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The goal of this paper is to present a critical survey of existing
literature on human and machine recognition of faces. Machine
recognition of faces has several applications, ranging from static
matching of controlled photographs as in mug shots matching
and credit card verification to surveillance video images. Such
applications have different constraints in terms of complexity
of processing requirements and thus present a wide range of
different technical challenges. Over the last 20 years researchers in
psychophysics, neural sciences and engineering, image processing,
analysis and computer vision have investigated a number of issues
related to face recognition by humans and machines. Ongoing
research activities have been given a renewed emphasis over the
last five years. Existing techniques and systems have been tested
on different sets of images of varying complexities. But very little
synergism exists between studies in psychophysics and the engi-
neering literature. Most importantly, there exist no evaluation or
benchmarking studies using large databases with the image quality
that arises in commercial and law enforcement applications.

In this paper, we first present different applications of face
recognition in commercial and law enforcement sectors. This is
followed by a brief overview of the literature on face recognition in
the psychophysics community. We then present a detailed overview
of more than 20 years of research done in the engineering com-
munity. Techniques for segmentation/location of the face, feature
extraction and recognition are reviewed. Global transform and
feature based methods using statistical, structural and neural
classifiers are summarized. A brief summary of recognition using
face profiles and range image data is also given. Real-time face
recognition from video images acquired in a cluttered scene such
as an airport is probably the most challenging problem. We discuss
several existing technologies in the image understanding literature
that could potentially impact this problem.

Given the numerous theories and techniques that are applicable
to face recognition, it is clear that evaluation and benchmarking
of these algorithms is crucial. We discuss relevant issues such as
data collection, performance metrics, and evaluation of systems
and techniques. Finally, summary and conclusions are given.
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I. INTRODUCTION

Machine recognition of faces from still and video images
is emerging as an active research area spanning several
disciplines such as image processing, pattern recognition,
computer vision and neural networks. In addition, face
recognition technology (FRT) has numerous commercial
and law enforcement applications. These applications range
from static matching of controlled format photographs such
as passports, credit cards, photo ID’s, driver’s licenses, and
mug shots to real-time matching of surveillance video im-
ages presenting different constraints in terms of processing
requirements. Although humans seem to recognize faces in
cluttered scenes with relative ease, machine recognition is a
much more daunting task. In this paper we address critical
issues involved in understanding how humans perceive
faces and follow it with a detailed discussion of several
techniques and systems that have been considered in the
engineering literature for nearly 25 years. Critical issues
such as data collection and performance evaluation are also
addressed.

A general statement of the problem can be formulated
as follows: Given still or video images of a scene, identify
one or more persons in the scene using a stored database
of faces. Available collateral information such as race, age
and gender may be used in narrowing the search. The
solution of the problem involves segmentation of faces from
cluttered scenes, extraction of features from the face region,
identification, and matching. The generic face recognition
task thus posed is a central issue in problems such as
electronic line up and browsing through a database of
faces.

Over the past 20 years extensive research has been
conducted by psychophysicists, neuroscientists and engi-
neers on various aspects of face recognition by humans
and machines. Psychophysicists and neuroscientists have
been concerned with issues such as: Uniqueness of faces;
whether face recognition is done holistically or by local
feature analysis; analysis and use of facial expressions
for recognition; how infants perceive faces; organization
of memory for faces; inability to accurately recognize
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inverted faces; existence of a “grandmother” neuron for
face recognition; role of the right hemisphere of the brain
in face perception; and inability to recognize faces due to
conditions such as prosopagnosia. Some of the theories
put forward to explain the observed experimental results
are contradictory. Many of the hypotheses and theories put
forward by researchers in these disciplines have been based
on rather small sets of images. Nevertheless, several of the
findings have important consequences for engineers who
design algorithms and systems for machine recognition of
human faces.

Barring a few exceptions [21], [24], [116], research on
machine recognition of faces has developed independent
of studies in psychophysics and neurophysiology. During
the early and mid-1970’s, typical pattern classification
techniques, which use measured attributes between features
in faces or face profiles, were used. During the 1980’s,
work on face recognition remained largely dormant. Since
the early 1990’s, research interest in FRT has grown very
significantly. One can attribute this to several reasons:
An increase in emphasis on civilian/commercial research
projects; the reemergence of neural network classifiers with
emphasis on real-time computation and adaptation; the
availability of real time hardware; and the increasing need
for surveillance-related applications due to drug trafficking,
terrorist activities, etc.

Over the last five years, increased activity has been seen
in tackling problems such as segmentation and location
of a face in a given image, and extraction of features
such as eyes, mouth, etc. Also, numerous advances have
been made in the design of statistical and neural network
classifiers for face recognition. Classical concepts such
as Karhunen—Loeve transform based methods [11], [82],
[104], [124], [133], singular value decomposition [69] and
more recently neural networks [21], [51], have been used.
Barring a few exceptions [104], many of the existing
approaches have been tested on relatively small datasets,
typically less than 100 images.

In addition to recognition using full face images, tech-
niques that use only profiles constructed from a side view
are also available. These methods typically use distances
between the “fiducial” points in the profile (points such
as the nose tip, etc.) as features. Modifications of Fourier
descriptors have also been used for characterizing the
profiles. Profile based methods are potentially useful for
the mug shot problem, due to the availability of side views
of the face.

All of the discussion thus far has focused on recognizing
faces from still images. The still image problem has several
inherent advantages and disadvantages. For applications
such as mug shots matching, due to the controlled nature
of the image acquisition process, the segmentation problem
is rather easy. On the other hand, if only a static picture
of an airport scene is available, automatic location and
segmentation of a face could pose serious challenges to
any segmentation algorithm. However, if a video sequence
acquired from a surveillance camera is available, segmenta-
tion of a person in motion can be more easily accomplished
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using motion as a cue. Only a handful of papers on face
recognition [117], [121], [133] have addressed the issue of
segmenting a face image from the background. However,
there is a significant amount of work reported in the
image understanding (IU) literature [1], (2] on segmenting
a moving object from the background using a sequence.
Also, there is a significant amount of work on the analysis
of nonrigid moving objects, including faces, in the IU
[11, [2] as well as the image compression literature [4].
We briefly discuss those techniques that have potential
applications to recovery and reconstruction (in 3D) of faces
from a video sequence. The reconstructed image will be
useful for recognition tasks when disguises and aging are
present.

In addition to the separation of images into static and
real-time image sequences several other parameters are
important in critically evaluating existing methods. In any
pattern recognition problem the accuracy of the solution
will be strongly affected by the limitations placed on the
problem. To restrict the problem to practical proportions
both the image input and the size of the search space
must have some limits. The limits on the image might
for example include controlled format, backgrounds which
simplify segmentation, and controls on image quality. The
limits on the database size might include geographic lim-
its and descriptor based limits. Critical issues involving
data collection, evaluation and benchmarking of existing
algorithms and systems also need to be addressed.

An excellent survey of face recognition research prior to
1991 is in [114]. Still we decided to prepare our survey
paper due to the following reasons: The face recognition
area has become very active since 1990. Approaches based
on Karhunen-Loeve expansion, neural networks and feature
matching have all been initiated since the survey paper
[114] appeared. Also, [114] did not cover discussions on
face recognition from a video, profile, or range imagery
nor any aspects of performance evaluation.

The organization of the paper is as follows: In Section
Il we describe several applications of FRT in still and
video images and point out the specific constraints that
each set of applications pose. Section III provides a brief
summary of issues that are relevant from the psychophysics
point of view. In Section IV a detailed review of face
recognition techniques, involving still intensity and range
images, in the engineering literature is given. Techniques
for segmentation of faces from clutter, feature extraction
and recognition are detailed. Face recognition using profile
images (which has not been pursued with much vigor
in recent years, but nevertheless is useful in mug shots
matching problem) is discussed in Section V. Section VI
presents a discussion on face recognition from video images
with special emphasis on how IU techniques could be
useful. Some specific examples of face recognition and
recall work in law enforcement domains, and commercial
applications are briefly discussed in Section VII. Data
collection and performance evaluation of face recognition
algorithms and architectures are addressed in Section VIIL
Finally, summary and conclusions are in Section IX.
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Table 1  Applications of Face Recognition Technology

Applications

Advantages

Disadvantages

la. Credit Card, Driver’s License, Passport,
and Personal Identification

Controlled image
Controlled segmentation
Good quality images

1b. Mug shots Matching

Mixed image quality
More than one image available

No existing database
Large potential database
Rare search type

2. Bank/Store Security High value Uncontrolled segmentation
Geographically localized search Low image quantity

3. Crowd Surveillance High value Uncontrolled segmentation
Small file size Low image quality
Availability of video images Real-time

4. Expert Identification High value Low image quality

Enhancement possible

Legal certainty required

5. Witness Face Reconstruction Witness search limits Unknown similarity

6. Electronic Mug Shots Book Descriptor search limits Viewer fatigue

7. Electronic Lineup Descriptor search limits Viewer fatigue

8. Reconstruction of Face from Remains High value Requires physiological input
9. Computerized Aging High value Requires example input

II.  APPLICATIONS

Commercial and law enforcement applications of FRT
listed in Table 1 range from static, controlled format pho-
tographs to uncontrolled video images, posing a wide
range of different technical challenges and requiring an
equally wide range of techniques from image processing,
analysis, understanding and pattern recognition. One can
broadly classify the challenges and techniques into two
groups: static (no video) and dynamic (video) matching.
Even among these groups, significant differences exist,
depending on the specific application. The differences are
in terms of image quality, amount of background clut-
ter (posing challenges to segmentation algorithms), the
availability of a well defined matching criterion, and the
nature, type and amount of input from a human (as in
applications 4 and 5). In some applications, such as com-
puterized aging, one is only concerned with defining a set
of transformations so that the new images created by the
system are similar to what humans expect based on their
recollections.

Three different kinds of problems arise in applications
listed in Table 1; these are matching, similarity detection,
and transformation. Applications 1, 2, and 3 involve match-
ing one face image to another face image. Applications 4-7
involve finding or creating a face image which is similar
to the human recollection of a face. Finally, applications 8
and 9 involve generating an image of a face from input
data that is useful in other applications by using other
information to perform modifications of a face image.
Each of these applications imposes different requirements
on the recognition process. Matching requires that the
candidate matching face image be in some set of face
images selected by the system. Similarity detection requires,
in addition to matching, that images of faces be found
which are similar to a recalled face; this requires that
the similarity measure used by the recognition system
closely match the similarity measures used by humans.
Transformation applications require that new images cre-
ated by the system be similar to human recollections of a
face.

A. Static Matching

Mug shots matching is the most common application
in this group. Typically, in mug shots photographs, the
illumination is reasonably controlled, and one frontal and
one or more side views of a person’s face are taken.
Although more control can be exercised in image ac-
quisition, no uniform standards exist for use by booking
stations across the country. These standards could in-
volve the type of background, illumination, resolution of
the camera, and the distance between the camera and
the person being photographed. By enforcing such simple
controls over the image acquisition process, one can po-
tentially simplify segmentation and matching algorithms.
Two examples of typical mug shots images are given in
Fig. 1.

Simple versions of the mug shots matching problem
are recognition of faces in driver’s licenses, credit cards,
personal ID cards, and passports. Typical examples of face
images in drivers licenses or personal ID cards are shown in
Fig. 2. The images in these documents are usually acquired
with more control than in mug shots.

Typically, images in mug shots applications are of good
quality, consistent with existing law enforcement standards.
Given the reasonably controlled imaging conditions, seg-
mentation/location of a face is relatively easy. Potential
challenges are in searching through a large dataset and also
in matching; though the imaging conditions are controlled,
variations in the face due to aging, hair loss, hair growth,
etc., have to be accounted for in feature extraction and
matching.

Application 2 is more complicated than application 1,
largely due to the uncontrolled nature of the image acquisi-
tion conditions. As considerable background clutter may be
present, segmentation gets harder. Also, the quality of the
image tends to be low. An approximate rendition of such
an image is shown in Fig. 3. It should be pointed out that
application 2 falls between static and dynamic matching.
Some of the images that arise in this application are on
film while some are acquired from a video camera. As in
application 1, variations in face images due to aging and
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Fig. 1. Frontal and profile mug shots images.

disguises must be accounted for in feature extraction and
matching. In applications 1 and 2, the matching criterion
can be quantified; also, the top few choices can be rank
ordered.

Applications 4-7 involve finding or creating a face image
which is similar to the human recollection of a face. In
application 4, an expert confirms that the face in the given
image corresponds to a person in question. It is possible
that the face in the image could be disguised, or occluded.
Typically, in this application a list of similar looking faces
is generated using a face identification algorithm, the expert
then performs a careful analysis of the listed faces. In
application 5 the witness is asked to compose a picture of a
culprit using a library of features such as noses, eyes, lips,
etc. For example the library may have examples of noses
that are long, short, curved, flat, etc., from which one that is

(d)

closest to witness’s recollection is chosen. In application 6,
electronic browsing of photo collection is attempted. Appli-
cation 7 involves a witness identifying a face from a set of
face images which include some false candidates. Typically,
in these applications the image quality tends to be low; in
addition to matching, it is required to find faces that are
similar to a recalled face. The similarity measure is difficult
to quantify, as measures supposedly used by humans need
to be defined. The problem is complicated further in that
when humans search through a mug shots book, they tend
to make more recognition errors as the number of mug
shots presentations increases. It is difficult to completely
quantify the degradation in machine implementation of
algorithms developed for applications 4-6. Another issue
is the incorporation of mechanisms for recalling faces that
humans use in the algorithms. Applications 4-7 need a
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Fig. 2. Face images in a controlled background, as in passport or identification documents.
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Fig. 3. An approximate illustration of an uncontrolled environment for face images corresponding

to application 2.

strong interaction between algorithms and known results
in psychophysics and neuroscience studies.

Applications 8 and 9 involve transformations of images
from current data to what they could have been (application
8) or to what they will be (application 9). These are even
more difficult than applications 4-6, since “smoothing” or
“predictive” mechanisms need to be incorporated into the
algorithms.

B. Dynamic Matching

We group application 3, and cases of application 2 where
a video sequence is available, as dynamic. The images

available through a video camera tend to be of low quality.
Also, in crowd surveillance applications the background is
very cluttered, making the problem of segmenting a face
in the crowd difficult. However, since a video sequence
is available, one could use motion as a strong cue for
segmenting faces of moving persons. One may also be able
to do partial reconstruction of the face image using existing
models [10], [23], [87] and be able to account for disguises,
somewhat better than in static matching problems. One of
the strong constraints of this application is the need for
real-time recognition. It is expected that several of the
existing methodologies in the IU literature [1]-{5] for image
sequence based segmentation, structure estimation, nonrigid
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object motion and recognition will be useful for solving the
requirements of application 3.

