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Serhan Dăgtaş, Wasfi Al-Khatib, Member, IEEE, Arif Ghafoor, Fellow, IEEE, and Rangasami L. Kashyap, Fellow, IEEE

Abstract—With the rapid proliferation of multimedia applica-
tions that require video data management, it is becoming more de-
sirable to provide proper video data indexing techniques capable of
representing the rich semantics in video data. In real-time applica-
tions, the need for efficient query processing is another reason for
the use of such techniques. We present models that use the object
motion information in order to characterize the events to allow sub-
sequent retrieval. Algorithms for different spatiotemporal search
cases in terms of spatial and temporal translation and scale in-
variance have been developed using various signal and image pro-
cessing techniques. We have developed a prototype video search
engine,PICTURESQUE(pictorial information and content trans-
formation unified retrieval engine for spatiotemporal queries) to
verify the proposed methods. Development of such technology will
enable true multimedia search engines that will enable indexing
and searching of the digital video data based on its true content.

Index Terms—Content-based retrieval, imprecise querying, mo-
tion modeling, video databases, video indexing.

I. INTRODUCTION

RECENT initiatives in digital video technology have sig-
nificant applications in many areas, including digital li-

braries, video surveillance, law enforcement, automatic target
recognition, traffic management, command and control, etc. The
research community in this area is exploring better ways of re-
trieving information from large repositories of multimedia data.
With exponential growth in multimedia data archives, the need
to organize, store, search, and display multimedia data has in-
creased tremendously. There is an increasing need for robust
indexing and search mechanisms to enable effective use of mul-
timedia data, and in particular, digital video.

Traditionally, thecontentof video has been represented ei-
ther by simple textual techniques or low-level image features
such as color indices, shape representation, transform domain
features and visual summary information based on segmenta-
tion of video into smaller units. Various scene change detec-
tion techniques have been employed to automatically segment
video data into shots. A color histogram comparison routine
is used in [11] to parse video data into scenes. In [14], ana
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priori model ofreference framesis used to semantically clas-
sify the identified shots into the constituent components of a
news broadcasting program. An icon-based browsing environ-
ment constructed from the recognized shots is presented in [17].
A hierarchical video stream model which uses a template or
histogram matching technique to identify scene changes in a
video segment is proposed in [15]. These methods, however, are
useful in specific domains, and therefore not readily applicable
in the development of general-purpose video data indexing and
retrieval systems. In addition, these methods have limited ca-
pability since semantics associated with scene changes are cap-
tured, but temporal events within a scene are not modeled.

A number of researchers have proposed techniques for video
content modeling involving temporal events. Some of these
techniques rely on modeling the interplay among physical
objects in time along with spatial relationships between these
objects. In [6], spatial and temporal attributes of objects and
persons are modeled through a directed graph model. Although
a formal method of representing video data is proposed, the
underlying spatial models for motion-based characterization
are not provided, rendering severe limitations to the system.
An approach that uses spatial relations for representing video
semantics is spatiotemporal logic [2], [5]. In [2], a prototype
image sequence retrieval system is developed, where video
frames are processed and simple events are represented by
spatiotemporal logic. The prototype provides a query interface
by which query-by-sketch is employed to query video data.
However, spatial and temporal predicates are manually anno-
tated in the database, thus requiring considerable manual effort
for event specification. The framework discussed in [8] defines
a set of algebraic operators to allow spatiotemporal modeling
and provide video editing capabilities. After extracting trajec-
tory of a macro-block in an MPEG video, all trajectories of
macro-blocks of objects are time-averaged and a spatiotemporal
hierarchy is established for representing video. This technique
does not address the handling of interobject relationships and
content description due to its limited analysis at lower-levels.

VideoQ [3] is one of the very few models that directly address
motion-based content characterization. However, the approach
lacks an explicit temporal formalism and comprehensive spatial
search techniques that can handle different preferences such as
spatial-translation and spatial-scale invariant retrieval.

