
in the Schema Layer are linked to TAHs in the Knowledge
Layer to provide preset values for conceptual terms and
relaxed ranges (see Fig. 1). This knowledge is used for
modifying and relaxing a user’s query input into the ap-
proximate or relaxed query conditions.

2.5 User Model

User models maintain profiles of object matching prefer-
ences and relaxation control policies for different user
classes (Fig. 5). The user model consists of lists of image
objects, features representing the objects and spatial rela-
tionships, object matching policies, and policies for relaxing
query conditions when no satisfactory answer is found.
When object matching and relaxation control policies are

not explicitly specified by the user during a query, such
information may be obtained from the corresponding user
model to guide the relaxation of query constraints. Objects
in the user model are divided into mandatorily matched ob-
jects which must be matched with the query context for the
user model, and optionally matched objects which provide
guidance for additional matched features to enhance the
query constraints.

For example, in studying images with lesion(s), a typical
concern of brain surgeons are lesion locations and their
spatial relationships with other objects in the brain, while
the concerns of brain radiologists include shape, size, and
location of lesions in the brain (Fig. 5).

When visual query is used to query similar images, the
VE identifies the objects of interest as well as the user
class. The knowledge-based query processor dynamically
matches user models based on the identified objects and
user class in the VE to provide the information required for
knowledge-based query answering (e.g., features of simi-
larity and relaxation policy). Thus, the VE and user model
can be used to customize query processing for different
types of users.

3 VisuaL QUERY LANGUAGE

The visual query language, MQuery language [15], is an
extension from the PICQUERY+ language [10]. A subset of
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Fig. 7. Visual query expression for Query 1.

the notation for the language is shown in Fig. 6, and
is based on a combined entity-relationship and object-
oriented data model that we have designed [15].

VE (visual entity) boxes contain any visual entities being
queried (Fig. 7). When the user wishes to ask a visual query,
the VEs involved are selected and placed within a VE box
to show their relative appearance, positioning, and sizing.
The query processor interprets this box as a query predicate
which constrains n-tuples of VEs to those n-tuples that are
visually similar to the arrangement in the box (where n is
the number of VEs placed in the box).

3.1 Visual Image Queries

In general, predicates are formed by placing values (alpha-
numeric or image) inside the entities or attributes for which
they are intended to match. A comparison operator (such as
=, >, and <) may be entered to specify particular types of
comparisons. When a value is entered into an attribute,
entity, or visual box without an explicit comparator, the
system defaults the comparison to SIMILAR_TO.

In Fig. 7, the desired similarity is based on the shape
of the tumor and its spatial relationship with the lateral
ventricle, as specified by shape and spatial relationship

visual entity (VE) box

attributes. An exact match is desired for the patient ID, so
an “=" is explicitly entered in the id attribute, while the VE
box arrangement of a brain, lateral ventricle, and tumor
implies a similarity comparison.

When the visual query is executed, the features of the
visual entities in the query are extracted and compared
based on the indicated attributes. The user can specify other
similarity measures by opening a menu that describes other
descriptors, such as size and roundness for the shape cate-
gory, location for the distance category, angle of coverage
for the nearness category, etc. Otherwise, the object match-
ing policies in the user model are used as the default. The
system can engage in a dialog with the user in cases where
the visual query input may ambiguously lead to multiple
query statements. '

3.2 Temporal Queries

Our visual query language also supports querying of
stream entities. Based on the proposed stream construct
previously defined, our approach to querying this form
of data corresponds directly to the user’s perception
of that data—as a sequence of events or data points in
time, which we represent in our system as a temporal de-
scriptive pattern.
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Fig. 8. Visual query expression for Query 2.

Fig. 9. Visual query expression for Query 3.

Streams are drawn as a sequence of stream elements, en-
closed by an overall stream box. Ellipses may be added in
between actual stream element boxes to show that addi-
tional stream elements may exist. Time flows from left to
right in this representation, so the leftmost box within a
stream represents the first element of the stream, the right-
most box represents the last element, etc.

If a predicate or filter is applicable to only one element
(i-e., just the first element, last element, etc.), the predicate is
attached only to that element’s box. If the filter is intended
for a range of elements, then the predicate is attached to the
set of ellipses which corresponds to that range of elements.
Finally, if a predicate or filter should be applied to all ele-
ments in that stream, it is attached not to an individual
stream element, but to the overall stream box. The user can
edit the contents of the stream box (i.e., arrange where el-
lipses appear, determine how many element boxes are
within the stream, add numeric time Constramts, etc.) to
suit the needs of the query.

Tumor size change after treatment (specified by date)
can also be represented by a stream of MR images with time
durations (Fig. 8). Using our proposed knowledge-based
query processing technique, we are able to retrieve an ap-
proximately matched sequence in the image database.

Fig. 9 illustrates a sample stream query. The query com-
bines elements from our previous PICQUERY+ work with

eline with ihe indicated time duirations.

. Cerebral
Neoplasm

1

has

 examination.”

iy

Lesion

@

Lesion State

the new visual language. The predicate (size change <
-50 percent)in Fig. 9 is attached to the Lesion box, and so
must be true for all Lesion States within the stream. The
predicates in Fig. 8 are VE boxes representing individual
elements of the Tumor Process stream, and are applied to
the stream elements whose time stamps fall within the
specified ranges above the VE boxes. Solving this query
involves translating the visual query into an algebraic form
(Section 4), which can then be solved by our proposed
knowledge-based query processor.

Attributes such as size change may also be queried on
a conceptual level (i.e., size change is stable or shows
little change) if such concepts are specified in the
knowledge base in terms of actual values or value
ranges.

To express a sophisticated predicate that compares mul-
tiple stream elements using different conditions over time,
internal boxes of the stream notation are used to literally
“draw” the way the stream is expected to change. The first
and last boxes within a stream always represent its first
and last elements, while any boxes placed between the
first and last elements may stand for any element of the
stream (including the first and last elements, if they satisfy
the constraints).
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Fig. 10. Visual query expression for Query 4.

Specifying the change in size is done by specifying
the desired range on the size change attribute,” as seen in
Fig. 10. To express the time constraints, we call upon the
built-in time attribute of the Lesion States: We assign, to
one box, the constraint that its time stamp must be within
three months of the date of the patient’s thermal ablation
therapy. The inclusion of Patient assures that the thermal
ablation treatments and lesions that are linked all belong to
the same patient; without the links provided by patient,
any thermal ablation treatment may be matched with the
lesion, regardless of their respective patients.