It should be remarked that the widely varying constraints
of the different applications necessitate different methods
and scores for evaluating and benchmarking existing algo-
rithms and systems.

III. PSYCHOPHYSICS AND NEUROPHYSIOLOGICAL
ISSUES RELEVANT TO FACE RECOGNITION

In general, the human recognition system utilizes a broad
spectrum of stimuli, obtained from many, if not all, of the
senses (visual, auditory, olfactory, tactile, etc.). These stim-
uli are used in either an individual or collective manner for
both the storing and retrieval of face images for the purpose
of recognition. There are many instances when contextual
knowledge is also applied, i.e., the surroundings play an
important role—recognizing faces in relation to where they
are supposed to be located. It is futile (impossible with
the present technology) to attempt to develop a system
which will mimic all these remarkable traits of humans.
However, the human brain has its shortcomings in the
total number of persons that it can accurately “remember.”
The benefit of a computer system would be its capacity
to handle large datasets of face images. In most of the
applications the images are present in single or multiple
views of 2D intensity data, which forces the inputs to a
computer algorithm to be visual only. It is for this reason
that the literature reviewed in this section is related to
aspects of human visual perception.

During the course of our literature survey, we have come
across several hundred papers that address problems and
issues related to human recognition of faces. Many of these
studies and their findings have direct relevance to engineers
interested in designing algorithms or systems for machine
recognition of faces. A detailed review of relevant studies
in psychophysics and neuroscience is beyond the scope of
this paper. We only summarize findings that are potentially
relevant to the design of face recognition systems. For
details the reader is referred to the papers cited below and
to citations in the supplemental bibliography. In writing
this section, we have largely benefited from books [19],
[37], [39] and survey papers [14], [20], [41], [65]. Also
literature on how animals such as monkeys, dogs and cats
recognize faces is not included in our survey. Notable works
on experiments with monkeys are [106]-[108].

The issues that are of potential interest to designers are:

¢ Is face recognition a dedicated process? [41]: Evi-

dence for the existence of a dedicated face processing
system comes from three sources. A) Faces are more
easily remembered by humans than other objects when
presented in an upright orientation. B) Prosopagnosia
patients are unable to recognize previously familiar
faces, but usually have no other profound agnosia.
They recognize people by their voices, hair color,
dress, etc. Although they can perceive eyes, nose,
mouth, hair, etc., they are unable to put together these
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features for the purpose of identification. It should be
noted that prosopagnosia patients recognize whether
the given object is a face or not, but then have difficulty
in identifying the face. C) It is argued that infants
come into the world pre-wired to be attracted by faces.
Neonates seem to prefer to look at moving stimuli
that have face-like patterns in comparison to those
containing no pattern or with jumbled features.

Is face perception the result of holistic or feature
analysis? Both holistic and feature information are
crucial for the perception and recognition of faces.
Studies suggest the possibility of global descriptions
serving as a front end for finer, feature-based percep-
tion. If dominant features are present, holistic descrip-
tions may not be used. For example, in face recall
studies, humans quickly focus on odd features such as
big ears, a crooked nose, a staring eye, efc.

Ranking of significance of facial features: Hair, face
outline, eyes and mouth (not necessarily in this order)
have been determined to be important for perceiving
and remembering faces. Several studies have shown
that the nose plays an insignificant role; this may be
due to the fact that almost all of these studies have
been done using frontal images. In face recognition
using profiles (which may be important in mug shots
matching applications, where profiles can be extracted
from side views), several fiducial points (“features™)
are around the nose region (see Section V). Another
outcome of some of the studies is that both external
and internal features are important in the recogni-
tion of previously presented but otherwise unfamiliar
faces, and internal features are more dominant in
the recognition of familiar faces. It has also been
found that the upper part of the face is more useful
for face recognition than the lower part. The role
of aesthetic attributes such as beauty, attractiveness
and/or pleasantness has also been studied, with the
conclusion that the more attractive the faces are, the
better is their recognition rate; the least attractive faces
come next, followed by the mid-range faces, in terms
of ease of being recognized.

Caricatures: [20] Perkins [105] formally defines a
“caricature as a symbol that exaggerates measurements
relative to any measure which varies from one person
to another.” Thus the length of a nose is a measure that
varies from person to person, and could be useful as a
symbol in caricaturing someone, but not the number of
ears. Caricatures do not contain as much information as
photographs, but they manage to capture the important
characteristics of a face; experiments comparing the
usefulness of caricatures and line drawings decidedly
favor the former.

Distinctiveness: Studies show that distinctive faces are
better retained in recognition memory and are recog-
nized better and faster than typical faces. However, if
a decision has to be made as to whether an object is
a face or not, it takes longer to recognize an atypical
face than a typical face. This may be explained by
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different mechanisms being used for detection and for
identification.

The role of spatial frequency analysis: Earlier studies
[47], [64] concluded that information in low spatial
frequency bands play a dominant role in face recog-
nition. Recent studies [119] show that, depending on
the specific recognition task, the low, bandpass and
high frequency components may play different roles.
For example the sex judgment task is successfully
accomplished using low frequency components only,
while the identification task requires the use of high
frequency components. The low frequency components
contribute to the global description, while the high
frequency components contribute to the finer details
required in the identification task.

The role of the brain: [40] The role of the right hemi-
sphere in face perception has been supported by several
researchers. In regard to prosopagnosia and the right
hemisphere, a retrospective study seems to strongly
indicate right hemisphere involvement in face recog-
nition. In other brain damaged victims, those with right
hemisphere disease have more impairment in facial
recognition then left hemisphere disease. When shown
the left half of one face and the right half of another
face tachistoscopically, the overwhelming majority of
commissurotomy patients selected the face shown to
the left vision field (LVF), which arrives initially at
the right hemisphere. In other tachistoscopic studies,
the LVF has the advantage in both speed and accuracy
of response and in long term memory response. Studies
have also shown a right hemisphere advantage in
reception and/or storage of faces. Some other studies
argue against right hemisphere superiority in face
perception. Postmortem studies of prosopagnosia vic-
tims with known lesions in the right hemisphere have
found approximately symmetrical lesions in the left
hemisphere. Other cases of bilateral brain damage have
been seen or suspected in patients with prosopagnosia.
The ways in which the two hemispheres operate may
reflect variations in degrees of expertise. It appears that
the right hemisphere does possess a slight advantage
in aspects of face processing. It is also true that the
two hemispheres may simultaneously handle different
types of information. The dominance of the right
hemisphere in facial processing may be the result
of left hemisphere dominance in language. The right
hemisphere is also involved in the interpretation of
emotions, and this may underlie the slight asymmetry
in perceiving and remembering faces.

Face recognition by children. [29], [30] It appears
that children under ten years of age code unfamiliar
faces using isolated features. Recognition of these
faces is done using cues derived from paraphernalia,
such as clothes, glasses, hair style, hats, etc. Ten-
year-old children exhibit this behavior less frequently,
while children older than 12 years rarely exhibit this
behavior. It is postulated that around age ten, children
seem to change their recognition mechanisms from one
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of isolated features and paraphernalia to one of holistic
analysis. Curiously, when children as young as five
years are asked to recognize familiar faces, they do
pretty well in ignoring paraphernalia.

Several other interesting studies related to how chil-
dren perceive inverted faces are summarized in [29].

Facial expression: [19] Based on neurophysiological
studies, it seems that analysis of facial expressions
is accomplished in parallel to face recognition. Some
prosopagnosic patients, who have difficulties in iden-
tifying familiar faces, nevertheless seem to recognize
emotional expressions. Patients who suffer from “or-
ganic brain syndrome” suffer from poor expression
analysis but perform face recognition quite well. Nor-
mal humans exhibit parallel capabilities for facial
expression analysis and face recognition. Similarly,
separation of face recognition and “focused visual
processing” (look for someone with a thick mustache)
tasks have been claimed.

Role of race/gender: Humans recognize people from
their own race better than people from another race.
This may be due to the fact that humans may be
coding an “average” face with “average” attributes, the
characteristic of which may be different for different
races, making the recognition of faces from a different
race harder. Goldstein [50] gives two possible reasons
for the discrepancies: Psychosocial, in which the poor
identification results are from the effects of prejudice,
unfamiliarity with the class of stimuli, or a variety
of other interpersonal reasons; and psychophysical,
dealing with loss of facial detail because of different
amounts of reflectance from different skin colors, or
race-related differences in the variability of facial fea-
tures. Using tables showing the coefficients of variation
for different facial features for different races, it has
been concluded that poor identification of other races
is not a psychophysical problem but more likely a
psychosocial one. Using the same data collected in
[50], some studies have been done to quantify the
role of gender in face recognition. It has been found
[49] that in a Japanese population, a majority of the
women’s facial features are more heterogeneous than
the men’s features. It has also been found that white
women’s faces are slightly more variable than men’s,
but that the overall variation is small.

Image quality: In [125] the relationship between
image quality and recognition of a human face has
been explored. The task required of observers is to
identify one face from a gallery of 35 faces. The
modulation transfer function area (MTFA) was used
as a metric to predict an observers performance in a
task requiring the extraction of detailed information
from both static and dynamic displays. Performance
for an observer is measured by two dependent vari-
ables—proportion of correct responses and response
time. It was found that as the MTFA becomes mod-
erately large, facial recognition performance reaches a
ceiling which cannot be exceeded. The MTFA metric
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indicates the extent to which a system’s response
exceeds the minimum contrast requirements, averaged
across all spatial frequencies of interest [125].

A. Summary

For engineers interested in designing algorithms and
systems for face recognition, numerous studies in psy-
chophysics and neurophysiological literature serve as useful
guides. As an example, designers should include both global
and local features for representing and recognizing faces.
Among the features, some (hairline, eyes, mouth) are more
significant or useful than others (nose). This observation
is true for frontal images of faces, while for side views
and profiles, the nose is an important feature. Studies
on distinctiveness and caricatures can help add special
features of the face that can be utilized for perceiving and
recognizing faces. The role of spatial frequency analysis
suggests multiresolution/multiscale algorithms for different
problems related to face perception. Issues such as how
humans recognize people from their own race better than
people from another race, and how infants recognize faces,
are very important in the design of systems for expert
identification, witness face reconstruction, electronic mug
shots books and lineups. Interpreting face recognition using
Marr’s computational vision paradigm may point to new
algorithms and systems; see Chapter 6 of [19]. Other issues,
such as organization of face memory, are very pertinent for
the design of large databases such as mug shots albums.
Usefulness of facial expressions on face recognition needs
to be evaluated.

Historically, there has been great interest among com-
puter vision algorithm developers and system designers
in learning how our visual system works and in translat-
ing these mechanisms into real systems. Marr’s paradigm
for computational vision [89] is a pioneering example of
such an effort. Designers of face recognition algorithms
and systems should be aware of relevant psychophysics
and neurophysiological studies but should be prudent in
using only those that are applicable or relevant from a
practical/implementation point of view.

IV. FACE RECOGNITION FROM STILL
INTENSITY AND RANGE IMAGES

In this section we survey the state of the art in face
recognition in the engineering literature. We have divided
the face recognition papers into three groups. Methods for
segmentation of faces from a given image are discussed
in Section IV-A. Techniques for extraction of statistical
features such as Karhunen-Loeve transform and singular
value decomposition coefficients, structural features like
eyes, nose, lips, and points of high curvature are summa-
rized in Section IV-B. Most papers included in Sections
IV-A and IV-B do not report any recognition or matching
experiments. Recognition and identification papers that use
features described in Section IV-B or other features are
surveyed in Section IV-C. The recognition techniques are
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presented as statistical, neural and feature based. Finally a
summary section is included.

A. Segmentation

One of the earliest papers that reported the presence or
absence of a face in an image is [113]. An edge map
extracted from the input image is matched to a large oval
template with possible variations in the position and size
of the template. At positions where potential matches are
reported, the head hypothesis is confirmed by inspecting the
edges produced at expected positions of eyes, mouth, etc.
The technique was dependent on the illumination direction.

Kelly [81] introduced a top-down image analysis ap-
proach known as PLANNING for automatically extracting
the head and body outlines from an image and subsequently
the locations of eyes, nose, mouth. As an example, the head
extraction algorithm works as follows: Smoothed versions
of original images (obtained by local averaging) are first
searched for edges that may form the outline of a head;
extracted edge locations are then projected back to the
original image, and a fine search is locally performed for
edges that form the head outline. Several heuristics are used
to connect the edges. Once the head outline is obtained, the
expected locations for eyes, nose and mouth are searched
for locating these features. Several heuristics are again
employed in the search process.

The algorithm for extracting the body of a person,
subtracts the image of the background without the person
from the image that has the person. This difference image
is reduced in size by averaging and then thresholded. After
applying a connected component algorithm, the extremes of
the regions obtained define the region in which the body is
located. Details on the feature measurements, dataset etc.,
used in [81] are given in Section IV-C.

Govindaraju et al. [55] consider a computational model
for locating the face in a cluttered image. Their technique
utilizes a deformable template which is slightly different
than that of Yuille ez al. (145]. Working on the edge image
they base their template on the outline of the head. The
template is composed of three segments that are obtained
from the curvature discontinuities of the head outline. These
three segments form the right side-line, the left side-line and
the hairline of the head. Each one of these curves is assigned
a four-tuple consisting of the length of the curve, the chord
in vector form, the area enclosed between the curve and
the chord, and the centroid of this area. To determine the
presence of the head, all three of these segments should
be present in particular orientations. The center of these
three segments gives the location of the center of the face.
The templates are allowed to translate, scale and rotate
according to certain spring-based models. They construct
a cost function to determine hypothesized candidates. They
have experimented on about ten images, and though they
claim to have never failed to miss a face, they do get false
alarms.

Craw et al. in [34] describe a method for extracting the
head area from the image. They use a hierarchical image
scale and a template scale. Constraints are imposed on the
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location of the head in the image. Resolutions of 8 x 8, 16
x 16, 32 x 32, 64 x 64 and full scale 128 x 128 are used
in their multiresolution scheme. At the lowest resolution a
template is constructed of the head outline. Edge magnitude
and direction are calculated from the gray level image using
a Sobel mask. A line follower is used to connect the outline
of the head. After the head outline has been located a search
for lower level features such as eyes, eyebrows, and lips is
conducted, guided by the location of the head outline, using
a similar line following method. The algorithm for detecting
the head outline, performed better than the one searching
for the eyes.

Another method of finding the face in an image was
defined by Burt [25]. It utilized a coarse to fine approach
with a template based match criteria to locate the head. Burt
illustrates the usefulness of such techniques by describing a
“smart transmission” system. This system could locate and
track the human head and then send the information of the
head location to an object based compression algorithm.