As mentioned earlier, low level image features are not suffi-
cient to represent the rich semantics of video. Spatiotemporal
characteristics involving the relative movements of salient ob-
jects in a video must be incorporated in any effective content-
based video indexing scheme. This is mainly due to the fact
that humans often describe the semantic content in terms of the

1057–7149/00$10.00 © 2000 IEEE
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actionpresent in video data.“Clips with a touch-down event”
is a much more meaningful description than“Clips with green
background”. Similarly, queries like“search for a head-on col-
lision involving a car and a van”cannot be answered by in-
dexing techniques based on color histograms. An effective in-
dexing scheme cannot be restricted to preassigned keywords or
just be simple raw data that carries no semantic meaning. Pow-
erful intermediate spatiotemporal models are needed that pro-
vide enough semantic power while supporting an efficient re-
trieval mechanism for effective content-based access.

In this paper, we propose several motion description
schemes that serve as intermediate spatiotemporal models
for event-based retrieval of video. We summarize the basic
components of our approach and the major contributions as
follows.

• Description of characteristics and identification of re-
quirements for motion-based video retrieval. Based on
this discussion, we propose two alternative and comple-
mentary schemes:trajectory and trail-based modelsfor
motion-based indexing of video.

• Based on these models, we propose efficient searching al-
gorithms. Specifically, these techniques address the invari-
ance features in spatial and temporal domains.

• For the search case that does not require any invariance
feature, we propose computationally efficient searching
techniques based on common statistical methods. These
methods also provide flexibility to the user in determining
the right search parameters for optimum accuracy/perfor-
mance tradeoff.

• We have developed thepictorial information and content
transformation unified retrieval engine for spatiotem-
poral queries (PICTURESQUE), a video database
retrieval system that provides an effective example-based
querying mechanism and alleviates the limitations of
keyword-based search techniques. Our implementation
covers the preprocessing of the raw video for subsequent
retrieval as well.

The remainder of the paper is organized as follows: In the next
section, we outline the characteristics and requirements of mo-
tion-based video modeling and present the formal statement of
the problem addressed in this paper. Based on this foundation,
we present thetrajectory (Section III) andtrail models (Sec-
tion IV). Section V lays out the implementation details and ex-
perimentation results of the proposed models. Section VI con-
cludes the paper.

II. M OTION-BASED MODELING IN VIDEO DATABASES

In our earlier work, we have presented a graphical model
called video semantic directed graph(VSDG) as a represen-
tation scheme for temporal specification of video content [5].
VSDG provides an effective means for interobject temporal
specification for multiple objects that enables temporal content
based access to the semantics in digital video. Based on this
foundation, we now present new models that extend the func-
tionality of VSDG in terms of trajectory specification support
that enables object movements to be modeled and queried.

As a graphical data structure, VSDG offers a visual envi-
ronment where the temporal relations can be effectively rep-
resented and constructed. For a more complete representation
scheme, however, mechanisms must be defined for an effective
spatiotemporal characterization. The mechanism of searching
for events in such a system will involve modeling and com-
parisons of motion features of the salient objects in video. In
the next section, we analyze the desired characteristics of such
schemes which lead to the two motion models in subsequent
sections.

A. Desired Characteristics of Motion-Based Modeling and
Retrieval

In order to process user-sketched queries likegive me the
clips where an object draws a circle like this (a sketched path),
a similarity measuring mechanism between motion representa-
tions must be developed. Our experience shows that in order
to answer such queries effectively, any similarity measurement
mechanism must possess certain features. The nature of query
processing in a multimedia database system is significantly dif-
ferent from traditional databases in this regard. According to our
observations, the major issues pertaining to the video database
retrieval includefuzziness, efficiency, andspace and time invari-
ance:

• Different user perceptions introduce fuzziness in
querying, since a rough sketch may not exactly rep-
resent the desired scenario. Furthermore, typically more
than one clip is expected to be returned for a given query
and these clips will not possess the exact motion features
of the query. For these reasons, the similarity criterion
should provide a fuzzy measure based on a numeric scale
rather than merely accepting/rejecting database items.

• Computational efficiency is an important and often un-
derestimated factor in multimedia database applications.
With unrestricted length of the database clips, it becomes
more important for a motion similarity mechanism to
function with an acceptable complexity for real-time and
scalable query processing.

• The issue of spatial invariance arises when the queries may
specify a translation-invariant motion which may be lo-
cated in arbitrary locations in the spatial domain(screen
space). However, in some cases it may be desirable to re-
strict the location to exact coordinates in the spatial do-
main, such as surveillance applications where the camera
is fixed and the environment is defined. Therefore, spatial
translation invariance should be optional rather than a de-
fault behavior. In addition, spatial scale invariance may be
desired for retrieval which is independent of the motion or
object dimensions.