There is no need for an additional time predicate for the
second box—by its position, it is implicitly expected to occur
after any elements that satisfy the first box. Thus, only the size
change > 0 is required; the condition that this growth pat-
tern occurs after the three-month period is already implied
by the positioning of the second box to the right of the first
one. The time constraint is therefore translated from an al-
phanumeric predicate (such as “time < date + 3 months”) to
a visual one, communicated entirely by the relationship
between the stream elements.

Size change may be queried on a conceptual level (i.e.,
size change is stable or shows little change) if a
knowledge base mapping these concepts to values or value
ranges is a part of the system. Similarly, Fig. 11 presents the
MQuery expression for Query 5.

Queries With Multiple Predicates. A key challenge of
a general query language is to permit the user to ex-
press complex Boolean predicates without detracting from

2. Although this particular value is modeled as an attribute, it may inter-
nally be implemented as a method; however the user does not need to be
aware of this.

the language’s intuitiveness or usability. Query 3 illus-
trates the usability of MQuery’s approach in expressing
multiple predicates. ~

Fig. 9 shows how compatibility with PICQUERY+ is
achieved in MQuery. A PICQUERY+ table is used for
Patient instead of an entity rectangle; this is done because
a table interface permits a clear, line-by-line listing of the
predicates to be applied to its associated entity.

Incremental Queries. MQuery’s integrated modules
make it simple to pass the results of one query into another
in order to allow incremental query specification. This ca-
pability is made possible by integrating output and visuali-
zation as a component of the overall MQuery system. Thus,
MQuery is “aware” of the windows within which query
results are displayed, and can copy or retrieve the objects
from those windows. ’

QUERY 6. What are the volumes of the tumors that were retrieved
in the previous query?

Fig. 12 presents the MQuery expression for Query 6.
Query results in other windows are reused in new que-
ries by using copy-paste or drag-and-drop. The opera-
tion is analogous to query construction, where objects
from a schema window are copied then pasted into a
query window. ‘

As can be seen in the figure, nested queries are achieved
by replacing the contents of an entity’s predicate box with
one or more specific entity occurrences, thus naturally ex-
tending the more familiar functionality of placing an al-
phanumeric constant or comparison in an attribute’s box.
Fig. 12 is particularly interesting because it shows how IVEs
can also be used in the same manner; note the multiple
Lesion State objects inside the predicate box, indicating
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Fig. 11. Visual query expression for Query 5.

a set of Lesion States that have been copied from query
results presumably on display elsewhere on the screen.

MQuery is implemented internally as a hierarchical data
structure where each node represents a predicate or opera-
tion, along with its parameters or arguments. Then this in-
ternal representation is translated into KSTL as discussed in
the following section.

4 KNOWLEDGE-BASED SPATIAL AND TEMPORAL
QuUERY LANGUAGE (KSTL)

To process an MQuery expression, we need to translate it
into a statement in the Knowledge-Based Spatial and Tem-
poral Query Language (KSTL). KSTL is an object-oriented
query language supporting conceptual, spatial, temporal,
evolutionary, and stream constructs appearing in MQuery.
To leverage on available commercial technology, our KSTL
can be extended from ODMG’s OQL [5] via methods, func-
tions, and operators as discussed in the following.

4.1 Attribute with Conceptual Terms and
Approximate Values

We use methods IS and approximate as constructs for con-

ceptual terms and approximate values as shown in the fol-

lowing example.

Lesion State

Fig. 12. Incremental query for Query 6.

QUERY 7. “Find images with ‘large’-sized tumors for patient ap-
proximately 35 years old.”

The corresponding KSTL is:

SELECT p.tumor.image

FROM Patients p

WHERE p.tumor.size.IS(”large”) AND
p.age.approximate (35)

The set of frequently used conceptual terms for the at-
tribute set is defined by domain experts. The approximated
value for an attribute is transformed into value range(s)
based on the knowledge bases which is user- and context-
sensitive [6], [24].

4.2 Spatial Relationships with Semantic Terms

KSTL uses the method srWith to represent spatial relation-
ships between two objects. The spatial relationships are
expressed by spatial features with semantic terms. Using
the IS method, such spatial relationships can thus be que-
ried as follows:

QUERY 8. “Retrieve all images with tumors nearby frontal lobe
that is invading the lateral ventricle.”

The corresponding KSTL is:

SELECT t.image

FROM Tumor t, Lateral Ventricles 1,
Frontal Lobes £ :
WHERE t.srWith(l).IS(“invading”) AN

t.srWith(f) .IS(“nearby”)
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To process the query, the semantic terms nearby and in-
vading are translated into specific value ranges of spatial
relationship features from the TAHs [6], [24].

4.3 Object Similarity

The operator “similar-to based-on” clause can be used to
find the set of objects similar to the target object. The object
similarity is based on comparing the values of the specified
features. Based on the knowledge base as well as the user
type and target attribute values, the similar-to operator
translates the specific attributes into the value ranges ac-

cording to the based_on clause in the query [6], [24]. The -

answers may be ranked according to certain nearness
measures (e.g., mean square error). For example, the KSTL
for Query 1 is:

SELECT tl.image
FROM Tumors tl, t2
WHERE tl.image similar_to t2.image

[t2.image.ON_THE_sCREEN]
based_on t2.location, t2.size

ON_THE_SCREEN is a method to select the image on the
screen for processing. The similarity of images in the query
is based on the location and size of tumors as specified in
the query.

4.4 Evolutionary Objects
The class changes for an object in its lifespan can be:

1) changing to another class (i.e.,, EVOLVE_TO),

2) merging with other object(s) into a new class (ie.,
FUSED_FROM),

3) splitting into objects of (different) classes (ie.,
SPLIT_INTO)[11].