In [35] Craw, Tock, and Bennet describe a system to
recognize and measure facial features. Their work was mo-
tivated in part by automated indexing of police mug shots.
They endeavor to locate 40 feature points from a grey-
scale image; these feature points were chosen according
to Shepherd [120], which was also used as a criterion
of judgment. The system uses a hierarchical coarse-to-
fine search. The template drew upon the principle of
polygonal random transformation in Grenander ef al. [56].
The approximate location, scale and orientation of the head
is obtained by iterative deformation of the whole template
by random scaling, translation and rotation. A feasibility
constraint is imposed so that these transformations do not
lead to results that have no resemblance to the human
head. Optimization is achieved by simulated annealing [46].
After a rough idea of the location of the head is obtained,
refinement is done by transforming individual vectors of the
polygon. The authors claim successful segmentation of the
head in all 50 images that were tested. In 43 of these images
a complete outline of the head was distinguishable; in the
remaining ones there was failure in finding the chin. The
detailed template of the face included eyes, nose, mouth,
etc.; in all, 1462 possible feature points were searched for.
The authors claim to be able to identify 1292 of these
feature points. The only missing feature was the eyebrow, as
they did not have a feature expert for that. They attribute the
6% incorrect identification to be due to presence of beards
and mustaches in their database, which caused mistakes in
locating the chin and the mouth of the subject. It should
be noted that due to its use of optimization and random
transformation, the system is inherently computationally
intensive.

In [123] the face is segmented from a moderately clut-
tered background using an approach that involves working
with both the intensity image of the face as well as the
edge image found using the Canny’s edge finder [28].
Preprocessing tasks include locating the intersection points
of edges (occlusion of objects), assigning labels to con-
tiguous edge segments and linking of most likely similar

edge segments at intersection points. The human face is
approximated using the ellipse as the analytical tool. Pairs
of labeled edge segments L,~,L’j are fitted to a linearized
equation of the ellipse (1). This linearization is possible
under the condition that the semi-major axis a and/or the
semi-minor axis b of the ellipse are not 0, which is true for
all cases considered.

2 2
2z;a0 — yia1 + 2yia0 — a3 = ¢ 1)
where
ap = Zo, a; = ol
a? a2
a2 = — Yo _ .2 2
b2 7" a3z =z5+ 2 a

The resulting parameter set z, Yo, a, b is checked against
the aspect ratio of the face, and if it is satisfied, is included
in the class of parameter sets for final selection. The
parameter sets in the class of parameters are reverse fitted
with the labeled segments. The parameter set with the most
segments (compensated for size) is selected to represent
the segmented face. Fig. 4 shows the segmentation process
going through its different phases from the input image to
its edge representation, then the final grouping of the likely
edge segments corresponding to the outline of the face,
and finally the output image without background clutter.
An accuracy of above 80% was reported when the process
was applied to a data set of 48 cluttered images. Fig. 5
shows some of the results of the segmentation algorithm.
The image size was 128 x 128 pixels.

The presence or absence of a face using the eigenfaces
expansion is reported in [133]. Details on eigenfaces are in
Sections IV-B and IV-C.

B. Feature Extraction

Recently, the use of the Karhunen-Loeve (KL) expansion
for the representation [82], [124] and recognition [104],
[133] of faces has generated renewed interest. The KL
expansion has been studied for image compression for more
than 30 years [74], [140]; its use in pattern recognition
applications has also been documented for quite some
time [45]. One of the reasons why KL methods, although
optimal, did not find favor with image compression re-
searchers is their computational complexity. As a result, fast
transforms such as the discrete sine and cosine transform
have been used [74]. In [124], Sirovich and Kirby revisit the
problem of KL representation of images (cropped faces).
Once the eigenvectors (referred to as “eigenpictures”) are
obtained, any image in the ensemble can be approximately
reconstructed using a weighted combination of eigenpic-
tures. By using an increasing number of eigenpictures, one
gets an improved approximation to the given image. The
authors also give examples of approximating an arbitrary
image (not included in the calculation of eigenvectors) by
the eigenpictures. The emphasis in this paper is on the rep-
resentation of human faces. The weights that characterize
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Fig. 4. (a) Input image, (b) edge image, (c) linked segments, and (d) segmented image.

the expansion of the given image in terms of eigenpictures
serve the role of features.

In a subsequent extension of their work, Kirby and
Sirovich in [82] include the inherent symmetry of faces
in the eigenpicture representation of faces, by using an
extended ensemble of images consisting of original faces
and their mirror images. Since the computations of eigen-
values and eigenvectors can be split into even and odd
pictures, there is no overall increase in computational
complexity compared to the case in which only the original
set of pictures in used. Although the eigenrepresentation
for the extended ensemble does not produce dramatic
reduction in the error in reconstruction when compared to
the unextended ensemble, still the method that accounts for
symmetry in the patterns is preferable.

In [11], the KL is combined with two other operations
to improve the performance of the extraction technique
for the classification of front-view faces. The application
of the KL expansion directly to a facial image without
standardization does not achieve robustness against vari-
ations in image acquisition. [11] uses standardization of
the position and size of the face. The center points are
the regions corresponding to the eyes and mouth. Each
target image is translated, scaled and rotated through affine
transformation so that the reference points of the eyes and
mouth are in a specific spatial arrangement with a constant
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distance. An empirically defined standard window encloses
the transformed image. The KL expansion applied to the
standardized face images is known as the Karhunen—Loeve
transform of intensity pattern in affine-transformed target
(KL-IPAT) image. The KL-IPAT was extracted from 269
images with 100 eigenfaces. The second step is to apply
the Fourier Transform to the standardized image and use
the resulting Fourier spectrum instead of the spatial data
from the standardized image. The KL expansion applied
to the Fourier spectrum is called the Karhunen-Loeve
transform of Fourier spectrum in the affine-transformed
target (KL-FSAT) image. The robustness of the KL-IPAT
and KL-FSAT was checked against geometrical variations
using the standard features for 269 face images.

In [69], the image features are divided into four groups:
visual features, statistical pixel features, transform coeffi-
cient features, and algebraic features, with emphasis on the
algebraic features, which represent the intrinsic attributes
of an image. The singular value decomposition (SVD) of
a matrix is used to extract the features from the pattern.
SVD can be viewed as a deterministic counterpart of the
KL transform. The singular values (SV’s) of an image
are very stable and represent the algebraic attributes of
the image, being intrinsic but not necessarily visible. [69]
proves their stability and invariance to proportional variance
of image intensity in the optimal discriminant vector space,
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Fig. 5. Results of segmentation. (a) Input image, (b) Extracted
image.

to transposition, rotation, translation, and reflection which
are important properties of the SV feature vector. The
Foley-Sammon transform is used to obtain the optimal set
of discriminant vectors spanning the Sammon discriminant
plane. For a small set of 45 images of nine persons two
of the vectors seem to be adequate for recognition; more
discriminant vectors will be needed for recognition with
more images. The SVD operation is applied to each image
matrix for extracting SV features and the SV vector.

In [100] Nixon uses the Hough transform for feature
extraction. The transform locates analytically described
shapes by using the magnitude of the gradient and the
directional information provided by the gradient operator to
aid in the recognition process. Two parts of the eye are at-
tractive for recognition of the eye, the iris, and the perimeter

of the eye’s sclera. The analytic shape representing the
iris is a circle with expected gradient directions in each
quadrant, given the lighter background of the sclera. An
ellipse appears to be the most suitable shape approximating
the perimeter of the sclera, but it is unsatisfactory for
those parts of the eye furthest from the center of the
face. The ellipse is tailored for each eye’s face center by
using an exponential function. The gradient magnitudes,
obtained using a Sobel operator, are thresholded using four
brightness levels to represent the direction of the gradient
at that point. The directional information is incorporated
into the Hough transform technique. The deviation of the
position of the iris center from the estimated value has a
mean value of 0.33 pixels. The application of the Hough
transform to detect the perimeter of the shape of the region
below the eyebrows appears on average to yield a spacing
20% larger than the spacing between the irises. Using the
Hough transform to find the sclera shows that the spacing
differed on average by minus 1.33 pixels. The results show
that it is possible to derive a measurement of the spacing
by detecting of the position of both the irises, and the
shape describing both the perimeter of the sclera and the
eyebrows. The measurement by detection of the position of
the iris is most accurate. Detection of the perimeter of the
sclera is the most sensitive of the methods.

Yuille, Cohen, and Hallinen in [145] extract facial fea-
tures using deformable templates. These templates are
allowed to translate, rotate and deform to fit the best repre-
sentation of their shape present in the image. Preprocessing
is done to the initial intensity image to get representations of
peaks and valleys from the intensity image. Morphological
filters are used to determine these representations. Their
template for the eye has eleven parameters consisting of
the upper and lower arcs of the eye; the circle for the iris;
the center points; and the angle of inclination of the eye.
This template is fit to the image in an energy minimization
sense. Energy functions of valley potential, edge potential,
image potential, peak potential, and internal potential are
determined. Coefficients are selected for each potential and
an update rule is employed to determine the best parameter
set. In their experiments they found that the starting location
of the template is critical for determining the exact location
of the eye. When the template was started above the
eyebrow, the algorithm failed to distinguish between the
eye and the eyebrow. Another drawback to this approach is
its computational complexity. Generally speaking, template
based approaches to feature extraction are a more logical
approach to take. The problem lies in the description of
these templates. Whenever analytical approximations are
made to the image, the system has to be tolerant to certain
discrepancies between the template and the actual image.
This tolerance tends to average out the differences that
make individual faces unique.

A statistically motivated approach to detecting and rec-
ognizing the human eye in an intensity image with the
constraint that the face is in a frontal posture is described
in [60]. Hallinan [60] uses a template based approach for
detecting the eye in an image. The template is depicted as
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having two regions of uniform intensity. The first is the
iris region and the other is the white region of the eye.
The approach constructs an “archetypal” eye and models
various distributions as variations of it. For the “ideal” eye
a uniform intensity for both the iris and whites is chosen.
In an actual eye certain discrepancies from the ideal are
found which hamper the uniform intensity choice. These
discrepancies can be modeled as “noise” components added
to the ideal image. For instance, the white region might
have speckled (spot) points depending on scale, lighting
direction, etc. Likewise the iris can have within it some
“white” spots. The author uses an a-trimmed distribution
for both the iris and the white. A “blob” detection system
is developed to locate the intensity valley caused by the
iris enclosed by the white. Using a-trimmed means and
variances and a parameter set for the template of the blob,
a cost functional is determined for valley detection. A
deformable human eye template is constructed around the
valley detection scheme. The search for candidates uses a
coarse to fine approach. Minimization is achieved using
the steepest descent method. After locating the candidate a
goodness of fit criteria is used for verification purposes. The
inputs used in the experiments were frontal face intensity
images. In all three sets of data were used. One consisted
of 25 images used as a testing set, another had 107 positive
eyes, and the third consisted of images with most probably
erroneous locations which could be chosen as candidate
templates. For locating the valleys the author reports as
many as 60 false alarms for the first data set, 30 for
the second and 110 for the third. An increase in hit rate
is reported when using the o-trimmed distribution. The
overall best hit rate reported was 80%.

Reisfeld and Yeshurun in [112] use a generalized sym-
metry operator for the purpose of finding the eyes and
mouth in a face. Their motivation stems from the almost
symmetric nature of the face about a vertical line through
the nose. Subsequent symmetries lie within features such
as the eyes, nose and mouth. The symmetry operator
locates points in the image corresponding to high values
of a symmetry measure discussed in detail in [112]. They
indicate their procedure’s superiority over other correlation
based schemes like that of Baron [14] in the sense that their
scheme is independent of scale or orientation. However,
since no a priori knowledge of face location is used, the
search for symmetry points is computationally intensive.
The authors mention a success rate of 95% on their face
image database, with the constraint that the face occupy
between 15-60% of the image.

Manjunath et al. [88] present a method for the extraction
of pertinent feature points from a face image. It employs
Gabor wavelet decomposition and local scale interaction to
extract features at points of curvature maxima in the image,
corresponding to orientation and local neighborhood. These
feature points are then stored in a data base and subsequent
target face images are matched using a graph matching
technique. The 2D Gabor function used and its Fourier
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transform are:

g(z,y : uo,vo) = exp {—[a?/20% + y?/207)

+ 2mi{uoz + voyl} 2)
G(u,v) = exp {—271'2[02(11, — ug)?
+ o2 (v —v0)?]} )

where ¢, and o, represent the spatial widths of the Gauss-
jan and {ug,vo) is the frequency of the complex sinusoid.

The Gabor functions form a complete though nonorthog-
onal basis set. Like the Fourier series, a function g(x,y)
can easily be expanded using the Gabor function. Consider
the following wavelet representation of the Gabor function:

Ox(z,9,0) = exp {[-N* (e + )] +imz’} @)

z' =z cos f +ysin 0 ©)

y =—x sin 8 +y cos ©)
where 0 is the preferred spatial orientation and A is the
aspect ratio of the Gaussian. For convenience the subscripts
are dropped in further discussions. In the experiments, A is
set to 1, and @ is discretized into four orientations. The
resulting family of wavelets is given by

{®[?(z — x0), & (y — o), 6]}, @ € R,
j:{oa"‘la—Z'”} (7)

where 0 = kn/N, N =4,k = {0, 1,2,3} and o, jeZ.

Feature detection utilizes a simple mechanism to model
the behavior of the end-inhibition. It uses interscale in-
teraction to group the responses of cells from different
frequency channels. This results in the generation of the
end-stop regions. The orientation parameter 6 determines
the direction of the edges. Hypercomplex cells in animals
are sensitive to oriented lines and step edges of short
lengths, and their response decreases if the lengths are
increased.

Im»"(za y) = mg'x g (“ Wm(z’ yve) - ’YWn(xvyv 9) ||)

®@)
and
Wj(‘zvy70) :f®q)(ajx’ajy,9), .7= {0,—1,'—2,"'}
9

where f represents the input image, g is a sigmoid nonlin-
earity, - is a normalizing factor, and n > m. The final step
is to actually localize these features, and this is done by
looking at the local maximum of these feature responses.
A feature point is selected by taking the maxima in a
local neighborhood of the pixel location (z,y). Let the
neighborhood be Ngy:

Im,n(xay) = [m,n(xl,y’)~ (10)

max
(z',y")ENzy

The general idea is to use (9) to determine responses at
two scales. These scales act as the hypercomplex cells in
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Fig. 6. (a) Input image and (b) feature points extracted.

animals. To determine a high spatial curvature point the
response from a larger sized cell is subtracted from the
smaller sized cell using (8). A smaller cell will have a
higher response for a sharper curvature. This is determined
to be a feature point in the image.

Some experimental results for this feature extraction
method are shown in Fig. 6. Notice that the background
on the image is uniform; this type of image can be
seen as representative of passport, driver’s license or
any identification-type photographs where control over
background is easily enforced.