Similar to the spatial invariance, temporal scale in-
variance refers to the flexibility of the speeds of the
object movements. Users may describe motion with
arbitrary speeds and may be interested in the general path
the objects follow rather than exact locations at exact
time instances. For this reason, the similarity matching
mechanism should be able to match motion descriptions
regardless of the speeds of the objects when necessary.
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TABLE I
MOTION-BASED VIDEO RETRIEVAL

MATRIX

Similarly, there should be a mechanism to externally
manipulate the general duration of the queried events for
the users to have control over the temporal features of the
described scenario. Translation invariance in temporal
domain refers to searching of queried motion throughout
the entire temporal domain and is the default behavior.

The first two criteria, regarding the flexibility and perfor-
mance of the comparison techniques, are subjective features.
The invariance properties, however, can be characterized more
objectively and associated retrieval techniques can be developed
based on such distinctions. In such a framework, depending
on the application and the environment, users should have the
ability to choose for invariance options in spatial and temporal
domains as part of the querying process. These features must
be facilitated by the right combination of motion representation
and comparison techniques. In other words, the representation
scheme is as important as the retrieval technique employed in
possessing the right features.

Ideally, a motion representation scheme should possess the
features listed above as closely as possible. Among the various
motion representation schemes, four are considered the most
prominent [7]: B-spline, chain code, differential chain code, and
raw trajectory. For majority of the retrieval cases discussed in
the next sections, we use the last one, thetrajectory modeldue
to its flexibility in employing various numerical retrieval tech-
niques. For temporal scale (speed) invariant retrieval, however,
this model does not prove to be viable and we propose a new
scheme, thetrail model. This model is based on trail images
constructed by highlighting the areas covered by moving ob-
jects and is elaborated in Section IV.

Based on the invariance properties discussed above and the
two motion representation schemes, we propose several spa-
tiotemporal retrieval methods summarized in themotion-based
video retrieval matrixin Table I. In this table, we identify six dif-
ferent cases of retrieval methods based on the distinction along
temporal scale invariance, spatial translation invariance and spa-
tial scale invariance. The horizontal axes correspond to temporal
scale invariant (I ) and absolute (A) and the vertical axes are for
combinations of spatial translation and scale invariant cases, re-
spectively. For example, the columnIA corresponds to trans-
lation invariant and scale-absolute case in spatial domain. We
denote cases for which a method is proposed here with corre-
sponding section numbers. We do not address three cases in this
paper: temporal absolute, spatial scale invariant cases (both la-
beled with a “C”) and temporal invariant, spatial translation ab-
solute-scale invariant case (labeled “X”). For the cases labeled
with a “C,” differential chain code scheme appears to be a viable
approach [8], but is not elaborated here. For the third case (X),

we do not propose a solution, however, it can easily be derived
from the all-invariant case (I-II ) as a special case. All others are
labeled by their corresponding section numbers.

B. Video Content Organization and Query Formulation

We have emphasized the important role of spatiotemporal
characterization of video data for content-based retrieval. We
perceive such characterization with an event-centered viewpoint
and rather call itevent-basedretrieval. An event can simply be
defined as “an interesting happening” in a clip. The formal de-
scription of events, however, must be made through a well-de-
fined spatiotemporal characterization model. We construct this
description based on the two aforementioned models. We begin
this by presenting an overall data organization and then define
the query formulation which is the formal problem statement for
both models.

In our approach, video data is organized as follows: Raw
video is segmented intoclips that form the atomic unit in the
database. Each clip contains several semanticobjects (cars,
humans, etc.) which carry two types of information:Descrip-
tive_dataand Motion_data. Descriptive_data refers to object
features like the identity of an object, its color, shape, types,
etc., which is not addressed in this paper as part of the proposed
motion based retrieval methods. For event-based characteriza-
tion, spatiotemporal features of moving objects (Motion_data)
are more important and therefore are the focus of our work. We
adopt the minimum bounding rectangles (MBR’s) to represent
the objects. Despite their limitations, MBR’s provide a concise
and simple low level representation of the object boundaries.