In KSTL, the evolutionary constructs EVOLVE_TO,
FUSED_FROM, and SPLIT_INTO are provided as methods
to express object evolution. For example, Query 5 can be
expressed by KSTL as follows:

SELECT mi.image, ma.image

FROM Microlesions mi, MacroLesions ma,
Lateralventricles 1lvl, 1v2

WHERE mi.evolve_to(ma) AND

lvl.srWith(mi) .IS(”nearby”) AND
Interval (mi, ma).length.
approximate(#1 year”) AND
mi.diameter.approximate(9) AND
ma.srwith(1lv2).IS(~“Invades”) AND
ma.diameter >= 25mm AND
lvl.patient = lv2.patient

In this query, the “evolve_to” construct is used to de-
scribe the tumor size as well as the spatial relationships
between the tumor and lateral ventricle before and after
the evolution.

4.5 Stream Behavior

A stream [14] is a sequence of objects. Any subset of neigh-
boring objects in the sequence is called its substream. Ob-
jects in a stream are called snapshot (objects). A stream can
be queried based on the feature values of individual

snapshot objects or on the trend of feature value changes of
consecutive snapshots. Most temporal database [36] and
temporal relationship research [2], [27] has focused on the
relationships among snapshots that satisfy a given set of
predicates. However, constructs are needed to query
streams themselves. Our extension allows streams and their
substreams to be referenced in the query to specify con-
straints on all the snapshots.

In querying the stream characteristics, the predicates can
be snapshot predicates and stream predicates. A snapshot
predicate has snapshot object(s) as its operand and returns
true if the snapshot satisfies the predicate. A stream predi-
cate has stream(s) as its operands and returns frue if the
trend of feature value changes within snapshots satisfies
the predicate.

Temporal logic has been successfully used as the expres-
sive formalism to specify sophisticated temporal properties
in concurrent programming [33] where various constructs
have been proposed to capture temporal conditions. Tem-
poral logic has also been used in temporal databases to
provide the formalism for its language construction [20],
[18], [4], [16] and has been shown to be fully expressive of
queries in the historical data model [20], [18]. Since query-
ing data in temporal databases mostly only requires ex-
pressing temporal constraints on existing data, the required
constructs are simpler thant that of concurrent program-
ming. Temporal database works such as [20], [18], [4], [16]
integrate temporal logic into their languages. Their integra-
tion of temporal logic is not tightly linked with the query
processing languages. On the other hand, KSTL, extended
from a standard object-oriented query language, tightly
integrates temporal logic semantics into its language con-
structs and thus can be directly processed by an object-
oriented query processor. Further, in our system, the con-
straints on streams and snapshots are specified in the visual
language (MQuery) and the (temporal) constraints are
automatically translated into KSTL for query processing.
The correctness of this translation via temporal logic will be
shown in Section 4.5.1.

To specify the temporal property of streams, substreams,
and/or the contained snapshot via temporal logic, two mo-
dal operators Op and [p are introduced to add to a snap-
shot predicate p. Op is a new predicate which evaluates p
within a stream s. Op returns true if the current snapshot in
s or a snapshot after the current snapshot satisfies p. (lp is
another new predicate which returns true if all the snap-
shots after the current one (including the current snapshot)
in s satisfy p. Complex temporal constraints can be ex-
pressed by combining different snapshot predicates and ¢
and/or (J operators. Predicate Op and Clp not only evaluate
p on the current snapshot but also on other snapshots in the
stream as well. Combining predicates pyp, (where p; and p,
may contain modal operator < or [J) implies that a par-
ticular snapshot exists in the evaluated stream where all the
snapshots between this particular snapshot and the last
snapshot in the evaluated stream satisfy p. We call p, Op,
and (p as simple temporal logic expressions, and expressions
composed from simple temporal logic expressions as com-
plex temporal logic expressions. For example,
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always p == [Jp (which implies that p hold all the time)

p until g == [lpg (which implies that p hold all time until
the time g holds) :

p since g == (& —¢q)g(p) (which implies that at the be-
ginning q is false, and right after ¢ turn true p holds
all the time)

Current research on incorporating temporal logic into

database query languages [34], [22] is mostly based on SQL
which cannot provide as rich an extension on data types
and variable binding as that of ODMG’s OQL. In addition,
these existing languages cannot express the semantics of
the modal operators ¢ and [J in temporal logic. For exam-
ple, to express the temporal expression (pg in [34], [22], the
beginning and ending snapshots satisfying [lp are not
bound to any variable. Thus, the language cannot specify
the interrelationship of snapshots occurring in different
predicates which causes unclear variable binding. On the
other hand, KSTL provides clear variable binding and can
represent most temporal logic expressions. As a result,
KSTL can be used as the processing language for MQuery.

Let p(x) be a snapshot predicate expressed in KSTL.
Thus, p(x) corresponds to the predicate p in previous dis-
cussion and Op and [Jp are its two variations in temporal
logic. S is a set of streams to be evaluated against temporal
logic expressions for retrieving streams that satisfy the
temporal logic expression. Note that the following OQL
commands are useful for stream querying:

e For evaluating ¢p on a set of stream S, we can use the
in operator in OQL as an existing construct:

FROM S as s, x in s WHERE p(x)

Note that S is a set of streams. Thus s is bound to a
stream in each iteration. Since the stream referred by s
is also a collection of objects, it can appear in the
FROM clause with x bound to a member object in s.

o For expressing the expression [Jp, we can use the
forall expression (an existing construct in OQL) as:

FROM S as s WHERE forall x in s: p(x)

e For expressing any ordered collection s, the OQL-
supported functions first(s) and last(s) can be used
to return the first and last object in the ordered
collection.

In addition to these existing constructs in OQL, we need
two new functions: next and Allsubstreams for stream que-
rying as follows:

o next: For any snapshot object x, x.next returns the next
object of x in the same stream.

o AllSubStream(s). For a stream s, AllSubStream(s) re-
turns a collection containing all the substreams in the
stream s.

These two extensions support complex temporal logic
expressions. x.next allows us to express the concatenation of
two neighboring simple temporal logic expressions. The
function AllSubStream(s) generates all the substreams in S
and this set allows us to bind variable(s) to any candidate

substream. The constraints on the substreams are then ex-
pressed via the bound variable(s) in the WHERE clause.