[33] describes a knowledge-based vision system for de-
tection of human faces from hand drawn sketches. The
system employs an IF-THEN rule to process its tasks,
i.e., “IF: upper mouth line is not found but lower mouth
line is found, THEN: look for the upper mouth line in
the image area directly above the lower mouth.” The
template for the face consists of the eyes (both left and
right), the nose and the mouth. The processing is done on
four different abstraction levels of image information; Line
Segment, Component Part, Component, and Face. The line
segments are selected as candidates of component parts with
probability values associated with them. A component will

try to see if a particular area in the image has the necessary
component parts (in correct orientations relative to each
other) and determine the existence of the component. The
Face level will try to determine which geometric layout
of the components is best suited to describe a face from
the image data. The structure of the system is based on
a blackboard architecture; all the tasks have access to
(and can write on) to the blackboard. The author reports
successful detection of the face using this method with
two experiments. The modularity of the system makes it
possible to expand it by adding other knowledge sources
such as eyebrows, ears, forehead, etc. The usage of sketched
images can be extended to the edge map of an intensity
image with some processing to get labeled segments, as is
done in [123].

C. Recognition

1) Earlier Approaches: One of the earliest works in com-
puter recognition of faces is reported by Bledsoe [18]. In
this system, a human operator located the feature points
on the face and entered their positions into the computer.
Given a set of feature point distances of an unknown
person, nearest neighbor or other classification rules were
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used for identifying the label of the test image. Since
feature extraction is manually done, this system could
accommodate wide variations in head rotation, tilt, image
quality, and contrast.

A landmark work on face recognition is reported in
the doctoral dissertation of M. D. Kelly [81]. Kelly’s
work is similar in framework to that of Bledsoe, but is
significantly different in that it does not involve any human
intervention. Although we cite this work in connection
with face recognition, Kelly’s dissertation has made several
important contributions to goal directed (also known as
top-down) and multiresolution image analysis.

Kelly uses the body and close up head images for
recognition. Once the body and head have been outlined as
described in Section IV-A, ten measurements are extracted.
The body measurements include heights, widths of the head,
neck, shoulders, and hips. Measurements from the face
include width of the head and distances between eyes, top
of head to eyes, between eyes and nose and the distance
from eyes to mouth. The nearest neighbor rule was used
for identifying the class label of the test image; the leave-
one-out [45] strategy was used. The dataset consisted of a
total of 72 images, comprised of 24 sets of three images of
ten persons. Each set had three images per person; image
of the body, image of the background corresponding to the
body image and a close-up of the head.

In [80], Kaya et al. report a basic study using infor-
mation theoretic arguments in classifying human faces.
They reason from the fact that to represent N different
faces a total of log; N bits are required (upper bound
on the entropy). They contend that since illumination and
background are the same for all face images and the images
taken are photographs of front views of human faces, with
mouth closed, no beards, and no eyeglasses, therefore the
dimensionality of the parameter space can be reduced from
the above upper bound. Sixty two photographs were taken
with a special apparatus to ensure correct orientation and
lighting conditions. An experiment was conducted using
1040 human subjects to identify prominent geometric
features from three different faces. The authors identify nine
of these parameters to run statistical experiments on. These
parameters form a parameter vector composed of internal
biocular breadth, external biocular breadth, nose breadth,
mouth breadth, bizygomatic breadth, bigonial breadth, dis-
tance between lower lip and chin, distance between upper
lip and nose and height of lips. They construct a classifier
based on the parameter vector and its estimate, i.e., if X
is the parameter vector then the estimate Y is given as
Y = X+D where D is the distortion vector. The distortion
vector D has two components Dy, the distortion due to
data acquisition and sampling error and D; due to inherent
variations in facial features. The authors discuss two cases,
one in which Dy, is negligible and the other where Dy,
is comparable to D;. For each parameter a threshold is
determined from its statistical behavior. Classification is
done using the absolute norm between a stored parameter
set and the input image parameter values. It should be
noted that the parameter values are determined manually.
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The authors then set a bound on the probability of finding
a correct match, using some arbitrary constants, to be
about 90% from 15 000 images. However, this is just an
extrapolation of the results that they obtained from the sixty
two images that were tested and not a result of actual
experiments.

One method of characterizing the face is the use of
geometrical parameterization, i.e., distances and angles
between points such as eye corners, mouth extremities,
nostrils, and chin top [78]. The data set used by Kanade
consists of 17 male and three female faces without glasses,
mustaches, or beards. Two pictures were taken of each
individual, with the second picture being taken one month
later in a different setting. The face-feature points are
located in two stages. The coarse-grain stage simplified
the succeeding differential operation and feature-finding
algorithms. Once the eyes, nose and mouth are approxi-
mately located, more accurate information is extracted by
confining the processing to four smaller regions, scanning
at higher resolution, and using the “best beam intensity” for
the region. The four regions are the left and right eye, nose,
and mouth. The beam intensity is based on the local area
histogram obtained in the coarse-grain stage. A set of 16
facial parameters which are ratios of distances, areas, and
angles to compensate for the varying size of the pictures
is extracted. To eliminate scale and dimension differences
the components of the resulting vector are normalized. The
entire data set of 40 images is processed and one picture of
each individual is used in the training set. The remaining 20
pictures are used as a test set. A simple distance measure
is used to check for similarity between an image of the
test set and the image in the reference set. Matching
accuracies range from 45% to 75% correct, depending
on the parameters used. Better results are obtained when
several of the ineffective parameters are not used [78].

2) Statistical Approach: Turk and Pentland [133] used
eigenpictures (also known as ‘“eigenfaces” (see Fig. 7)
in [133]) for face detection and identification. Given the
eigenfaces, every face in the database can be represented
as a vector of weights; the weights are obtained by pro-
jecting the image into eigenface components by a simple
inner product operation. When a new test image whose
identification is required is given, the new image is also
represented by its vector of weights. The identification of
the test image is done by locating the image in the database
whose weights are the closest (in Euclidean distance) to
the weights of the test image. By using the observation
that the projection of a face image and a nonface image
are quite different, a method for detecting the presence of
a face in a given image is obtained. Turk and Pentland
illustrate their method using a large database of 2500 face
images of 16 subjects, digitized at all combinations of
three head orientations, three head sizes and three lighting
conditions. Several experiments were conducted to test the
robustness of the approach to variations in lighting, size,
head orientation, and the differences between the training
and test conditions. The authors reported 96% correct
classification over lighting variations, 85% over orientation
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Fig. 7. Eigenfaces [133].

variations and 64% over size variations. It can be seen
that the approach is fairly robust to changes in lighting
conditions, but degrades quickly as the scale changes.
One can explain this by the significant correlation present
between images with changes in illumination conditions;
the correlation between face images at different scales is
rather low. Another way to interpret this is that the approach
based on eigenfaces will work well as long as the test
image is “similar” to the ensemble of images used in the
calculation of eigenfaces. Turk and Pentland also extend
their approach to real time recognition of a moving face
image in a video sequence. A spatiotemporal filtering step
followed by a nonlinear operation is used to identify a
moving person. The head portion is then identified using a
simple set of rules and handed over to the face recognition
module.

In [104], Pentland et al. extend the capabilities of their
earlier system [133] in several directions. They report ex-
tensive tests based on 7562 images of approximately 3000
people, the largest database on which any face recognition
study has been reported to date. Twenty eigenvectors were
computed using a randomly selected subset of 128 images.
In addition to eigenrepresentation, annotated information

on sex, race, approximate age and facial expression was
included. Unlike mug shots applications, where only one
front and one side view of a person’s face is kept, in this
database several persons have many images with different
expressions, head wear, etc.

One of the applications the authors consider is interactive
search through the database. When the system is asked to
present face images of certain types of people (e.g., white
females of age 30 years or younger), images that satisfy
this query are presented in groups of 21. When the user
chooses one of these images, the system presents faces
from the database that look similar to the chosen face
in the order of decreasing similarity. In a test involving
200 selected images, about 95% recognition accuracy was
obtained—i.e., for 180 images the most similar face was of
the same person. To evaluate the recognition accuracy as
a function of race, images of white, black and Asian adult
males were tested. For white and black males accuracies
of 90% and 95% were reported, respectively, while only
80% accuracy was obtained for Asian males. The use of
eigenfaces for personnel verification is also illustrated.

In mug shots applications, usually a frontal and a side
view of a person are available. In some other applications,
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more than two views may be available. One can take two
approaches to handling images from multiple views. The
first approach will pool all the images and construct a set
of eigenfaces that represent all the images from all the
views. The other approach is to use separate eigenspaces
for different views, so that the collection of images taken
from each view will have its own eigenspace. The second
approach, known as the view-based eigenspace, seems to
perform better. For mug shots applications, since two or
at most three views are needed, the view-based approach
produces two or three sets of eigenspaces.

The concept of eigenfaces can be extended to eigenfea-
tures, such as eigeneyes, eigenmouth, etc. Just as eigenfaces
were used to detect the presence of a face in [133],
eigenfeatures are used for the detection of features such
as eyes, mouth etc. Detection rates of 94%, 80%, and 56%
are reported for the eyes, nose and mouth, respectively, on
the large dataset with 7562 images.

Using a limited set of images (45 persons, two views
per person, corresponding to different facial expressions
such as neutral versus smiling), recognition experiments as
a function of number of eigenvectors for eigenfaces only
and for the combined representation were performed. The
eigenfeatures performed as well as eigenfaces; for lower
order spaces, the eigenfeatures fared better; when the com-
bined set was used, marginal improvement was obtained.
As summarized in Section III, both holistic and feature-
based mechanisms are employed by humans. The feature
based mechanisms may be useful when gross variations
are present in the input image; the authors’ experiments
support this.

The effectiveness of standardized KL coefficients such as
KL-IPAT and KL-FSAT has been illustrated in [11] using
two experiments. In the first experiment, the training and
testing samples were acquired under as similar conditions
as possible. The test set consisted of five samples from 20
individuals. The KL-IPAT had an accuracy rate of 85% and
the KL-FSAT had an accuracy rate of 91%. Both methods
misidentified the one example where there is a difference
in the wearing and not wearing of glasses between the
testing set and the training set. The second experiment
checks for feature robustness when there is a variation
caused by an error in the positioning of the target window.
This is an error usually made during image acquisition
due to changing conditions. The test images are created
by shifting the reference points in various directions by
one pixel. The variances for 4 and 8 pixels are tested.
The KL-IPAT having an error rate of 24% for the 4 pixel
difference and 81% for the 8 pixel difference. The KL-
FSAT had an 4% error rate for the 4 pixel difference and a
44% error rate for the 8 pixel difference. The improvement
is due to the shift invariance property in the Fourier
spectrum domain. The third experiment used the variations
in head positioning. The test samples were taken while the
subject was nodding and shaking his head. The KL-FSAT
showed high robustness over the KL-IPAT for the different
orientations of the head. Good recognition performance was
achieved by restricting the image acquisition parameters.
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Both the KL-IPAT and KL-FSAT have difficulties when
the head orientation is varied [11].

The effectiveness of SVD for face recognition has been
tested in [32], [69]. The optimal discriminant plane and
quadratic classifier of the normal pattern is constructed for
the 45 SV feature vector samples. The classifier is able
to recognize the 45 training samples of the nine subjects.
Testing was done using 13 photos which consisted of nine
newly sampled photos of the original test subjects with two
of one subject and three samples of the subject at different
ages. There was a 42.67% error rate which Hong feels was
due to the statistical limitations of the small number of
training samples [69].

In [32] the SV vector is compressed into a low dimen-
sional space by means of various transforms, the most
popular being an optimal discriminant transform based on
Fisher’s criterion. The Fisher optimal discriminant vector
represents the projection of the set of samples on a direction
«, chosen so that the patterns have a minimal scatter within
each class and a maximal scatter between classes in the
1D space. Three SV feature vectors are extracted from
the training set in [32]. The optimal discriminant transform
compresses the high-dimensional SV feature space to a new
r-dimensional feature space. The new secondary features
are algebraically independent and informational redundancy
is reduced. This approach was tested on 64 facial images
of eight people (the classes). The images were represented
by Goshtasby’s shape matrices, which are invariant to
translation, rotation, and scaling of the facial images and
are obtained by polar quantization of the shape [54]. Three
photographs from each class were used to provide a training
set of 24 SV feature vectors. The SV feature vectors
were treated with the optimal discriminant transform to
obtain new feature vectors for the 24 training samples. The
class center vectors were obtained using the second feature
vectors. The experiment used six optimal discriminant
vectors. The separability of training set samples was good
with 100% recognition. The remaining 40 facial images
were used as the test set, five from each person. Changes
were made in the camera position relative to the face, the
camera’s focus, the camera’s aperture setting, the wearing
or not wearing of glasses, and blurring. As with the
training set, the SV feature vectors were extracted, and the
optimal discriminant transform was applied to obtain the
transformed feature vector. Again good separability was
obtained with an accuracy rate of 100% [32].

Cheng et al. [31] develop an algebraic method for face
recognition using SVD and thresholding the eigenvalues
thus obtained to some value greater than a set threshold
value. They use a projective analysis with the training set
of images serving as the projection space. A training set in
their experiments consists of three instances of face images
of the same person. If A € R™*" represents the image,
and Ay) represents the jth face image of person i, then the
average image for person ¢ is given by (1/N) Ejvzl Ay).
Eigenvalues and eigenvectors are determined for this av-
erage image using SVD. The eigenvalues are thresholded
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to disregard the values close to zero. Average eigenvectors
(called feature vectors) for all the average face images are
calculated. A test image is then projected onto the space
spanned by the eigenvectors. The Frobenius norm is used as
a criterion to determine which person the test image belongs
to. The authors reported 100% accuracy when working with
a database of 64 face images of eight different persons.
Each person contributed eight images. Three images from
each person were used to determine the feature vector
for the face image in question. Eight such feature vectors
were determined. They state that the projective distance of
the testing image sample was markedly minimum for the
correct training set image.

The use of isodensity lines, i.e., curves of constant gray
level, for face recognition has been investigated in [98].
Such lines, although they are not directly related to the
3D structure of a face, do provide a relief image of the
face. Using images of faces taken with a black background,
a Sobel operator and some post-processing steps are used
to obtain the boundary of the face region. The gray level
histogram (an 8-bin histogram) is then used to trace contour
lines on isodensity levels. A template matching procedure is
used for face recognition. The method has been illustrated
using ten pairs of face images, with three pairs of pictures
of men with spectacles, two pairs of pictures of men with
thin beards, and two pairs of pictures of women. 100%
recognition accuracy was reported on this small data set.

3) Neural Networks Approach: The use of neural net-
works (NN) in face recognition has addressed several
problems: gender classification, face recognition, and clas-
sification of facial expressions. One of the earliest demon-
strations of NN for face recall applications is reported in
Kohonen’s associative map [84]. Using a small set of face
images, accurate recall was reported even when the input
image is very noisy or when portions of the images are
missing. This capability was demonstrated using optical
hardware by Psaltis’s group [6].