Formally, object = {Descriptive_data, Motion_data},
where Descriptive_data = [ObjectID, Size, Color, ],
and Motion_data = [ ], which contains

, , the center point locations of
MBR’s for the frames that range from 1 to, and the widths
( ) and the heights ( ) of the object. The array has two
elements, one for each coordinate axis,and . Note that

denotes the sequence (vector) while corresponds to
an individual element. The components ofMotion_dataare
used to build the intermediate database indexing scheme for
subsequent retrieval of the associated video clip.

In the trajectory model, the center point coordinates, desig-
nated by the sequence, are captured at frame instances (for
each ) and form the basis for trajectory models. In other words,
the and coordinates of the MBR centers define the trajecto-
ries of objects on the screen and are used for similarity measure-
ment between query ( ) and data ( ) indices. The matching
process for such trajectories can be formally expressed as fol-
lows.

For every stored database item in Database if
Dissimilarity Threshold then accept where

and for
and , is the number of frames in the query
sequence and and designate the center-point trajectories
for and axes.

In the next section, we propose several efficient methods for
computation ofDissimilarity and provide detailed
analyses of those methods.
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III. M OTION-BASED VIDEO RETRIEVAL WITH TRAJECTORY

MODEL

In order to retrieve videos based on their motion characteris-
tics, a similarity measuring mechanism has to be developed that
will search the database using the appropriate indexing scheme.
In this section, we propose several techniques based on the tra-
jectory model and analyze their effectiveness for several in-
variance situations. These techniques consist of: 1) temporal
scale-absolute retrieval (using the trajectory model), which in-
cludes: a) translation-absolute retrieval and b) translation-in-
variant retrieval; 2) temporal scale-invariant retrieval (using the
trail model), which includes: a) spatial translation and scale-ab-
solute retrieval, b) spatial translation-invariant and scale-abso-
lute retrieval, and c) spatial translation and scale-invariant re-
trieval models.

In this section, we elaborate on case 1), the temporal scale
absolute retrieval based on the trajectory model. Trail model
[case 2)] is covered in Section IV.

A. Spatial Translation-Absolute Retrieval

Though users will typically require spatial translation-in-
variant retrieval, exact locations may be an important part
of the query in certain situations. For example, in security
surveillance video taken with a fixed camera, the location of the
moving objects on the screen will be of importance to detect
certain events (e.g., illegal right turns) and query processing
must be performed to allow such differentiation.

As a common similarity measure, we use Euclidean distance
for spatial absolute comparisons (matching) of sequences.
This yields the formulation of theDissimilarity and
Distance functions as

(1)

(2)

(3)

where and are the query sequences, and indicate
portions of and with length equal to the length of and
and shifted by , i.e., , ;

; , ; , , , ; .
In order to avoid unnecessary repetition, discussion here on will
be done only for axis. Distances obtained independently are
added to compute the minimizedDissimilarity metric in (1).

For translation-absolute retrieval, we carry out the Euclidean
distance computation in a translation-absolute fashion. When
performed straightforwardly, computation of (2) has an
time complexity where is the length of , which is in the
same order with . We demonstrate that better performance
can be achieved: 1) by computing the Euclidean distances more
efficiently or 2) by avoiding unnecessary comparisons. First, we
propose an solution based on computing the three
terms in (2) separately and using Fourier transform. A second

algorithm we propose computes the distances selectively with
a two-stage scheme that eliminates unlikely candidates in the
first stage. This makes it possible to achieve a performance even
better than in most cases. Note that this discussion
is not limited in scope to trajectory retrieval but also applies to
general subsequence matching problems.

1) A Fourier Transform-Based Similarity Computa-
tion: Note that the third term in (2) is constant for all
values of and can be safely omitted for comparison purposes.
The second term involves multiplication of and and
can be viewed as convolution over the entire, since is
a subsequence of. The elements of the convolution vector
are then substituted for the multiplication for each .
It is a well-known rule that convolution in the signal domain
corresponds to multiplication in the Fourier transform domain.
Therefore, the convolution vector can be
expressed as

(4)

where and are Fourier transform of and (the
complex conjugated—and padded with zeros for matching
dimension—version of ), respectively. The advantage of
using Fourier transforms to compute the terms is that
Fourier transform can be computed in time
thanks to efficient fast Fourier transform (FFT) algorithms
and provides a logarithmic reduction of the computation time
of the overall algorithm. The overall complexity is bounded
by the complexity of the Fourier transformation step due to
the possible linear time computation of the first term :
elements of the squared term vector can be
recursively computed as

for (5)

As a sequential computation, the above equation results in
a linear time complexity. Algorithm RETRIEVAL_ABS, shown
on the next page, summarizes the basic steps of the discussed
method. Steps 1 and 3 are performed in linear, time and
the Fourier transform in Step 2 is . The overall
complexity of the algorithm therefore is .