The following translation between the temporal logic
expressions and KSTL statements illustrate how the con-
structs in KSTL provide querying semantics on streams
based on temporal logic semantics.®

Op==FROM S ass, xins
WHERE p(x)

[p ==FROM S as s
WHERE forall x in s: p(x)

OpOg==FROM Sass, xins, yin S
WHERE p(x), q(y), x.before(y)

Oplg ==FROM S as s, x in s, AllSubStream(s) as z
WHERE p(x), forall y in z: g(y), x.next == first(z)

(pOq ==FROM S as s, x in s, AllSubStream(s) as z
WHERE forall y in z: p(y), first(z) == first(s), p(x),
z.before(x)

[(OpOg ==FROM S as s, AllSubStream(s) as z1, z2
WHERE forall y1 in z: p(y1), forall y2 in z: g(y2),
first(z1) == firsi(s), last(z2) == last(s),
last(z1).next == first(z2)

By extending OQL with the two additional functions
based on temporal logic [33], [18], KSTL can express com-
plex temporal constraints. KSTL provides temporal con-
straint expression with clearer variable binding as com-
pared with other extended temporal query languages [34],
[22]. The extended temporal querying semantics allows
KSTL to specify complex stream queries and served as the
processing language for MQuery.

4.5.1 Translation of MQuery info KSTL

In this section, we shall show that the visually expressed
MQuery predicates can be textually represented by KSTL.
There exists a direct correspondence between a MQuery
expression and a temporal logic expression. Since a tempo-
ral logic expression can be translated into a KSTL state-
ment, an MQuery expression can thus be translated into a
KSTL statement.

Let's now explain the one-to-one correspondence be-
tween a MQuery statement and a temporal logic expres-
sion. In MQuery, a snapshot is represented as a box (called
a snapshot box), the constraints attached to this snapshot box
correspond to a snapshot predicate p in the temporal logic
expression. A box contains a stream or substream is called a
stream box. In MQuery, two snapshot boxes (whose predi-
cates are represented as p and 4) appearing in the same
stream box can be expressed as a temporal logic expression
either as Opg, Cpg, pOy, or pg depending on the position
of the “...” symbol(s) between the snapshots in the stream
boxes (for example, see Fig. 8).

In MQuery, the temporal logic predicate for a stream/
substream box can either be in the form of p, $p, or Op

3. The translation algorithmn is provided in the Appendix.
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depending on the constraints specified on this substream.
For example, a substream whose duration lasts longer than
2 years can be expressed in the form of p or Op. However,
requiring the size of every lesion contained in a lesion sub-
stream to continuously decrease requires a temporal logic
expression of the form like [lp, since we require the size of
every preceding lesion to be larger than its successor. In this
case, the predicate p need to specify the condition that “the
size of a preceding lesion larger than that of its succeeding
one” and the [] operator ensures that this condition is satis-
fied by every snapshot in the stream. Thus, the snapshot and
stream box in MQuery both have their own temporal logic
predicates and can be translated into the appropriate KSTL
statement.

For the constraint boxes which attach to more than
one box in MQuery, they can be translated into the KSTL
predicates using the different cases distinguished in the
Appendix.

Using temporal logic as the bridge, the visual MQuery
statement can be translated into KSTL statements for proc-
essing. In the followings, we shall provide two examples to
illustrate this translation.

QUERY 2. “Retrieve streams that have four specific snapshots and
the corresponding time periods between the snapshots as
shown in Fig. 8.” The following is the translated KSTL:

SELECT p,
FROM

x1l, x2, x3, x4
Patients p, .p.tumorSequence
as 8, x1 in 8, x2 in s,
x3 in s, x4 in s,
TumorImages tl, t2,
t3, t4
p.treatment.before(xl) AND
p.race == ‘African
.American’ AND
x1 similar to tl
[tl.imageID=/001"]
based_on tl.tumor.size,
tl.tumor.location AND
x2 similar_to t2
[t2.imageID=/002"]
based_on Tl1l.tumor.size,
tl.tumor.location AND
x3 similar to t3
[t3.imageID=/003"]
based_on tl.tumor.size,
tl.tumor.location AND
%x3 similar_to t4
[t4.imageID="004"]
based_on tl.tumor.size,
tl.tumor.location AND
INTERVAL[x1, x2].
approximate (#2 months”)
AND
INTERVAL[x2,x3].
approximate (#1 month”)
AND
INTERVATL [%3, 4] .
approximate (“2 weeks”)

WHERE

Here, the method tumorSequence returns only one
tumor sequence for each patient. If the method tumor-
Sequence can return more than one sequence, addi-
tional variables should be used to ensure that the vari-
ables x1, x2, =x3, and x4 refer to the same single

stream in the query. Further query optimization is left to
the OQL query optimizer.

So far, we have limited the predicate p as a snapshot
predicate. However, p can be generalized to a stream predi-
cate. For example, let s be a tumor size stream. p(s) denotes
a stream predicate which describes whether the “size
changing” pattern of s is similar to the pattern of a particular
given target stream ¢. Then Op(s) is a new predicate which
is evaluated as true if there exists a substream in s whose
“size changing” pattern similar to that of the target stream
t. Due to the unclear semantics of [J p(s), this generalization
is limited to <p(s). The function AllSubStreams in KSTL re-
turns a set containing all the candidate substreams. This
returned set is used in the FROM clause of a KSTL state-
ment to bind the variable stream s. The bound variable s is
used in the WHERE clause to express the constraints p(s).
In MQuery, this corresponds to the constraint boxes at-
tached to a substream box or a VE (sub)stream box (see
Query 4 in Fig. 10). The following is the corresponding
KSTL for Query 4:

SELECT P, S

FROM Patient p, p.tumorStream s,
AllSubStream(s) zl, z2
WHERE forall x1 in zl: x1.sizechange

< 0 AND forall x2 in z2:
x2.sizechange > 0 AND
zl.length < “#3 month” AND
last(zl) .next = first(z2) AND
p.thermalAblation.before(z1)

last and first are functions in OQL which retrieve
the first and last element in an ordered collection. next is a
method in KSTL which retrieves the immediate down-
stream snapshot of the current snapshot. Thermal ablation
is a type of therapy for treating tumors and the method
thermalablation returns the patient’s treatment records.

Predicates can be used to express constraints on sub-
streams as long as the corresponding methods are available
to evaluate against streams. Since not all the substreams in
the AllSubStream(s) need to be examined to evaluate the
query, a query processor should optimize the evaluation of
the function AllSubStream(s). This optimization can be ac-
complished by using a filtering process such as the optimi-
zation technique used in the string and list retrieval [35].
For example, if the beginning or ending snapshot is re-
quired to satisfy certain constraints, only those substreams
that begin or end with snapshots satisfying the constraints
are examined. Due to its high execution cost, examining all
candidate substreams in the AllSubStream(s set should al-
ways be a last resort for processing the stream predicate.