A single layer adaptive NN (one for each person in the
database) for face recognition, expression analysis and face
verification is reported in [128]. Named Wilkie, Aleksander,
and Stonham’s recognition device (WISARD), the system
needs typically 200400 presentations for training each
classifier, the training patterns included translation and
variation in facial expressions. Sixteen classifiers were used
for the dataset constructed using 16 persons. Classification
is achieved by determining the classifier that gives the
highest response for the given input image. Extensions
to face verification and expression analysis are presented.
The sample size is small to make any conclusions on the
viability of this approach for large datasets involving a large
number of persons.

In [51}, Golomb, Lawrence, and Sejnowski present a
cascade of two neural networks for gender classification.
The first stage is an image compression NN whose hidden
nodes serve as inputs to the second NN that performs
gender classification. Both networks are fully connected,
three-layer networks with two biases and are trained by
a standard back-propagation algorithm. The images used

(a) (b)

Fig. 8. Radius vectors and other feature points [22].

for testing and training were acquired such that facial
hair, jewelry and makeup were not present. They were
then preprocessed so that the eyes are level and the eyes
and mouth are positioned similarly. A 30 x 30 cropped
block of pixels was extracted for training and testing. The
dataset consisted of 45 males and 45 females; 80 were
used for training, with 10 serving as testing examples.
The compression network indirectly serves as a feature
extractor; in that the activities of 40 hidden nodes (in a
900 x 40 x 900 network) serve as features for the second
network, that performs gender classification. The hope is
that due to the nonlinearities in the network, the feature
extraction step may be more efficient than the linear KL
methods. The gender classification network is a 40 xnx 1
network, where the number n of hidden nodes has been 2, 5,
10, 20, or 40. Experiments with 80 training images and 10
testing images have shown the feasibility of this approach.
This method has also been extended to classifying facial
expressions into eight types.

Using a vector of 16 numerical attributes (Fig. 8) such as
eyebrow thickness, widths of nose and mouth, six chin radii,
etc., Brunelli and Poggio [21] also develop a NN approach
for gender classification. They train two HyperBF networks
[109], one for each gender. The input images are normalized
with respect to scale and rotation by using the positions of
the eyes which are detected automatically. The 16D feature
vector is also automatically extracted. The outputs of the
two HyperBF networks are compared, the gender label for
the test image being decided by the network with greater
output. In the actual classification experiments only a subset
of the 16D feature vector is used. The database consists of
21 males and 21 females. The leave-one-out strategy [45]
was employed for classification. When the feature vector
from the training set was used as the test vector, 92.5%
correct recognition accuracy was reported; for faces not in
the training set, the accuracy further dropped to 87.5%.
Some validation of the automatic classification results has
been reported using humans.

By using an expanded 35D feature vector, and one
HyperBF per person, the gender classification approach
has been extended to face recognition. The motivation for
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the underlying structure is the concept of a grandmother
neuron: a single neuron (the Gaussian function in the
HyperBF network) for each person. As there were rel-
atively few training images per person, a synthetic data
base was generated by perturbing around the average of
the feature vectors of available persons and the available
persons were used as testing samples. For different sets
of tuning parameters (coefficients, centers and metrics of
the HyperBF’s) classification results are reported. Some
corroboration of the caricatural behavior of the HyperBF
networks, by psychophysical studies, is also presented.

In [22], Brunelli and Poggio compare the merits of
both feature based and template based approaches. Their
feature based approach is motivated by [78] and [80].
They determine 35 features which are also used in [109]
[see also Fig. 8(a)]. They mention the use of various
classifiers to accomplish the task of matching these features,
namely Bayes, nearest neighbor, or the HyperBF. For the
template based approach they have selected various regions
of the face as templates and used a correlation based
matching technique [see Fig. 8(b)]. From their experiments
they concluded that the template based approach, though
computationally complex, was superior on their database
over the feature based approach. An accuracy of 100%
for the template based approach compared to 90% for the
feature based one.

The use of HyperBF networks for face recognition is
also reported in [21]. To remove variations due to changing
viewpoint, the images are first transformed using 2D affine
transforms. The transformation parameters are obtained by
using the detected positions of the eyes and mouth in the
given image and the desired positions of these features.
The transformed image is then subjected to a directional
derivative operator to reduce the effects of illumination. The
resulting image is multiplied by a Gaussian function and
integrated over the receptive field to achieve dimensionality
reduction. The MIT Media Lab database of 27 images, of
each of 16 different persons was used, with the images
of 17 persons being used for training, while the rest
were used as testing samples. A HyperBF was trained for
each person. An average accuracy of 79% was reported
compared with 90% accuracy when tested with human
subjects. By feeding the outputs of 16 HyperBF’s to another
HyperBF, significant reductions in error rates were reported.

[111] presents the results of work using a connectionist
model of facial expression. The model uses the pyramid
structure to represent image data. Each level of the pyramid
is represented by a network consisting of one input, one
hidden, and one output layer. The input layers of the
middle levels of the pyramid are the outputs of the previous
level’s hidden units when training is complete. Network
training at the lowest level is carried out conventionally.
Each network is trained using a fast variation of the back
propagation learning algorithm. The training pattern set
for the subsequent levels is obtained by combining and
partitioning the hidden units’ outputs of the preceding level.
The original images of the training set are partitioned
into blocks of overlapping squares. The overlapping blocks
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simulate the local receptive fields of the human visual
system. Each block consists of the set of block patterns
partitioned in the same positions over the image pattern
set. The data set for training consists of six hand drawn
faces with six different expressions: happiness, surprise,
sadness, anger, fear, and normal. The outer features of
each face are its shape and the ears. The inner features
are the eyebrows, the eyes, the nose, and the mouth.
Each face is drawn to be as dissimilar as possible from
the others. The testing set consists of the six training
faces and the images from the training set masked with a
horizontal bar across the upper, middle, and lower portions
of the face covering approximately 20% of the total image.
The horizontal bar is used to demonstrate the network’s
associative memory capability. The network has four levels.
Levels 1-3 consist of 25 input units, six hidden units, and
25 output units. The fourth level has 18 input units, eight
hidden units, and 25 output units. The network training
process at each level results in a different representation of
the original image data. The last level of the pyramid has the
leanest and most abstract representation. The representation
is viewed as a unique identification of the face and the
information it conveys. The network is able to successfully
recognize the members of the training set when tested on
them. The network poorly recognizes (50%) the various
masked, blurred, or distorted facial expressions. It is unable
to recognize the various masks of the happy face. The
error rate is the result of obtaining a totally different
abstract representation which the network has not learned.
On analysis of the hidden units, patches are found. The
patches block off some of the features of the faces and
appear unimportant to the hidden node. The hidden units’
internal representations show that many of them are in
the form of eigenfeatures where the features of the faces
are combined in an overlaying manner on top of each
other. The eigenfeatures are only a portion of all the
features. In the happy face the blocked patches of the
hidden units are mainly outside of the face while the others
are inside the face. This may be explained by the fact
that the happy face does not have many facial features
in common with the other faces in the training set. It
appears that the network developed a holistic representation
of the happy face so that it could be recognized. The leaner
representations of the face are automatically generated and
are a unique identification of the learned object.. The unique
representation may be associated with the original object in
the form of one-to-many. The model is able to successfully
identify the same face but not the masked faces of the same
type. The masking of areas shows where the network’s
learning is focused. It appears that the middle portion of
the face image is not as important as the upper and lower
portions and may be used to develop a focus of attention
[111].

The systems presented in [24] and [85] are based on
the dynamic link architecture (DLA). DLA’s attempt to
solve some of the conceptual problems of conventional
artificial neural networks, the most prominent problem
being the expression of syntactical relationships in neural
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Fig. 9. System for DLA.

networks. DLA’s use synaptic plasticity and are able to
instantly form sets of neurons grouped into structured
graphs and maintain the advantages of neural systems.
A DLA permits pattern discrimination with the help of
an object-independent standard set of feature detectors,
automatic generalization over large groups of symmetry
operations, and the acquisition of new objects by one-
shot learning, reducing the time-consuming learning steps.
Invariant object recognition is achieved with respect to
background, translation, distortion and size by choosing a
set of primitive features which is maximally robust with
respect to such variations. Both [24] and [85] use Gabor
based wavelets for the features. The wavelets are used as
feature detectors, characterized by their frequency, position,
and orientation. Two nonlinear transforms are used to help
during the matching process. A minimum of two levels,
the image domain and the model domain, are needed for
a DLA. The image domain corresponds to primary visual
cortical areas and the model domain to the intertemporal
cortex in biological vision. The image domain consists of a
2D array of nodes AL = {(z,a), where @ = 1,--- , F}.
Each node at position z consists of F' different feature
detector neurons (z, c) that provide local descriptors of the
image. The label « is used to distinguish different feature
types. The amount of feature type excitation is determined
for a given node by convolving the image with a subset
of the wavelet functions for that location. Neighboring
nodes are connected by links, encoding information about
the local topology. Images are represented as attributed
graphs. Attributes attached to the graph’s nodes are activity
vectors of local feature detectors. An object in the image
is represented by a subgraph of the image domain. The
model domain is an assemblage of all the attributed graphs,
being idealized copies of subgraphs in the image domain.
Excitatory connections are between the two domains and
are feature preserving. The connection between domains
occurs if and only if the features belong to corresponding
feature types. The DLA machinery is based on a data
format which is able to encode information on attributes
and links in the image domain and to transport that in-
formation to the model domain without sending the image
domain position. The structure of the signal is determined
by three factors: the input image, random spontaneous
excitation of the neurons, and interaction with the cells
of the same or neighboring nodes in the image domain.

Binding between neurons is encoded in the form of tempo-
ral correlations and is induced by the excitatory connections
within the image. Four types of bindings are relevant to
object recognition and representation: Binding all the nodes
and cells together that belong to the same object, expressing
neighborhood relationships with the image of the object,
bundling individual feature cells between features present
in different locations, and binding corresponding points in
the image graph and model graph to each other. DLA’s
basic mechanism, in addition to the connection parameter
between two neurons, is a dynamic variable (J) between
two neurons (i, j). J-variables play the role of synaptic
weights for signal transmission. The connection parameters
merely act to constrain the J-variables. The connection
parameters may be changed slowly by long-term synaptic
plasticity. The connection weights J;; are subject to a
process of rapid modification. J;; weights are controlled by
the signal correlations between neurons ¢ and j. Negative
signal correlations lead to a decrease and positive signal
correlations lead to an increase in J;;. In the absence
of any correlation, J;; slowly returns to a resting state.
Rapid network self-organization is crucial to the DLA. Each
stored image is formed by picking a rectangular grid of
points as graph nodes. A locally determined jet for each
of these nodes is stored and used as the pattern class.
New image recognition takes place by transforming the
image into the grid of jets, and all stored model graphs
are tentatively matched to the image. Conformation of the
DLA is done by establishing and dynamically modifying
links between vertices in the model domain. During the
recognition process an object is selected from the model
domain. A copy of the model graph is positioned in a central
position in the image domain. Each vertex in the model
graph is connected to the corresponding vertex in the image
graph. The match quality is evaluated using a cost function.
The image graph is scaled by a factor while keeping the
center fixed. If the total cost is reduced the new value is
accepted. This is repeated until the optimum cost is reached.
The diffusion and size estimation are repeated for increasing
resolution levels and more of the image structure is taken
into account. Recognition takes place after the optimal total
cost is determined for each object. The object with the
best match to the image is determined. Identification is a
process of elastic graph matching. In the case of faces,
if one face model matches significantly better than all
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competitor models, the face in the image is considered
as recognized. The system identifies a person’s face by
comparing an extracted graph with a set of stored graphs. In
[24] the experiment consists of a gallery of over 40 different
face images. With little effort to standardize the images,
the system’s recognition success is remarkably consistent.
The system shows that a neural system gains power when
provided with a mechanism for grouping. The system used
in [85] has a larger gallery of faces and recognizes them
under different types of distortion and rotation in depth,
achieving less than 5% false assignments. Lades et al.
state that when a clear criterion for the significance for the
recognition process is determined, all false assignments are
rejected and no image is accepted if its corresponding model
is temporarily removed from the gallery. This means that
the capacity of the gallery to store distinguishable objects
is certainly larger than its present size. No limits to this
capacity other than a linear increase in computation time
have been encountered so far. Most of the time is spent on
image transformation and on optimizing the map between
the image and individual stored models [24], [85].

4) Feature Matching Approach: Manjunath et al. [88]
store feature points detected using the Gabor wavelet
decomposition into data files for each image. This greatly
reduces the storage requirements for the database. Typically
35-45 points per face image are generated and stored. The
identification process utilizes the information present in
a topological graphic representation of the feature points.
After compensating for differing centroid locations, two
cost values are evaluated. One is the topological cost and
the other a similarity cost.

The identification process utilizes the information present
in a topological graphic representation of the feature points.
The feature points are represented by nodes V; where
i = {1, 2, 3,---}, a consistent numbering technique. The
information about a feature point is contained in {S,q},
where S represents the spatial location and g is the feature
vector defined by

qi = [Ql(xa Y, 01)7' t 7Qi($ay’91\/)]

corresponding to the sth feature point. The vector g; is a
set of spatial and angular distances from feature point ¢ to
its N nearest neighbors denoted by Q;(z,y, 8;), where j is
the jth of the N neighbors. N; represents a set of neighbors
which are of consequence for the feature point in question.
The neighbors satisfying both maximum number N and
minimum Euclidean distance d;; between two points V; and
V; are said to be of consequence for the ith feature point.

To identify an input graph with a stored one which is
different, either in total number of feature points or in the
location of the respective faces, we proceed in a stepwise
manner. If 7,7 refer to nodes in the input graph 7 and
z',y’,m',n’ refer to nodes in the stored graph O then the
two graphs are matched as follows:

a1n

1) The centroids of the feature points of Z and O are
aligned.
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2) Let N; be the éth feature point {V;} of Z. Search for
the best feature point {V;/} in O using the criterion
Sir =1-—

LA i S (12)

llaall llqa || men:

3) After matching, the total cost is computed taking into
account the topology of the graphs. Let nodes ¢ and j
of the input graph match nodes ¢’ and j’ of the stored
graph and let § € N; (ie., V; is a neighbor of V).
Let piirj50 = min {dij/di/jr y d,'ljl/dij}. The topology
cost is given by

Ti,‘l]'j/ =1- Diitjj' - (13)

4) The total cost is computed as

Ci1(Z,0) = Z Siiv + /\tz Z Tiurjyr

i JEN;

(14)

where \; is a scaling parameter assigning relative
importance to the two cost functions.