2) Two-Stage Method:While the Fourier-based method
reduces the complexity significantly, further reduction can be
achieved by eliminating unnecessary computation of Euclidean
distances for each . For this purpose, we propose a method
that filters out the unlikely candidates by a simpler measure in
the first stage and compute the actual distance in the second
stage for the items satisfying the first criterion. A natural can-
didate for the first criterion is the absolute difference between
averages of the elements of and . Namely, the condition

(6)

must be satisfied in order for the Euclidean distance () to
be computed for that particular . Division by is to allow
the right hand side of the inequality () to be an independent
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Algorithm R ETRIEVAL_ABS: Fourier-Based Temporal

and Spatial-Absolute Retrieval

Input: Data and Query sequences, CD and CQ

Output: Dissimilarity between CD and CQ

Step 1 Construct the complex conjugate of qx
for i = 1 to Nq

q�x(i) = qx(Nq + 1 � i)

for i = Nq+1 to N

q�x(i) = 0

Step 2 Take Fourier transforms of both signals

X = F(x), Q�

X = F(q�x)

Step 3 Using (4) and (5), compute

Dist(xiq; qx) = SQ(i)� 2Conv(i)

for each i, 0 � i � N � Nq

Step 4 Repeat Steps 1–3 to compute Dist(yiq; qy)

Step 5 Compute Dis(CD; CQ) as

mini[Dist(xiq; qx) +Dist(yiq; qy)]

variable. A match is eventually decided according to the condi-
tion

(7)

Main steps of the method are outlined in Algorithm
TWO_STAGE, shown at the top of the page.

The philosophy behind this method is that if a sequence is
not close to another sequence by its average, it is unlikely that
the Euclidean distance will be close enough to grant a match. In
the next section, we provide a theoretical analysis of the above
formulation and present an optimization case for determining
the right parameters for optimal computational and functional
efficiency.

3) Analysis of the Two-Stage Algorithm:The correlation be-
tween the two criteria, namely the difference of the first and the
second norms of the differences, makes it possible to carry out a
statistical analysis of the error for the two stage algorithm. The
error is defined as the ratio of data items rejected in the first
stage that satisfies the second criterion(false negatives). In this
section, we provide an analysis of this error and discuss the de-
termination of the optimal values for the thresholdsand .

First, we rewrite (6) as

(8)

Clearly, there is a trade-off between the values of the thresholds,
in (8) and in (7). Their choice determines the “tightness”

of the similarity measures in both stages, therefore is important
in the resulting error rate. It becomes imperative to express the

Algorithm T WO_STAGE: Dissimilarity Computation

in Two Stages

Input: Data and Query sequences, CD and CQ

Output: Dissimilarity between CD and CQ

Step 1 For each xiq , 0 � i � N �Nq

if
jAve(xiq)�Ave(qx)j

Nq

� �1 then

Dist(xiq; qx) = (xiq � qx)
T (xiq � qx)=Nq

else

Dist(xiq; qx) = 1

Step 2 Repeat Step 1 to compute Dist(yiq; qy)

Step 3 Compute Dis(CD; CQ) as

mini[Dist(xiq; qx) +Dist(yiq; qy)]

“success” measures in terms of these parameters. In order to de-
fine an error bound for the “misclassification” in the first stage,
we defineError Probability as:

(9)

To simplify the notation, let . Then the
expression in (7) can be written as

(10)

Note that the values represent the differences between co-
ordinate values of the query location and the location of the
data objects. In order to come up with a statistical bound for
the above probability, we assign a random variable for the dif-
ference between consecutive values and define them recur-
sively as where is a random variable. This
will result in the closed form expression