5 QUERY PROCESSING

Knowledge-based query answering consists of the follow-
ing three phases (Fig. 13).

Query Analysis and Feature Selection. Based on the
target image, query context, and user class, the system
analyzes and selects the relevant features and spatial rela-
tionships for knowledge-based content matching. A user
model will be consulted to derive the matching and relaxa-
tion policy.
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Fig. 13. The flow diagram of knowledge-based query processing.

Knowledge-Based Content Matching. Spatial relation-
ship -and conceptual terms in the query are used to select
the appropriate TAH from the TAH directory for query
modification. For queries with similar-to operators, features
and spatial relationships of the target images and user class
are used for selecting the TAH(s). For queries with semantic

spatial relationship operators and/or conceptual terms, the .

labels on the TAH node are used for matching the concep-
tual terms. The images under the TAH nodes are the images
satisfied by the conceptual term (see Fig. 3). After this
phase, the knowledge required for resolving the conceptual
terms (e.g., TAHs and matched user model) are attached
with the query.

Query Execution and Relaxation. Query conditions are
modified based on the value ranges of the matched TAH
nodes for semantic spatial relationship operators and con-
ceptual terms. For the similar-to operator, the selected TAHs

are traversed until a TAH node is reached whose value
range is closest to the target image (see Fig. 3). The value
ranges in the parent TAH nodes of the matched TAH node
can be used to replace the similar-to conditions. Thus, the
query is transformed into a regular query (i.e., without
containing conceptual terms) and can be sent to the com-
mercially available OQL query processor to retrieve an-
swers where the OQL query optimizer will optimize the
queries since, after the query modification, the proposed
OQL extention does not violate the OQL syntax and its de-
clarative nature. This process of relaxation by query modifi-
cation may be repeated until the set of returned answers
match the user requirements. (e.g., number of similar im-
ages, relaxation error, efc. [6]). The returned images can be
ranked based on a specific measure (e.g., their relaxation
error (RE) with the target image) [7].



CHU ET AL.: KNOWLEDGE-BASED IMAGE RETRIEVAL WITH SPATIAL AND TEMPORAL CONSTRUCTS

885

-

streams

database schema

visual
entities

image
features

model-guided
segmentation, feature
and content extraction

Fig. 14. Data flow and system architecture.

6 DATA FLOW AND SYSTEM ARCHITECTURE

Fig. 14 illustrates the overall flow and key elements of our
proposed system. Our raw data set will be images stored in
the UCLA Picture Archiving and Communication System
[25]. These images will be sent through segmentation rou-
tines [28] to generate contours of objects of interest in the
images. Then, methods in the Feature and Content Layer
extract image features from these contours and spatial rela-
tionships. These features are then mapped into visual enti-
ties and spatial relationships at the Schema Layer, for use
by KSTL and our visual query language. In addition, the
features are classified by the MDISC clustering algorithm to
automatically produce the Type Abstraction Hierarchies
required for knowledge-based query answering.

At query time, the visual query language interprets a
user’s query input on the screen (physical positions and
other pictorial information). Based on query notation and
the database schema, the interpreter maps the user’s input
into appropriate query conditions. The translated query
conditions and terms are used to formulate KSTL state-
ments. The knowledge-based query processing parses the
KSTL statement then uses Type Abstraction Hierarchies for
approximate matching of features and content to derive
answers. The query result is returned back to the graphical
user interface for presentation and visualization.

7 COMPARISON WITH OTHER ON-GOING RESEARCH

Pixel matching methods employed for content-based re-
trieval are time-consuming and have limited practical use
since little of the image object semantics is explicitly mod-
eled. QBIC [32] uses global shape features such as area and
circularity to retrieve similarly shaped objects. However,
due to the limited precision of global shape features [26],
such an approach has limited expressiveness for answering
queries with conceptual terms and predicates. Thus, we use

knowledge
representation for
features and content

TAHs

feature
classification
(MDISC)

a decomposition approach to describe the specific shape
features of interested objects.

Statistical approaches can be used to retrieve similar im-
ages by relaxing a certain percentage of the standard devia-
tion of the feature values (e.g., VIMS [3]), However, the
same amount of relaxation is applied throughout the distri-
bution, and thus is insensitive to the position of the oper-
ating point. Moreover, many image features are based on
multiple attributes. Using standard deviation to retrieve
similar feature values lacks the consideration of correlation
among different attributes.

Retrieving image by features has been studied recently
[11], [1), [8]. However, matching exact features is difficult.
Therefore, it is essential to use a cooperative answering
technique [7] to provide approximate matching of features.
Previously proposed cooperative database systems used the
rule based approach [9], and are therefore not scalable. In
our approach, knowledge is structurally represented at dif-
ferent levels of abstraction by the Type Abstraction Hierar-
chy and can be automatically generated from relational
databases for both numerical and non-numerical data. Our
knowledge acquisition algorithm uses the technique of un-
supervised conceptual clustering [31], [7]. In order to provide
spatial relaxations of image features, we have extended this
knowledge representation into spatial domains.

In previous cooperative systems, no relaxation control
facilities were provided for the relaxation process nor the
quality of the answer. Our system provides a cost model to
optimize the relaxation and includes the handling of feature
relaxation control for image data.

Current research in multimedia databases tackles indi-
vidual components of the overall multimedia database
problem. Models exist for representing image, sound, or
video data [21], and query languages for retrieving images
by content have also been developed [32]. Modeling and
query languages over conventional alphanumeric databases
has also been progressing [30]. However, to support the
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multimedia medical database requirements of our system,
we need to support combined alphanumeric and multime-
dia requirements. The visual query language, MQuery,
supports knowledge-based temporal and spatial query an-
swering. Other visual query languages [12], [31] can only
support a subset of the requirements for the visual, multi-
media query language provided by the MQuery language.
Many existing works also model and query multimedia
information [4], [16]. Similarly to [4], temporal logic is used
as the formalism in our work to combine the visual lan-
guage and its processing. Due to the fact that KSTL is ex-
tended from ODMG’s OQL, our processing language is
more directly compatible with commercially available da-
tabase engine than those in [4], [16]. Also, predicates in
MQuery (as well as KSTL) allow us to specify useful stream
behaviors in querying medical image sequences (e.g., tu-
mor size growing pattern).