5) The total cost is scaled appropriately to reflect the
possible difference in the total number of the feature
points between the input and stored graph. If nz,no
are the numbers of feature points in the input and
stored graph respectively, then the scaling factor
sy = max{nz/ne,no/nr} and the scaled cost is
C(Z,0) = s;C(Z,0).

6) The best candidate is the one with the least cost, i.e.,
it satisfies

C(Z,0*) = 11(191;1 Cc(Z,0). (15)

The recognized face is the one that has the minimum of
the combined cost value. An accuracy of 94% is reported.
The method shows a dependency on the illumination di-
rection and works on controlled background images like
passport and drivers license pictures. Fig. 10 shows a set
of input and identified images for this method.

Seibert and Waxman [116] have proposed a system for
recognizing faces from their parts using a neural network.
The system is similar to a modular system they have
developed for recognizing 3D objects {117] by combining
2D views from different vantage points; in the case of
faces, arrangement of features such as eyes and nose play
the role of the 2D views. The processing steps involved
are segmentation of a face region using interframe change
detection techniques, extraction of features such as eyes,
mouth, etc., using symmetry detection, grouping and log-
polar mapping of the features and their attributes such
as centroids, encoding of feature arrangements, cluster-
ing of feature vectors into view categories using ART 2,
and integration of accumulated evidence using an aspect
network.

In a subsequent paper Seibert and Waxman [118] exploit
the role of caricatures and distinctiveness (summarized in
Section III of the report) in human face recognition to
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Fig. 10. Some results of the recognition system in Manjunath et al.

enhance the capabilities of their previously reported face
recognition system. Both of their papers are preliminary
reports and lack experimental validation using a large
dataset of faces.

Huang et al. have been working on a system for detection
and recognition of human faces in still monochromatic
images. A rule-based algorithm is first used to locate faces
in the image [144]. Then each face is recognized by a
neural network like structure called Cresceptron [139]. The
Cresceptron has a multi-resolution pyramid structure. It is
on the surface similar to Fukushima’s Neocognitron; how-
ever, the learning in cresceptron is completely automatic,
and incremental. In a small-scale experiment involving 50
persons, the Cresceptron performs well.

D. Range Images

The discussion so far has revolved around face recogni-
tion methods and systems which use data obtained from
a 2D intensity image. Another topic being studied by
researchers is face recognition from range image data. A
range image contains the depth structure of the object
in question. Although such data is not available in most
applications, it is still important to note the benefit of
the added information present in range data in terms of
accuracy of the face recognition system. For further study,
the reader is encouraged to read some of the selected
papers presented in the bibliography at the end of this
report.
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(b

Fig. 11. (a) Depth of face parameterized as f(6,y) (Leonard Nimoy as Spock), (b) rendered
polygonal model of face composed from coarse sampling of depth data [52].

Gordon in [52] describes a template based recognition
system involving descriptors determined from curvature
calculations of range image data. The data is obtained from
a rotating laser scanner system with resolution of better then
0.4 mm. Segmentation is done by classifying surfaces into
planar regions, spherical regions and surfaces of revolution.
The image data is stored in a cylindrical coordinate system
as f(6,y). An example of such data is shown in Fig. 11. At
each point on the surface of the curve the magnitude and
direction of the minimum and maximum normal curvatures
are calculated. Since the calculations involve second order
derivatives, smoothing is required to remove the affect
of noise in the image. This smoothing is achieved by a
Gaussian smoothing filter.

The segmentation produces four surface regions: one
convex, one concave and two saddle regions. Ridges and
valley lines are determined by obtaining the maxima and
minima of the curvatures. These as a whole represent the
information pertinent to feature location for an individual.
Next comes a comparison strategy as applied to face
recognition.
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e The nose is located.

» Locating the nose facilitates the search for the eyes
and mouth.

» Other features such as forehead, neck, cheeks, etc., are
determined by their surface smoothness (unlike hair or
eye regions).

« This information is then used for depth template com-
parison. Using the location of the eyes, nose and mouth
the faces are normalized into a standard position.
This standard position is reinterpolated to a regular
cylindrical grid and the volume of space between
two normalized surfaces is used as the criterion for
a match.

The system was tested on a dataset of 24 images of eight
persons with three views of each. The data represented four
male and four female faces. Sufficient feature detection was
achieved for 100% of these faces. For recognition 97%
accuracy is reported for individual features rather than the
whole face (which yielded 100% accuracy). In a related
work [53], the process of finding the features is formalized
for recognition purposes.
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E. Summary

Significant progress has been achieved in segmentation,
feature extraction and recognition of faces in intensity
images. As range images or stereo pairs may not be
available in most of the commercial and law enforcement
applications, the face recognition problem, by and large,
may be viewed as a 2D image matching and recognition
problem with provisions for two or three views of a
person’s face. Given that in mug shots, drivers’ licenses,
and personal ID cards, the backgrounds are relatively
uncluttered, and only the face is present, the segmentation
of the face image, for subsequent processing, could be
reasonably handled by any one of the methods in Section
IV-A. Segmentation becomes more difficult when beards,
baldness are present; also if a face has to be segmented
in a cluttered scene where other objects are present, the
techniques presented in [55] and [123] may be applicable.
It should be pointed out that a strict bottom up procedure
may use segmentation as the first step. Techniques based on
KL transforms often sidestep this issue, treating the entire
image including the background as a pattern. This strategy
may be appropriate when similar homogenous backgrounds
are present, but if widely varying backgrounds are present,
more KL features will be required.

As discussed in Section III, both holistic and independent
features contribute to face recognition. The notion of eigen-
faces, and eigenfeatures such as eigenmouths, eigeneyes,
etc., captures both holistic and independent features in a
unified way. Methods based on deformable templates, and
their variants for the extraction of eyes and mouth, suffer
from dependence on a large number of parameters and also
depend on good initial placement of the different templates.
One of the more serious concerns with the deformable
templates approach is its computational complexity. The
eigenfeature approach looks more promising as one can
roughly construct a region around an eye or both eyes and
mouth and perform eigenanalysis. From an aesthetic point
of view, the eigenapproach is not appealing as structure
information is coded purely in terms of numbers, but
has advantages of being rather straightforward from a
computational point of view. The features extracted using
Gabor wavelets capture some types of holistic attributes in
that they represent the face as a cluster of points; location
of these points in and around eyes, mouth, etc., could
be quite accidental, although one can use masks around
these regions to highlight point features. The numerical
features extracted from eyes, nose, mouth, and chin regions
concentrate more on the lower parts of the face region,
which may be adequate for gender classification. It appears
that in face recognition, the upper parts of the face play a
more important role.

There is not much of a consensus as to what should
be coded to represent a face. The studies alluded to in
Section III point out the significance of different internal
features, but do not say much about how these features
are coded numerically or in subjective terms such as thick
eyebrow, wide nose, narrow mouth, etc. Many systems

that do face reconstruction for witness recall utilize such
subjective descriptions.

In the face recognition and identification area the eigen-
faces and eigenfeatures approach of Pentland and his stu-
dents seems to be the most tested system, using several
thousands of images. Their eigenfunction approach has
been shown to be useful in personal identification search
through a database, recognition from multiple views, etc.
The interesting aspect of this approach is that one can
develop multiple eigenrepresentations corresponding to not
only different views but also corresponding to different
races, age groups, gender, etc. It is almost always true that
in mug shot and other similar applications such information
is available. This enables efficient representation of a po-
tentially very large number of people. It is our view that the
eigenface and feature point based approaches are the most
developed and tested ones yet and deserve very serious
consideration for evaluation in real applications involving
hundreds of thousands of examples.

Techniques based on NN also deserve more study. It is
our view that NN-based methods can potentially incorporate
both numerical and structural information relevant to face
recognition; all of the existing work on NN approaches
to FRT have demonstrated this on limited sets of images.
In addition, the ability to generalize and recognize using
incomplete information gives NN classifiers significant
advantages over the simple minimum distance classifiers
used by Pentland’s group. By appropriately combining the
eigenfaces and eigenfeatures with NN classifiers, it will be
possible to improve the performance of Pentland’s system.
In any case, the usefulness of NN classifiers needs to be
evaluated on significantly larger datasets than reported in
the literature.

In the final stages of the mug shot matching problem,
finer attributes of facial features are usually matched for
identification purposes. The point features used in [88]
which correspond to points of high curvature, may serve the
role of “minutiae” in the fingerprint matching problem. The
usefulness of point features and appropriate recognizers and
identifiers that use them should be studied and evaluated
on large datasets.

Owing to the cost of the equipment and the need for
easy maintenance, intensity based systems are preferred in
law enforcement applications. Although range information
is richer than the 2D intensity array, we feel that cost
considerations will make range image based techniques less
attractive for field use.

V. FACE RECOGNITION FROM PROFILES

Another area for recognition of faces involving intensity
images is that of profile images. Research in this area is
basically motivated from requirements of law enforcement
agencies with their mug shot databases. Profile images
provide a detailed structure of the face that is not seen
in frontal images. In particular, the size and orientation
of the nose is delineated. Face recognition from profiles
concentrates on locating points of interest, called fiducial
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Fig. 12. The nine fiducial points of interest for face recognition
using profile images (similar to figure in [61]).

points (Fig. 12). Recognition involves the determination of
relationships among these fiducial points.

Kaufman and Breeding [79] developed a face recognition
system using profile silhouettes. The image acquired by a
black and white TV camera is thresholded to produce a
binary, black and white image, the black corresponding to
the face region. A preprocessing step then extracts the front
portion of the silhouette that bounds the face image. This is
to ensure variations in the profile due to changes in hairline.
A set of normalized autocorrelations expressed in polar
coordinates is used as a feature vector. Normalization and
polar representation steps insure invariance to translation
and rotation. A distance weighted k-nearest neighbor rule
is used for classification. Experiments were performed on a
total of 120 profiles of ten persons, half of which were used
for training. A set of 12 autocorrelation features was used
as a feature vector. Three sets of experiments were done.
In the first two, 60 randomly chosen training samples were
used, while in the third experiment 90 samples were used in
the training set. Experiments with varying dimensionality
of the training samples are also reported. The best per-
formance (90% accuracy) was achieved when 90 samples
were stored in the training set and the dimensionality of the
training feature vector was four. Comparisons with features
derived from moment invariants [38] show that the circular
autocorrelations performed better.

Harmon and Hunt [61] presented a semi-automatic recog-
nition system for profile-posed face recognition by treating
the problem as a “waveform” matching problem. The
profile photos of 256 males were manually reduced to
outline curves by an artist. From these curves, a set of
nine fiducial marks (see Fig. 12) such as nose tip, chin,
forehead, bridge, nose bottom, throat, upper lip, mouth and
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lower lip were automatically identified. The details of how
each of these fiducial marks was identified are given in [61].
From these fiducial marks, a set of six feature characteristics
were derived. These were protrusion of nose, area right of
base line, base angle of profile triangle, wiggle, distances
and angles between fiducials. A total of eleven numerical
features were extracted from the characteristics mentioned
above. After aligning the profiles by using two selected
fiducial marks, an Euclidean distance measure was used for
measuring the similarity of the feature vectors derived from
the outline profiles. A ranking of most similar faces was
obtained by ordering the Euclidean norms. In subsequent
work, Harmon et al. [63] added images of female subjects
and experimented with the same feature vector. By noting
that the values of the features of a face do not change very
much in different images and that the faces corresponding
to feature vectors with a large Euclidean distance between
them will be different, a partitioning step is included to
improve computational efficiency.

[63] used the feature extraction methods developed in
[61] to create 11 feature vector components. The 11 features
were reduced to 10, because nose protrusion is highly cor-
related with two other features. The 10D feature vector was
found to provide a high rate of recognition. Classification
was done based on both Euclidean distances and set parti-
tioning. Set partitioning was used to reduce the number of
candidates for inclusion in the Euclidean distance measure
and thus increase performance and diminish computation
time. Reference [62] is a continuation of the research done
in [61] and [63]. The aim is basic understanding of how to
achieve automatic identification of human face profiles, to
develop robust and economical procedures to use in real-
time systems, and to provide the technological framework
for further research. The work defines 17 fiducial points
which appear to the best combination for face recognition.
The method uses the minimum Euclidean distance between
the unknown and the reference file to determine the correct
identification of a profile, and uses thresholding windows
for population reduction during the search for the reference
file. The thresholding window size is based on the average
vector obtained from multiple samples of an individual’s
profile. In [62], the profiles are obtained from high contrast
photography from which transparencies are made, scanned,
and digitized. The test set consists of profiles of the same
individuals taken at a different setting. The resulting 96%
rate of correctness occurs both with and without population
reduction [62].

Wu and Huang [142] also report a profile-based recogni-
tion system using an approach similar to that of Harmon and
his group [61], but significantly different in detail. First of
all, the profile outlines are obtained automatically. B-splines
are used to extract six interest points. These are the nose
peak, nose bottom, mouth point, chin point, forehead point,
and eye point. A feature vector of dimension 24 is con-
structed by computing distances between two neighboring
points, length, angle between curvature segments joining
two adjacent points, etc. Recognition is done by comparing
the feature vector extracted from the test image with stored
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vectors using a sequential search method and an absolute
norm. The stored features are obtained from three instances
of a person’s profile; in all, 18 persons were used for the
training phase. The testing dataset was generated from the
same set of persons used in training, but from different
images. In the first attempt 17 of the 18 test images were
correctly recognized. The face image corresponding to the
failed case was relearned (by including the failed image
feature vector in the training set). Another instance of this
person was then correctly recognized using the expanded
dataset.

Traditional approaches such as Fourier descriptors (FD)
have been used [146] for recognizing closed contours.
Using p-type FD’s that can describe open as well as
closed curves, Aibara et al. [9] describe a technique for
profile-based face recognition. The p-type FD’s are derived
by discrete Fourier transforming normalized line segments
from profiles, are invariant to parallel translation or enlarge-
ment/reduction, and satisfy a simple relation between the
original and rotated curves. The training set was generated
from three sittings of 90 persons (all males) with the
fourth sitting used as the testing data. The p-type FD’s
(ten coefficients) obtained from three sittings were averaged
and used as prototypes. Using four coefficients, 65 persons
were recognized perfectly. For the full set of 90 test
samples, close to 98% accuracy was obtained using ten
coefficients.

A. Summary

Profile based recognition has not been pursed with as
much vigor as frontal face recognition. Given that mug
shots have at least one side view, one could pursue a
combination of the eigenapproach for side views of the
face, as done in Pentland et al. [104] and a similar approach
for the profiles. The p-type FD’s, used in [9] for profiles,
belong to a class of methods similar to eigenanalysis
of waveforms. The profile-based approaches, reported in
the literature, have not been tested extensively on large
datasets. An evaluation of the eigenapproach for sideview
and profiles deserves serious investigation on large mug
shots datasets.