(11)

Therefore

(12)

Lemma 1: Let and
, and is a random variable. Given

the probability
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has an upper bound equal to

(13)

Proof: See [4] for a proof.
The fact that the above limit is independent of the initial dif-

ference value is interesting but natural; both criteria deal with
the differences of two sequences, and the absolute initial value
should not have any effect on the behavior or distribution. The
threshold values, on the other hand (and ) directly affect
the error bound. As expected, the highervalues decrease the
error bound, as a looser first stage limit would reduce the prob-
ability of falsely eliminating data items in the first stage. This,
however, would have a negative effect on the overall computa-
tional complexity of the algorithm which is the main reason such
a scheme is used. Therefore, the choice of the thresholds be-
comes an optimization problem which can be formulated using
an error function defined in the following theorem.

Theorem 1: Let and
, and be a random variable. Define

three random variables , and as

(14)

ThenError Probability of (9) equals

Error Probability (15)

Proof: See [4] for a proof.
In order to determine a distribution and a possible optimum

threshold value, we need the distribution of in (11). This
will then lead to the computation of the probability in (15) as a
function of the thresholds which can be optimized.

Using the corresponding probability distribution and cumula-
tive distribution functions, one can express the conditional prob-
ability of (15), which is a function of the variables and as

(16)

where is the intersection of the ranges of the
random variables , and .

Clearly, the distributions for , and are needed in
order to compute the above probability. If the distribution func-
tion of ’s is known, these functions can be determined by ana-
lytical or numerical methods. Recall that
and , i.e., the
difference of the differences. One possibility is to assume that

(the differences of coordinate values in consecutive frames)
has a normal distribution with zero mean as often done in many
applications. In this case, the random variables will also
be normal with zero mean by the well known rule that sum of
normal variables is also normal [12]. The same rule also ap-
plies to the distribution of the term , as the summa-
tion would be another normal random variable with zero mean
and higher variance. Similarly, the distribution of can be
assumed exponential although it would have a discontinuity at
zero. This simplifies the analytical form of as the sum of
gamma distribution [10].

The normal distribution assumption for the object movements
in consecutive frames of the video data will reduce the com-
plexity of the computation of the error probability of the two-
stage algorithm. However, numerical simulation and functional
approximation is still needed for the computation of the integral
in (16). This will also allow arbitrary distributions for the actual
data to be correctly processed, removing a restrictive assump-
tion.

As the last step in formulating the optimization problem,
we express the inverse of what Theorem 1 formulates: the
probability (ratio) of the data items accepted in the first stage
and eliminated in the second, i.e., thefalse alarmrate. This ratio
is critical in the overall efficiency of the algorithm, because
the unnecessary computation of the Euclidean distances in the
second stage will significantly increase the complexity and
eliminate the advantage of the two-stage scheme with respect
to the Fourier-based method discussed in the previous section.

As an application of the and error optimization concept
in statistics, we defineFalse Alarm as

(17)

Following the same line of argument, we can express the
above probability as

(18)

which can alternatively be expressed [similar to (16)] as

(19)
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Fig. 1. Combined error plot for different values of� and� .

where the variable is defined as

and is the corresponding cumulative distribution function.
Using the functions in (16) and (19) we express the optimiza-

tion problem as

Error Probability False Alarm

subject to (20)

where the elementsError_Probability andFalse_Alarmare as
defined in (16) and (19), respectively.

Now, we demonstrate a numerical illustration of the above
nonlinear optimization problem and how the optimum values
for the thresholds can be computed. An important factor is the
choice of the coefficients and . As in any optimization
problem, their values have a deterministic effect on the optimum
threshold values. Conceptually, and are the weights as-
signed to the relative importance of the error rate and compro-
mise in the computation efficiency, respectively. While, the
weight of the redundant computations, can easily be quantified
in terms of the ratio of the complexity of the second and first
stages, , the cost of the error is not as easy to describe quan-
titatively. Its choice, therefore, is left to the user at the time of
the query entry within a certain predetermined range to allow

the user to dynamically determine the tradeoff between the ac-
curacy and efficiency.