Medical doctors continue to prefer highly-customized
user interfaces that are very closely linked to specific appli-
cation domains. However, limited usability testing was per-
formed and when given enough training, doctors were able
to use MQuery for simple database tasks. The only current
operating alternative continues to be text-, mainframe-, and
dumb terminal-based, thus making any direct comparisons
somewhat awkward to make. Subjectively, however, the
visual, highly-graphical approach was preferred over the
above alternatives.

8 CONCLUSIONS

In this paper, we presented techniques for image retrieval
by feature and content with temporal, spatial, and concep-
tual constructs. Innovative techniques include:

1) a four-layered integrated spatial and temporal data
model that characterizes low-level image features
(such as raw image data, and contours), abstract se-
mantic image representations (including image ob-
jects and streams), and generic domain knowledge;

2) automatic feature analysis and classification for
knowledge-based query answering;

3) development of a visual query language, MQuery,
which is used to formulate queries with temporal,
spatial, and conceptual image predicates; and

4) techniques for translating the visual query language
into a textual query language, and Knowledge-Based
Spatial Temporal Query Language (KSTL) which ex-
tends ODMG’s OQL query language.

We have implemented a Knowledge-Based Medical
Database System (KMeD) at UCLA; and the staff in
the medical school is currently evaluating its function-
ality and effectiveness. The evaluation feedback will be
useful in improving the system and providing further re-
search directions.

APPENDIX

THE CONVERSION OF TEMPORAL LOGIC EXPRESSION
TO KSTL STATEMENTS

In this Appendix, we shall show how a temporal logic
expression can be translated into a KSTL statement
with a FROM and WHERE clause. Let us first define a few
definitions.

A pure snapshot predicate is a snapshot predicate that does
not contain any modal operators. A simple temporal logic
predicate is a pure snapshot predicate with no more than one
modal operator <& or . Let the temporal logic expression
be P = p; ... p, where p, 1 <1 <5 are simple temporal logic
expressions. Let S be all the streams available for selection.
During the conversion, the temporal logic expression P is
translated into a KSTL statement with a FROM and
WHERE clause. Since the temporal logic expression selects
streams from S, the initial FROM clause is “FROM S as s.”

All individual p;, which expresses a temporal constraint
on a snapshot or a substream, can be translated into KSTL
predicates in the WHERE clause as follows:

case1: If p, is a pure snapshot predicate or a snapshot
predicate with a modal operator <, then the
statement “x; in s” is added to the FROM clause
to bind a snapshot in s to x;. The statement
“pdx)” is added to the WHERE clause to express
the constraint on the candidate snapshot. “p,(x)”
is the corresponding snapshot predicate of p;
expressed in KSTL.

If p; is a snapshot predicate with a modal op-
erator [, then the statement “AllSubStream(s) as
z;” is added to the FROM clause to bind a can-
didate substream to z; The statement “forall
y;in z; : py)” is added to the WHERE clause to
express the constraint on the candidate sub-
stream. “p{y)” is the corresponding snapshot
predicate of p; expressed in KSTL.

case 2:

The temporal relationship between the neighboring sim-
ple temporal logic expressions p; and p;q (1 <i<n —1)
should now be added to the WHERE clause. For any two
neighboring simple temporal logic expressions p; p;q (1 <i <
n —1), constraints on their implied temporal relationship
are added to the WHERE clause as follows:

case 1: When p; is a pure snapshot predicate or a snap-
shot predicate with a ¢ modal operator and pji;
is a pure snapshot predicate, the snapshots satis-
fying p; and p;y; are immediate neighbors in the
stream. Thus, the statement “x;next == x,,” is
added to the WHERE clause to specify their
temporal relationship.

When p; is a pure snapshot predicate or a snap-
shot predicate with a & modal operator and p;,;
is a snapshot predicate with a & modal operator,
the snapshot satisfying p; appears before the snap-
shot satisfying p;,; in the stream. The statement
“x;.before(x;1)” is added to the WHERE clause to
specify their temporal relationship.

case 2:
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When p; is a pure snapshot predicate or a snap-
shot predicate with a & modal operator and p,,,
is snapshot predicate with a [] modal operator,
the snapshot satisfying p; and the first snapshot
of the substream satisfying p;,,; are immediate
neighbors in the stream. The statement “x;next
== firsk(z;;,)" is added to the WHERE clause to
specify their temporal relationship.

"When p; is a snapshot predicate with a [ mo-
dal operator and p;,; is a pure snapshot predi-
cate, the last snapshot of the substream satisfy-
ing p; and the snapshot satisfying p;,; are imme-
diate neighbors in the stream. The statement
“last(z;).next == x;,1” is added to the WHERE
clause to specify their temporal relationship.
When p; is a snapshot predicatewith a [0 modal
operator and p,,; is a snapshot predicate with a

case 3:

case 4:

case 5:

<& modal operator, the last snapshot of the sub-

stream satisfying p; occurs before the snapshot
satisfying p;,; in the stream. The statement
“last(z;).before(x;,1)” is added to the WHERE
clause to specify their temporal relationship.
When p;, is a snapshot predicatewith a [J modal
operator and p,,; is a snapshot predicate with a
[0 modal operator, the last snapshot of the sub-
stream satisfying p; and the first snapshot of the
substream satisfying p;; are immediate neigh-
bors in the stream. The statement “last(z;).next
== first((z;11)” is addedto the WHERE clause to
specify their temporal relationship.

case 6:

Note that p; and p, express the boundary conditions that
a selected stream should satisfy. These boundary conditions
should also be translated into KSTL as follows:

When p; is a snapshot predicate with a [] modal
operator, the statement “first(z;) == first(s)” is
added to the WHERE clause to specify the be-
ginning condition of the stream s.

When p; is a pure snapshot predicate, the state-
ment “x; == first(s)” is added to the WHERE
clause to specify the beginning condition of the
stream s.

When p, is a pure snapshot predicate or snap-
shot predicate with a ¢ modal operator, the
statement “x,, == last(s)” is added to the WHERE
clause to specify the ending condition of the
stream s.