VI. FACE RECOGNITION FROM AN IMAGE SEQUENCE

In surveillance applications, face recognition and identi-
fication from a video sequence is an important problem. Al-
though over 20 years of active research on image sequence
analysis is available [1], [2], {4], [71], [134], very little
of that research has been applied to the face recognition
problem. We have identified at least four important areas
relevant to FRT where techniques from image sequence
analysis are useful:

1) Segmentation of moving objects (humans) from a
video sequence

2) Structure estimation

3) 3D models for faces

4) Nonrigid motion analysis.

Current attempts [117], [133] at segmenting moving faces
from an image sequence have used pixel based, simple
change detection procedures based on difference images.
These techniques may run into difficulties when multiple
moving objects and occlusion are present. Flow field based
methods for segmenting humans in motion is reported in
[121]. If there are situations where both camera and objects
are moving, more sophisticated segmentation procedures
may be required.

There is a large body of existing literature in image
sequence analysis on segmenting/detecting moving objects
from a stationary or moving platform. Methods based on
analysis of difference images, discontinuities in flow fields
using clustering, line processes or Markov random field
models are available. Some of these techniques have been
extended to the case when both the camera and objects are
moving.

The problem of structure from motion is to estimate 3D
depth of points on objects from a sequence of images.
Since in most cases involving surveillance applications, it
is nearly impossible to move the camera along a known
baseline, thus techniques such as motion stereo may not
be useful. The structure from motion problem has been
approached in two ways. In the differential method, one
computes some form of a flow field (optical, image or nor-
mal) and from the computed flow field estimates structure or
depth of visible points on the object. The bottleneck in this
approach is the reliable computation of the flow field. In the
discrete approach, a set of features such as points, edges,
corners, lines and contours are tracked over a sequence of
frames, and the structure of these features is computed.
The bottleneck here is the correspondence problem—the
task of extracting and matching features over a sequence
of frames. It should be pointed out that in both differential
and discrete approaches, the parameters that characterize
the motion of the object jointly appear along with the
structure parameters of the object. In FRT, the motion
parameters may be useful in predicting where the object will
appear in subsequent frames, making the segmentation task
somewhat easier. The usefulness of structure information
is in building 3D models for faces and possibly using the
models for face recognition in the presence of occlusion,
disguises and face reconstruction. It should be pointed
out that if only a monocular image sequence is available,
the depth information is available only up to a scaling
constant; if binocular image sequences are available, one
can get absolute depth values using stereo triangulation.
Given that laser range finders may not be practical, for
surveillance applications, binocular image sequences may
be the best way to get depth information. Another point
worth observing is that when discrete approaches are used,
the depth values are available only at sparse points requiring
interpolation techniques; when flow based methods are
used, dense depth maps can be constructed.

Over the last 20 years, hundreds of papers dealing with
structure from motion have appeared in the literature. It
is beyond the scope of this paper to even include a brief
summary of major techniques. We simply list books [68],
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(711, [92], [134], [138], [147] and review papers [8], [91],
[951-{97] here; papers that describe major approaches are
listed in the additional bibliography.

3D models of faces have been employed [10], [23],
[87] in the model based compression literature by several
research groups. Such models are very useful for applica-
tions such as witness face reconstruction, reconstruction of
faces from partial information and computerized aging. 3D
models of faces could also be useful for face recognition
in the presence of disguises.

Another area of relevance to FRT is the motion anal-
ysis of nonrigid objects [72], [93], [103], [130]. There is
emerging work in image sequence analysis dealing with
nonrigid objects with emphasis on medical applications.
Some of the ongoing work on nonrigid motion analysis will
be useful in face recognition. An application of nonrigid
motion to face recognition is reported in Yacoob and
Davis’s [143] approach for recognizing facial expressions
and actions from image sequences. Their work focuses
on six universal emotion expressions (i.e., anger, disgust,
fear, happiness, sadness, and surprise), and detection of eye
blinking. The approach consists of: spatial tracking of face
features, optical flow computation of these features, and
psychologically motivated analysis of these spatio-temporal
results. The system has been successfully employed to
classify the expressions of 30 subjects with a total of 120
instances of the above six emotions.

In sum, we feel that segmentation of moving persons
from a video is the most important area in image se-
quence analysis with direct applications to face recognition.
Structure from motion, 3D modeling of faces and nonrigid
motion analysis potentially offer new solutions to various
aspects of the face recognition and reconstruction problem.
In the next subsection, we will briefly summarize the
relevant literature on the problem of segmenting moving
objects from an image sequence.

A. Segmentation

In [17], a template based approach is used to locate and
track a moving head in a video sequence. This approach
derives its motivation from the view based approach of
[104]. It utilizes the minimum number of different templates
of a face determined by analysis of geometrical transfor-
mations of a face over parameters such as translation, large
rotation, scaling etc. The minimum set is called the face
set topology. Restrictions on the transformation parameters
lead to monotone regions within which variations of the
parameter values monotonically ascend to the exact match.
A coarse to fine approach is used to zero in on the most
likely match viz-a-viz the parameter in question. On the
coarsest scale a rough estimate of the probable parameter
values is determined through a correlation match. This
rough estimate is fine tuned in successive finer scales by
changing the acceptance threshold. They authors describe
a system which locates and then tracks a moving head in
a video sequence using the above approach. It was used to
test both the translation as well as the rotational accuracy of
the algorithm. In the case of translation the authors reported
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error with standard deviation in horizontal direction of 4.1
pixels and in the vertical direction of 2.0 pixels. For the
orientational accuracy on a test set of 189 images with nine
views of 21 people evenly spaced from —90° to 90° along
the horizontal plane, they reported an error with the average
standard deviation of 15°.

As noted earlier, thresholding of frame differences is
one of the simplest methods for detecting moving objects.
Several of the earlier papers [75]-[77], [96] have analyzed
difference images to draw inferences as to whether an
object is approaching, receding, translating, etc. An exam-
ple of face location from a video sequence using simple
change detection algorithms based on difference images is
shown in Fig. 13. Analysis of difference images becomes
complicated when occlusion and illumination changes are
present or when the camera is moving. More sophisticated
techniques for the segmentation of moving objects rely
on analyzing optical flow field or its variations. Optical
flow is the distribution of apparent velocities of brightness
patterns in an image {70] and may arise from relative
motion of objects and the viewer. Analysis of optical flow
field is useful for estimating the egomotion of the observer,
segmentation/detection of moving objects, image stabiliza-
tion and estimation of depth for scene reconstruction and
collision avoidance. Although computation of optical flow
has been studied in the image sequence coding literature
for nearly 25 years, it has received significant attention
in the computer vision literature only over the last 15
years. Since computation of the optical flow field involves
two unknowns (velocity components along the = and y
directions) but only one measurement (intensity) at each
pixel, additional constraints such as smoothness of flow are
enforced to find a solution to what is essentially an ill-
posed problem. Such ill-posed problems are handled using
the regularization approach [110], [132]. Horn and Schunck
[70] developed an iterative method for computing optical
flow field using the regularization approach. Subsequently
Anandan [13] has presented hierarchical approaches to the
computation of the optical flow field. The literature on
computation of optical flow is quite extensive. We refer
the reader to other significant papers by Enklemann [42],
Glazer (48], Heeger [66], Hildreth [68], and Fleet and
Jepson {44]. Accurate computation of optical flow is still an
unsolved problem leading researchers into computation of
other flow fields such as image flow [122], [129], [136] and
normal flow [12]. Detailed discussion of the relative merits
of the computation and interpretation of different types of
flow field patterns is beyond the scope of this report. A
systematic evaluation of methods that compute optical flow
may be found in [15].

Given that an accurate flow field is available, several
techniques are available for detecting motion boundaries
or clustering of flow fields. Adiv [7] first partitions the
computed flow field into connected segments of flow vec-
tors, where each segment is generated by rigid motion of
a planar surface. Subsequently, segments coming from a
rigid object are grouped. Grouping is done by using the
motion coherency of the planar surfaces. From the grouped
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Fig. 13. Locating the head from a video sequence applying the method of Pentland et al. [133].

flow fields, motion and structure parameters are computed
under the assumptions the field of view (FOV) is narrow
and the images of moving objects are small with respect
to the FOV and that the optical flow field is computed
from monocular, noisy imagery. Thompson and Pong [131]
present algorithms for the detection of moving objects from
a moving platform. Under various assumptions about the
camera motion (the complete camera motion is known, only
the rotation or translation is known, etc.), several versions
of motion detection algorithms are presented with examples
drawn from indoor scenes.

Analysis of optical flow for detecting motion bound-
aries and subsequently for motion detection requires the
availability of accurate estimates of optical flow. But to
obtain these accurate estimates, we need to account for
or model the motion discontinuities in the flow field due
to the presence of moving objects. Simultaneous com-
putation of optical flow and modeling of discontinuities
has been addressed by several research groups [67], [73],
[94]. The central theme of this approach is to model
the discontinuities using the “line processes” of Geman
and Geman [46], pose the computation of optical flow
in a Bayesian framework, and derive iterative techniques
from the application of an optimization procedure such

as simulated annealing [46], maximum posterior marginal
[90], and iterated conditional mode [16]. Implementation of
these algorithms using analog VLSI hardware is addressed
in [73], [83]. A recent paper [83] presents a multiscale
approach with supporting physiological theory for the com-
putation of optical flow. Other significant papers that deal
with segmentation, motion detection from optical flow and
normal flow may be found in [26], [36], [102], {115], [126],
[135], [141], [148].

Two algorithms that use models of human motion for the
purpose of segmentation are described in [101], [121]. An
algorithm for the detection of moving persons from normal
flows is also described in [99].

VIL. APPLICATIONS

Current applications of FRT include both commercial
and law enforcement agencies. Although we have not
been able to find many publications detailing commercial
applications nevertheless a brief description of possible
application areas is given. For the case of law enforcement
agencies the emphasis has been on face identification,
witness recall, storage and retrieval of mug shots and user
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interactive systems. Papers describing these applications are
summarized.

A. Commercial Applications

Commercial application of face recognition technology
may soon become more important economically than law
enforcement applications. This has the potential for dras-
tically reducing the cost of face recognition in law en-
forcement. Bank cards, both credit cards and ATM cards,
need a better means of user identification. Insurance for
ATM transactions costs about 1.5 cents per transaction;
this amounts to several billion dollars per year. Encoding
each card with facial features could provide an identification
method which would be very effective in improving bank
card fraud statistics.

The advantages of facial identification over alternative
methods, such as fingerprint identification, are based pri-
marily on users convenience and cost. Facial recognition
can be corrected in uncertain cases by humans without
extensive training. The development of multi-media com-
puting promises to make low cost video input devices
available for PC’s. This should allow a facial image to
be acquired by any PC based cash register systems. For
systems of this kind to be widely accepted, standard PC
compatible methods for facial recognition must be avail-
able. If a low cost method for acquiring and encoding
facial images is developed, then this technology can also be
applied to provide a low cost booking station technology.

B. Law Enforcement

The basic approach to the mug shots problem is for the
system to compare features from the target with those stored
in the database. The nature of the target image relative to
the images in the database is crucial and determines the
difficulty of the overall procedure. The target may be a
mug-shot or from another photographic source and may
need to be rotated before the features can be extracted
and compared to the mug-file images. In [80] ten feature
distances are measured to code nine features with each
feature being a distance divided by the nose length. It was
found that 92% of the variation in the normalized data could
be explained by five components. Similarity measures are
used in sequencing algorithms with geometric coding of
features. The objective of this approach is to sequence the
photographs in the mug shots album on the basis of similar-
ity to the target. The algorithm’s design must consider the
precision and accuracy of the measurements and develop
appropriate scales for the components of the feature vector.
Algorithm design is concerned with the sequence in which
selections are made and how to minimize errors in the face
description. The matching algorithm uses a window for
each feature and selects all the images that fall within the
window. A larger window permits more of the database’s
population to fit, while a smaller window increases the
probability that an error in coding a feature will cause the
correct image to be missed during the search. Harmon et
al. [62], using geometric feature codes of images, present
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a matching algorithm to eliminate the mismatches, and a
sequencing algorithm on the remaining subset achieved
“nearly perfect” identification for a population of over 100
faces.

In [86] Laughery et al. deal with the storage and retrieval
of mug shots. Three distinctions are made in the prototype
development efforts, the nature of the target image that
serves as input to the search, the method of coding the
faces, and the pose position of the faces in the mug shots
album. Three prototype systems characterized by varying
methods of interaction and input are reviewed in this
paper. Laughery et al. also review the different interactive
and automatic measurement algorithms for locating and
measuring facial features.

The initial forensic evidence is often a witness’ recall
of the culprit’s appearance. Verbal descriptions of people’s
faces very often lack detail. In [120] two factors that might
affect retrieval—distinctiveness of target face and position
in the album—were independently varied. Distinctive faces
are easier to remember than nondistinctive faces. Target
faces occurring later in the album are believed to be
more difficult to detect than those encountered earlier
in the search. The faces were rated on a set of five-
point descriptive scales. The scales were derived from the
analysis of free descriptions of a different set of faces.
The physical measurements corresponding to the features
which had been rated were taken from the faces, and these
were converted to values on five-point scales using linear
regression techniques. The complete record for each face
comprises 47 face parameters plus the age. Thirty-eight of
the parameters are five-point scale parameters (breadth of
face, length of hair, eye color), and nine are dichotomous
parameters which code for the presence or absence of facial
hair, peculiarities, and accessories. Age is coded on five-
point scale. The database consists of 1000 photographs of
males between 18-70 taken under controlled conditions.
Three photographs were taken, frontal view, profile, and %
view. Four nondistinctive and four distinctive faces were
chosen from the set. Eight paid subjects were shown one
of the % view test photographs for 10 s, provided a detailed
description of the photograph, and were assigned randomly
to either the computer or album search group. There were
four albums in which there were four photographs per page
and 250 pages. Each photograph appeared four times within
an album. The computer search was performed using the
subjects’ descriptions and ratings and could be changed and
repeated up to four times. The computer search retrieval rate
for the distinctive faces was 75% and for the nondistinctive
faces 69%. The rate for the album searches was 78% for the
distinctive faces and 44% for the nondistinctive faces [120].