As an illustration of this analysis, we have carried out a nu-
merical simulation of (20), the plot of which is provided in
Fig. 1. In this simulation, we have generated queries with

. The values of range between one and 25, whereas
goes from one up to 1000. Under the assumption that differ-
ences ( values) in the distances between every two points in
the query have a normal distribution with 0 mean and a variance
of two, we have generated 10 000 queries. In this graph, the com-
bined error (objective function in the optimization problem) is
plotted for different values of and . The graph contains two
nonzero sections; the right hand side of the figure is mainly due
to theError_Probability part and the left side originates from
theFalse_Alarmpart of the objective function. Using such nu-
merical data, one can determine a feasible (optimum)value
that keeps the error under certain limit and does not compro-
mise computational efficiency with high values. This is due
to the fact thatFalse_Alarmincreases with increasing values.
In this graph, the flat areas where the probabilities are near zero
would represent the optimum combinations of the thresholds.
These areas will be larger for distributions with small variances
due to smaller estimation error, and hence less error probability.

A major advantage of using the proposed two-stage method
(in addition to possible performance gain) is the flexibility it
offers to determine the right tradeoff between performance and
precision. The combination of threshold values in the above
formulation determine the compromise between precision
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Fig. 2. Example trails used in the trail-based match method.

(Error_Probability) and performance (False_Alarm). Note that
even with optimization, two-stage algorithm will not offer the
best solution in all cases. If the precision requirement is too
tight (i.e., the elimination in the first stage does not significantly
reduce the overall complexity), then the Fourier-based distance
computation discussed in the previous section will be superior
in terms of the computational complexity. The "breaking point"
will be determined by the distribution parameters, in other
words, the motion characteristics of the retrieved video.

B. Spatial Translation-Invariant Match

An important factor for robust retrieval of video based on mo-
tion is the spatial-invariance, the ability for retrieval of motion
trajectories irrespective of their exact locations on the screen. In
such a case, a query trajectory would be compared in a transla-
tion-invariant fashion against the data trajectories. If the user’s
choice is to search for the pattern anywhere in the screen, which
may often be the case, the plain exact matching algorithms of
the previous section will not return the desired results. This is
due to the fact that the offset between the two sequences will
have an accumulative error in the overall dissimilarity measure
and change the results significantly. In this case, Fourier trans-
form-based computation will not work due to its aggregate com-
putation of the entire sequence at once. We therefore perform
computations of the Euclidean distance individually for each
subsequence after compensating for the initial value, i.e., com-
pute the Euclidean distance plainly at the expense of the lower
efficiency. The results for the spatial invariant case are presented
in Section V.

IV. TEMPORAL SCALE-INVARIANT VIDEO RETRIEVAL BASED

ON TRAIL IMAGES

In order to retrieve video clips independent of their temporal
characteristics (speeds of the moving objects), we use a trail-
based model that captures the motion of salient objects over a se-
quence of frames. In this method, we highlight the areas covered
by the (bounding boxes of the) objects throughout the course of
its motion as illustrated in Fig. 2. This results in an “image”
of the trajectory for each object. In a sense, this is equivalent
to taking the mosaic image of the object trajectory in a clip.
The motion comparison is then carried out using the trail im-
ages by performing an image similarity comparison that mainly
measures the overlap of two trails. For example, the objects in
Fig. 2 span similar trajectories and therefore, their resulting trail
images have a large overlapping area. Two such images can

be compared in different ways including spatial-invariant, spa-
tial-absolute, rotation-invariant, etc.

Trail model is inherently temporal scale invariant due to the
fact that the time information is not preserved during the con-
struction of the trail images (for a similar approach and further
elaboration on its scale invariance, see [3]). Time is essentially
frozen throughout the clip and the varying speed of the object
is not reflected in its trail image. However, the duration infor-
mation of each trail is recorded so that it can be utilized by the
higher level queries that may also involve the durations, e.g.,
Search for circular motion that lasts between 10 and 20 s. Such
external control capability on temporal duration provides flexi-
bility in user description of the complex events.

An important factor that must be considered in this method is
the impact of the temporal length of the clips. When converted
to trail images, very long clips will lose their trajectory infor-
mation as the repeated scans of the same area is not reflected
in the binary trail image representation. For the method to be
effectively used, this factor has to be taken into account at the
time of parsing the video data.