When p,, is a snapshot predicate with a < modal
operator, the statement “last(y,) == last(s)” is
added to the WHERE clause to specify the end-
ing condition of the stream s.

case 1:

case 2:

case 3:

case 4:

Finally, relationships between the neighboring pairs of
x; s (e.g., INTERVAL[x,, x].approximate(T) where T is an
interval length specified by users) are added to the WHERE
clause. Note that these relationships cannot be expressed
inside a temporal logic expression due to unclear variable
binding in a temporal logic expression.

ACKNOWLEDGMENTS
This work is supported, in part, by the National Science

. Foundation under Scientific Database Initiative Grant No.

IRI9116849 and, in part, by Advanced Research Projects
Agency Contract No. F30602-94-C-0207.

The development of KMeD is a team effort. We thank the
development and implementation efforts of J. Dionisio for
the MQuery language and the domain knowledge consul-
tation from Dr. D.R. Aberle of the UCLA Radiological Sci-
ence Department.

REFERENCES

[1] M. Arya, W. Cody, C. Faloutsos, J. Richardson, and A. Toga,
“QBISM: A Prototype 3D Medical Image Database System,”
Bull. Technical Committee Data Eng., vol. 16, no. 1, pp. 38-42,
Mar. 1993.

[2] J.E Allen, “Maintaining Knowledge About Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, Nov. 1983.

[3] J.R.Bach, S. Paul, and R. Jain, “A Visual Information Management
System for the Interactive Retrieval of Faces,” IEEE Trans. Knowl-
edge and Data Eng., Oct. 1993.

[4] A.D. Bimbo, E. Vicario, and D. Zingoni, “Symbolic Description
and Visual Querying of Image Sequences Using Spatial-Temporal
Logic,” IEEE Trans. Knowledge and Data Eng., Aug. 1995.

[5] “The Object Database Standard: ODMG-93 (Release 1.2),” R.G.G.
Cattell, ed., Morgan Kaufmann, 1996.

[6] W.W. Chu and Q. Chen, “A Structured Approach for Cooperative
Query Answering,” IEEE Trans. Knowledge and Data Eng., vol. 6,
no. 5, Oct. 1994.

[7] WW. Chu, K. Chiang, C.C. Hsu, and H. Yau, “An Error-Based
Conceptual Clustering Method for Providing Approximate Query
Answers,” Comm. ACM, Virtual Extension Ed., Dec. 1996, url:
http://www.acm.org/cacm/extension

[8] W.W. Chu, AF. Cdrdenas, and RK. Taira, “KMeD: A Knowledge-
Based Multimedia Medical Distributed Database System,” Infor-
mation Systems, vol. 20, no. 2, pp. 75-96, 1995.

[9] F. Cuppens and R. Demolombe, “How to Recognize Interesting .
Topics to Provide Cooperative Answering,” Information Systems,
vol. 14, no. 2, pp. 163-173, 1989.

[10] A.F. Cdrdenas, LT. leong, RK. Taira et al., “The Knowledge-Based
Object-Oriented PICQUERY+ Language,” IEEE Trans. Knowledge
and Data Eng., vol. 5, no. 4, pp. 644657, Aug. 1993.

[11] WW. Chu, T. Ieong, and R. Taira, “A Semantic Modeling Ap-
proach for Image Retrieval by Content,” VLDB ], vol. 3, no. 4,
445-478, Oct. 1994.

[12] LF. Cruz, “Doodle,” Proc. SIGMOD, 1992.

[13] SK. Chang, C.W. Yan, and D.C. Dimitroff, “An Intelligent Image
Database System,” IEEE Trans. Software Eng., May 1988.

[14] J.D.N. Dionisio and A.F. Cardenas, “MQuery: A Visual Query
Language for Multimedia, Timeline, and Simulation Data,” J.
Visual Languages and Computing, special issue on image and
video databases: visual browsing, querying, and retrieval,
vol. 7, no. 4, pp. 377-401, 1996.

[15] J.D.N. Dionisio and A.F. Cérdenas, “A Unified Data Model for
Representing Multimedia, Timeline, and Simulation Data,” IEEE
Trans. Knowledge and Data Eng., vol. 10, no. 5, pp. 746-767,
Sept. 1998.

[16] Y.E Day, S. Dagtas, and M. Iino, “Object-Oriented Conceptual
Modeling of Video Data,” Proc. IEEE Int’l Conf. Data Eng., 1995.

[17] D. Daneels, D. Van Campenhout et al., “Interactive Outlining: An
Improved Approach Using Active Contours,” Image and Video
Storage and Retrieval, SPIE, 1993.

[18] E.A. Emerson, “Temporal and Modal Logic,” Handbook of Theoreti-
cal Computer Science, vol. B, MIT Press/Elsevier, 1990.

[19] N. Roussopoulos, C. Faloutsos, and T.K. Sellis, “An Efficient Pic-
torial Database System for PSQL,” IEEE Trans. Software Eng., vol.
14, no. 5, pp. 639-650, May 1988. -

[20] D. Gabbay, “The Declarative Past and Imperative Future Tempo-
ral Logic in Specification: Altrincham Workshop,” Lecture Notes
in Computer Science 398, Springer-Verlag, 1989.



888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 1998

[21] S. Gibbs, C. Breiteneder, and D. Tsichritzis, “Data Modeling of
Time-Based Media,” D. Tsichritzis, ed., Visual Objects, Centre Uni-
versitaire d'Informatique, Univ. of Geneva, pp. 1-22, 1993.

[22] D. Gabbay and P. McBrien, “Temporal Logic and Historical Data-
bases,” Proc. Conf. Very Large Data Bases, 1991.

[23] W. Grimson, Object Recognition by Computer: The Role of Geometric
Constraints, MIT Press, 1990.

[24] C.C. Hsu, WW. Chu, and RK. Taira, “A Knowledge-Based Ap-
proach for Retrieving Images by Content,” IEEE Trans. Knowledge
and Data Eng., Aug. 1996.

[25] H.K. Huang and RXK. Taira, “Infrastructure Design of a Picture
Archiving and Communication System,” Am. J. Roentgenology,
vol. 158, pp. 743-749, 1992.

[26] ML.D. Levine, Vision in Man and Machine, McGraw-Hill, 1985.

[27] T. Little and A. Ghafoor, “Interval-Based Conceptual Models for
Time-Dependent Multimedia Data,” IEEE Trans. Knowledge and
Data Eng., Aug. 1993.