In [59] Haig presents a system that can insert new targets
into storage, control and change the intensities both locally
and globally, move the targets around, change their size
and orientation, present them for a wide range of fixed time
intervals, run experiments automatically, collect data, and
analyze the results. Haig’s database consists of 100 target
faces, taken under reasonably standardized conditions from
the direct frontal aspect. The pictures are registered such
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that the inter-pupilary distance is 30 pixels. The goal of
face distortion experiments is to measure the sensitivity of
adult observers to slight positional changes of prominent
facial features. Each target face is subjected to the same
operations, in which certain features are moved by defined
amounts. Greatest sensitivity is to the movement of the
mouth upward by 1.2 pixels, close to the visual acuity
limit. In other experiments, features are interchanged among
four different faces. The head outline is the major focus of
attention when four features are interchanged. A changed
head outline, while maintaining the inner features, very
strongly influences the observer’s responses. Fixing both
the head and the eyes shows a dominance in the mouth over
the nose. These experiments establish a clear hierarchy of
feature saliency in which the head’s outline plays a major
role. In the distributed aperture experiments, Haig attempts
to find what constitutes a facial recognition feature. The
technique used implies that all parts of the face are equally
likely to be masked or unmasked in any combination. The
program selects one of the four target faces at random
and presents the target to a random number of apertures
with their actual addresses selected at random from the
38 possible addresses. An analysis of results revealed a
very high proportion of correct responses across the eyes-
eyebrows and across the hairline at the forehead. Few
correct responses may be seen around the side of the
temples and at the mouth, and the lower chin area is clearly
not a strong recognition feature.

Starkey [127] presents an overview of work done using
96 police photographs. The images of the faces are nor-
malized by fixing the pupil distance at 80 pixels. A target
face is chosen at random and a neural network is trained
to recognize it. The correct face is identified from among
the 96 photos 100% of the time. With the addition of noise
levels of 5% and 10% to the target image, the correct face is
found 62.5% and 36.5% of the time. In an experiment using
100 faces, 43 noses are used to train the neural network to
find features. The net is able to find the nose feature within
2 pixels using a Euclidean metric. In profile analysis, a set
of 36 profiles is prepared using Fourier descriptors. Cluster
analysis is used to group them by similarity. The descriptors
from a profile can be displayed with other data such as
height, age, sex, etc. in the form of a histogram or bar-code
and may be used to increase search accuracy.

VIII. EVALUATION OF A FACE RECOGNITION SYSTEM

In addition to the material contained in this paper, pre-
vious work on the evaluation of OCR and fingerprint
classification systems [27], [58] provides insights into how
the evaluation of recognition algorithms and systems is
most efficiently performed. One of the most important
facts learned in previous evaluations is that large sets of
test images are essential for adequate evaluation. It is
also extremely important that the sample be statistically as
similar as possible to the images that arise in the application
being considered. Scoring should be done in a way which
reflects the costs or other system requirement changes

that result from errors in recognition. System reject-error
behavior should be studied, not just forced recognition.

In planning these evaluations, it is also important to keep
in mind that pattern recognition is not governed by a formal
theory, as physics or mathematics is, which allows clearly
applicable governing principles to determine the extent to
which results derived form one set of applications can be
applied to other applications. The operation of these sys-
tems is statistical, with measurable distributions of success
and failure. The specific values in these distributions are
very application-dependent and no existing theory seems to
allow their prediction for a new application. This strongly
suggests that the most useful form of evaluation is one
based as closely as possible on a specific application.

A. Evaluation Requirements

1) Accuracy Requirements: The face recognition applica-
tions to be evaluated here will usually take the form of
a computer search of a large set of face images which
generates a list of possible match candidates which are
evaluated by the users of the system. In this kind of
application accuracy requirements for the face recognition
system are bounded by two factors: 1) the acceptable
probability of missed recognition (the computer never finds
the right face) and 2) the ability of humans to distin-
guish similar faces from a candidate list generated by
the recognition system without unacceptable confusion or
fatigue (the human can’t find the face in the set generated
by the computer). This tradeoff is substantially different
from the trade-off inherent in the reject-error characteristics
found in OCR and fingerprint classification. In these two
applications, if an image is rejected human correction can
always lower the classification error to practical levels
since humans can do the job without computer assistance.
With face recognition, some faces are known to look alike
and when humans are presented with large sets of face
images their ability to distinguish similar faces drops due
to confusion and fatigue. As the candidate list of similar
faces produced by the recognition system increases, the
probability that a matching face exits to the candidate face
increases. At the same time, as the candidate list increases,
the probability of confusion in human selection causes the
probability of selecting the matching face to decrease. At
some point the highest probability of a correct match will
be achieved. This will not be a serious problem if the
face of interest is in the first few faces; the probability
of finding the correct match then increases sharply as
candidate faces are added. If these lists contain hundreds of
faces to obtain adequate probability of selection, then the
limiting performance factor will be human ability to select
faces from the candidate list.

2) Constraints on Samples: In both OCR and fingerprint
classification work, use of images with atypical image
quality or overly simplified segmentation characteristics has
led to misleading conclusions about system requirements.
In OCR two factors were found to be very important. First,
algorithms should be tested using images from sources
of comparable image complexity to the target application.
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Second, since many early OCR studies were done on
isolated characters or characters with moderate segmen-
tation problems, the need for robust generalization was
underestimated. This caused too much effort to be expended
on systems that did not address the types of recognition
problems that arise in real Based on this experience, we
feel that initial studies using realistic images from some
specific commercial/law enforcement application should be
carried out. An initial image set based on mug shots seems
appropriate since these images span a wide range of the
possible applications shown in Table 1, will have realistic
image segmentation problems, and have realistic image
quality parameters. This should provide commercial/law
enforcement agencies such as credit card companies or the
FBI with a more realistic estimate of the utility of FRT
than studies done on idealized datasets or datasets which
are unrelated to specific applications.

3) Speed and Hardware Requirements: We recommend
that where possible all algorithms under test be evaluated
on several types of parallel computer hardware as well
as standard engineering workstations. In high volume
applications speed will be an important factor in evaluating
applicability. In many potential applications, parallel
computers may be too costly but developments of effective
high speed methods on parallel computers should allow
special purpose hardware to be developed to reduce costs.

4) Human Interface: The utility of face recognition sys-
tems will be strongly affected by the type of human
interface that is used in conjunction with this technology.
The human factors which will affect this interface are dealt
with in Section IIL The literature on human perception and
recognition of faces will be important in designing human
interfaces which allow users to make efficient use of the
results of machine-based face recognition.

B. Evaluation Methods

1) Database Size and Uniformity: For law enforcement
applications, as an initial evaluation sample, a collection of
a minimum of 5000 and a maximum of 50 000 mug shot
images may be appropriate. A testing sample containing
500 to 5000 different mug shots of faces in the original
training set and 500 to 5000 different mug shots of faces
not in the original training set should be collected to allow
testing of machine face matching. Similar samples for
commetcial applications are also suggested.! The minimum
sample sizes for the test sets is based on the need to obtain
accurate matching and false matching statistics. The 10:1
ratio of the evaluation set size to the testing set size is
designed to minimize false match statistics due to random
matches and provide statistical accuracy in probability of
match versus candidate list size statistics.

2) Sample Size Issues—Feasibility of Resampling: We sug-
gest that images be collected at relatively high resolution,
512 x 512, and using 8 b of gray or intensity. If color
images are used, matching will initially use only intensity

INIST has recently made available a mug shot identification database

containing a total of 3248 images. For details the reader may contact:
craig @magi.ncsl.nist.gov.
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data. With this level of image resolution, down-sampling of
the images and digital filtering to provide lower resolution
and image quality can be done with a single set of master
images. Images can also be cropped after segmentation
to provide more usable image areas containing the face
image. Resampling the image to provide a greater area of
background and less active image area may also be possible,
but may introduce artifacts that change the difficulty of the
segmentation problem.

3) Test Methods for Algorithm Accuracy and Probability of
Match: The scoring of face matching systems should be
based on the probability of matching a candidate face in the
first n faces on a candidate list. Two sets of probabilities of
this type can be defined, one for faces in the database and
one for faces not in the database. The first will generate
true positives and the second will generate false positives.
The comparison of true and false recognition probabili-
ties assumes that each recognition produces a confidence
number which is higher for faces with greater similarity.
For each specified level of confidence, the number of
faces matching true and false faces can be generated. The
simplest accuracy measure of each type of recognition is the
cumulative probability of a match for various values of n,
and at the same confidence level, the probability of a false
match. It seems likely that in addition to the raw cumulative
probability curve, some simple models of the shape of
the curve, such as a linear model, may be of interest in
comparing different algorithms. In many applications it will
be as important that the face recognition system avoid false
positives as that it produce good true positive candidate
lists.

Many of the face recognition systems discussed in this
paper reduce the face to a set of features and measure the
similarity of faces by comparing the distance between faces
in this feature space. For all of the test faces the distance
between each test face and all other faces in the database
is calculated. The probability, over the entire test sample,
and the average confidence of the first n near neighbors
is then calculated. A similar calculation is made using
faces not in the database and the average confidence of
the first n candidates evaluated. At each confidence level
for these faces a probability of finding a false match can be
calculated as the ratio of false candidates to true candidates
at comparable confidence. If the recognition process is
to be successful the probability of detection of a face in
the database should always exceed the probability of false
detection of a face not included in the database.

4) Similarity Measures: The example calculation dis-
cussed above requires that the recognition system produce
a measure of confidence of recognition and of similarity
to other possible recognitions. Similarity differs from
confidence in that similarity is measured between any two
points in the feature space of the database while confidence
is a measure between a test image and a trial match. In
the example a reasonable measure might be 1/(1+kd,2j).
Using this measure the similarity of two faces is 1.0 if their
features are identical and approaches 0.0 as the features
are displaced to infinity. This type of similarity measure
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only works if all of the feature are normalized to a similar
scale; otherwise, a single large feature can control the
entire process. .

5) Rank Statistic Comparison: The ability to address ap-
plications where lists of candidate faces are to be used
for human ranking requires that a method for comparison
of human ranking of similar faces and machine ranking
of faces be developed. This problem can be addressed
by treating each ranked list of faces as a symbol string
and using the string comparison methods which have been
applied to OCR. These lists will contain insertions, dele-
tions, and substitutions just as symbol strings would. The
comparison of strings can then be effected using Levenstein
distance as a measure of cost of sequence alignment. The
problem differs from the OCR problem in that in OCR the
use of confidence measures allows unknown symbols to
be included in sequences. In the face recognition problem
these sequences are completely determined by similarity
measures and will only decrease in similarity with sequence
length.

6) Summary: All of the evaluation methods discussed
here are directed toward the evaluation of machine base
similarity metrics for specific applications. The two which
should be addressed first are: Can the methods find similar
faces in a large database with an acceptable false detection
rate? and: Will machine base rank ordering of similarity
be sufficiently similar to human ranking to provide useful
input for human list correction?

IX. SUMMARY AND CONCLUSIONS

In this paper, we have presented an extensive survey of
human and machine recognition of faces with applications
to law enforcement and other commercial sectors. We have
focused on segmentation, feature extraction and recognition
aspects of the face recognition problem, using informa-
tion drawn from intensity and range images of faces and
profiles. A brief summary of relevant psychophysics and
neurosciences literature has also been included.

The survey presented here is relevant to applications 1-7.
While many of the methods described here are of interest
in applications 8 and 9, a detailed discussion of them is
beyond the scope of this paper.

We give below a concise summary followed by con-
clusions in the same order as the topics appear in the
paper.

* Face recognition technology is an essential tool for
law enforcement agencies’ efforts tc combat crime.
Given that crime is seen as the most important problem
facing the country, even ahead of job security, health
care, and the economy, the use of high technology to
effectively fight crime will receive support from the
people and from their elected representatives. Further-
more, commercial applications of this technology has
received a growing interest, most importantly in the
case of credit card companies and their desire to reduce
fraudulent usage of credit cards. Face recognition,
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in addition to fingerprint recognition, will remain a
critical high-technology strategic research area with
significant potential impact on reducing crime.

Over 30 years of research in psychophysics and neuro-
sciences on human recognition of faces is documented
in the literature. Although we do not feel that machine
recognition of faces should strictly follow what is
known about human recognition of faces, it is benefi-
cial for engineers designing face recognition systems
to be aware of the relevant findings. This is especially
crucial for applications where human interaction is
involved, such as in expert identification, electronic
mug shots books, and lineups. Even for applications
1-3, what is known about human recognition of faces
obviously impact feature selection and recognition
strategies.

Segmentation of a face region from a still image or
a video is one of the key first steps in face recog-
nition. Surprisingly, this problem has not received
much attention. Although the segmentation problem
is easier for mug shots, drivers’ licenses, personal
ID’s, and passport pictures, as in applications 2 and 3,
segmentation in general is a nontrivial task. More effort
needs to be directed in addressing the segmentation
problem.

Both global and local feature descriptions are use-
ful. Popular global descriptions are based on the KL
expansion. The local descriptors are derived from
regions that contain the eyes, mouth, nose, etc., using
approaches such as deformable templates or eigen-
expansion of regions surrounding the eyes, mouth,
etc. Minutiae-type point features have also been ex-
tracted. It appears that feature extraction is better
understood and developed in connection with recog-
nition. It may be worthwhile to investigate the use of
other possible global and local transforms, and better
methods for detection, localization and description of
features.

A multitude of techniques are available in IU literature
[1], [3]-15], [43], [57], [137] for recognition. The
eigenapproach of Pentland’s group has been tested
on a large number of images of 3000 persons. Other
promising approaches based on neural networks and
graph matching have not been tested on such large
datasets. All of these approaches should be tested on
the same dataset derived from a practical application.
Although a complete algorithm that can solve even
the simplest of the applications in Table 1 is not yet
available, one can begin the task of evaluating the
existing methods on a dataset that truly represents the
data available in real applications. Methods that may
not scale with the size of the dataset can be identified
in this way and discouraged from further development.
For commercial/law enforcement applications, the use
of range data is not feasible due to the cost of the
data acquisition process. Consequently, only intensity-
based approaches may be pursued. Profile-based recog-
nition schemes should be evaluated on a large dataset

735



and methods for integrating profile and face based
methods should be developed.

Face recognition from a video sequence is probably
the most challenging problem in face recognition. Up
to now, fairly simple thresholding of difference images
has been used for locating a moving person’s face, and
has been followed by a 2D recognition algorithm. In
our opinion, recognition from an image sequence offers
excellent opportunities for applying several concepts
from the IU literature; specifically, the usefulness of
flow fields for the segmentation of the face region,
and the reconstruction and refinement of 3D structure
from 2D frames, must be investigated.

The most important step in face recognition is the
ability to evaluate existing methods and provide new
directions on the basis of these evaluations. The im-
ages used in the evaluation should be derived from
operational situations, similar to those in which the
recognition system is expected to be installed. An
important subproblem is the definition of a similar-
ity measure that can be used in matching two face
images. In witness and electronic mug shots matching
problems, a face recognition system is expected to rank
the chosen images in the same way that humans do,
in terms of how similar the test and stored images
are. The similarity measure used in a face recognition
system should be designed so that humans’ ability to
perform face recognition and recall are imitated as
closely as possible by the machine. As of this writing,
no such evaluation of a face recognition system has
been reported in the literature.
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