[28] B.J. Liu, RXK. Taira, J. Shim, and P. Keaton, “Automatic Segmenta-
tion of Bones from Digital Hand Radiographs,” Proc. SPIE: Medi-
cal Imaging Image Processing, vol. 2,434, pp. 659—669, Feb. 1995.

[29] W.N. Martin and J.K. Aggarwal, “Computer Analysis of Dynamic
Scenes Containing Currilinear Figures,” Pattern Recognition, vol.
11, pp. 169-178, 1979.

[30] L. Mohan and R.L. Kashyap, “A Visual Query Language for
Graphical Interaction with Schema-Intensive Databases,” IEEE
Trans. Knowledge and Data Eng., vol. 5, no. 5, pp. 843-858,
Oct. 1993.

[31] R.S. Michalski and R.E. Stepp, “Learning from Observation: Con-
ceptual Clustering,” Machine Learning, R.S. Michalski, ].G. Car-
bonell, and T.M. Mitchell, eds., vol. 1, Morgan Kaufmann, 1983.

[32] W. Niblack, R. Barber et al., “The QBIC Project: Querying Images
by Content Using Color, Texture, and Shape,” Storage and Retrieval
for Images and Video Databases, SPIE, 1993.

[33] A. Pnueli, “The Temporal Logic of Programs,” Proc. 18th Ann.
IEEE Symp. Foundations of Computer Science, 1977.

[34] J. Richardson, “Supporting Lists in a Data Model (A Timely Ap-
proach),” Proc. ACM SIGMOD, 1992.

[35] B. Subramanian, T.W. Leung, S.L.. Vandenberg, and S.B. Zdonik,
“The Aqua Approach to Querying Lists and Trees in Object-
Oriented Databases,” Proc. IEEE Int’l Conf. Data Eng., 1995.

[36] Temporal Databases, A. Tansel, J. Clifford, 5. Gadia, S. Jajodia,
A. Segev, and R. Snodgrass, eds., Benjamin/Cummings, 1993.

[37] R. Wasserman, R. Acharya et al.,, “Multimodality Tumor Delinea-
tion via Fuzzy Fusion and Deformable Modelling,” Proc. SPIE

Medical Image: Image Processing, 1995.

[38] AJ. Worth, S. Lehar, and D.N. Kennedy, “A Recurrent Coopera-
tive/ Competitive Field for Segmentation of Magnetic Resonance
Brain Images,” IEEE Trans. Knowledge and Data Eng., vol. 4, no. 2,
pp. 156-161, Apr. 1992. .

[39] W.J. Weiland and B. Shneiderman, “A Graphical Query Interface
Based on Aggregation/Generalization Hierarchies,” Information
Systems, 1993.

Wesley W. Chu received his BSE and MSE
degrees from the University of Michigan in 1960
and 1961, respectively, and his PhD from Stan-
ford University in 1966, all in electrical engineer-
ing. He joined the staff of the University of Cali-
fornia, Los Angeles, in 1969, and is now a pro-
fessor of computer science in the Computer
Science Department. He chaired the department
from 1988 to 1991. He is also a consultant to
government agencies and private industries.
From 1964 to 1966, he worked on the design of
large-scale computers at IBM in Menlo Park and San Jose, California.
From 1966 to 1969, he researched computer communications and
distributed databases at Bell Laboratories, Holmdel, New Jersey. He
has authored or co-authored more than 100 articles on information
processing systems and has edited three textbooks on advances in
computer communications, distributed database systems, and distrib-
uted database systems. His cutrent research interests are in the areas

of intelligent information systems and knowledge-based muitimedia
medical information systems. He was the program co-chair of the First
International Conference on Data Engineering and the 12th Interna-
tional Conference on VLDB in 1986. He was an associate editor for
IEEE Transactions on Computers for the field of computer networking
and distributed processing systems (1978-1982) and received a meri-
torious award for his service to the IEEE in 1983. He was the workshop
co~chair of the IEEE First International Workshop on Systems Manage-
ment in April 1993, and received a Certificate of Appreciation award
for his significant service. He is currently a member of the Editorial
Board of the Journal of Very Large Data Bases and an associate
editor for the Journal of Data and Knowledge Engineering. He is a
fellow of the IEEE.

Chih-Cheng Hsu received the doctoral degree
in computer science from University of Califor-
nia, Los Angeles, in 1998. He is currently with the
OODB development group at the IBM Santa Tere-
sa Lab. His research interests are in the fields of
object middleware, distributed query processing,
and knowledge-based multimedia query answering.

' Alfonso F. Cardenas received the BS degree
from San Diego State University, and the MS
and PhD degrees in computer science from the
University of California at Los Angeles in 1969.
He is how a professor in the Computer Science
Department of the School of Engineering and
Applied Sciences at UCLA, and a consultant in
computer science and management for Com-
putomata International Corporation. His major
areas of research interest include database
management, distributed multimedia (text, im-
age/picture, voice) systems, information systems planning and devel-
opment methodologies, software engineering automation, and legal
issues. He has been a consultant to users and vendors of hardware
and software technology. He has served as chair and a member of
organizational and program committees for many conferences, and
has led many seminars and spoken before audiences in various coun-
tries. He is past-president of the Board of Trustees of the Very Large
Data Base Endowment. He has been a member of Review Board of
the National Science Foundation, the National Institutes of Health, and
various other institutions. He has authored numerous articles, and
authored and/or edited three books.

Ricky K. Taira received his BS degree in electri-
cal engineering in 1982 and his PhD in biomedi-
cal physics in 1988, both from the University of
California, Los Angeles. He is currently an asso-
ciate professor in the Department of Radiological
Sciences at UCLA. In 1988, he received the
Sylvia Greenfield Award in Medical Physics from
the UCLA Department of Radiological Sciences,
the Ralph and Marjorie Crump Award from the
Crump Institute for Medical Engineers, the
James T. Case Award from the UCLA Depart-
ment of Radiological Sciences, and the first-place award in the pre-
doctoral student paper competition of the Society of Computer Appli-
cations in Medical Care. His current areas of research include PACS,
visual optimization of medical radiographs image quality evaluation,
and natural language processing. He is currently a member of the
American Association of Physicists’ in Medicine and the Society of
Photo-Optical and Instrumentation Engineers (SPIE).