Both spatial-absolute and invariant retrievals can be an op-
tion, where the user may choose to either restrict the starting
point of the motion or perform a translation-invariant search for
the desired motion regardless of the exact locations on screen.
A third case is where spatial scale invariance is required. The
query trail in this case is searched independent of the size of the
object or the dimensions of the trail. For example, a small circle
and a big circle can be matched to each other and are considered
“similar” in this method. Below, we propose algorithms that ef-
ficiently compute the similarity between two trails according to
all three cases.

The algorithm TRAIL_RETRIEVAL, shown at the top of the
next page, summarizes the steps of our trail-based retrieval
method. According to the user’s choice of the retrieval type, the
associated images that represent the clip as a motion trail are
compared in three different ways. The output of the algorithm,
Similarity is sorted and the “best matches” are displayed
according to the user’s choice of the numberin the user
interface implementation.

A. Spatial Translation and Scale-Absolute Retrieval

For a spatial-absolute retrieval, the user inquires for a motion
trail that occurs in an absolute screen location. In this case, two
trails such as those in Fig. 2 are directly compared against each
other for a pixel to pixel match. The fact that the trail images
are binary images provides a significant performance advantage,
the comparisons are merely a bitwise multiplication between the
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Algorithm T RAIL _RETRIEVAL: Motion-Based Retrieval

using Trail Model

Input: Data objects OD = [CD; WD; HD] and

Query object OQ = [CQ; WQ; HQ]

Output: Similarity between OD & OQ

For each OD and the given OQ do

Construct data & query images D(i; j); Q(i; j)

with 0 for background & 1 for areas covered

by trails.

If User_Choice = Spatial_Absolute_Retrieval

then Similarity = sum(D �Q) � (sum(D)+ sum(Q))=:5

elseif User_Choice = Spatial_Invariant_Re-

trieval then

Compute the Fourier transforms of the im-

ages as DF = F(D) & QF = F(Q)

Similarity = max(abs(F�1(DF �QF )))�

(sum(D) + sum(Q))=:5

elseif User_Choice = Scale_Invariant_Re-

trieval then

Similarity = SCALE_INV_RETRIEVAL (D; Q)

corresponding pixels. The Similarity step in the algorithm in this
case has a quadratic time complexity , being the width
or height dimension of the input trail images, which is generally
proportional to the screen size.

B. Spatial Translation-Invariant and Scale-Absolute Retrieval

Spatial-invariant retrieval refers to the comparison of two
trails in a translation-invariant fashion. This involves the
comparison of two images for all possible translations in both
dimensions and is computationally intensive. As an efficient
way to compare the images in such a fashion, we use the
convolution property of the Fourier transform which can be
stated as

(21)

With an FFT implementation of the Fourier transform, this step
can be reduced to an time complexity.

C. Spatial Translation and Scale-Invariant Retrieval

For matching two trails independent of both their starting
points and their sizes, we use a Mellin transform-based scale
invariant pattern recognition technique which is summarized in
Algorithm SCALE_INV_RETRIEVAL [1], shown at the top of the
page. This method provides both spatial translation invariance
and spatial scale invariance, due to the scale-invariant nature of
the Mellin transform and the convolution scheme used in the al-
gorithm.

Mellin transform of a discrete-time signal is given by

(22)

Algorithm S CALE_I NV_RETRIEVAL: ( g1; g2):

Scale-Invariant Retrieval using Trail Images

Input: g1(x; y); g2(x; y): (ZN � ZN ) ! f0; 1g

Output: Similarity between trail images g1 &

g2.

1. Calculate the 2-D discrete Fourier trans-

form

Gi(fx; fy) of gi(x; y)

where fx; fy = �(N=2); � � � ; 0; � � � ; N=2� 1, & i = 1; 2.

2. Take absolute value of the transform & nor-

malize all values to the maximum value at

zero frequency.

Hi(fx; fy) =
jGi(fx; fy)j

Gi(0; 0)
; i = 1; 2:

3. Logarithmically distort Hi in the fx & fy
direction, putting the result in Di; i = 1; 2.

4. Compute the measure function

M(k) =

N�1

u=k

N�1

v=k

[D1(u; v)�D2(u� k; v � k)]2
1=2

N�1

u=k

N�1

v=k

[D1(u; v)]2 + [D2(u; v)]2

1=2
;

k = 0; 1; � � � ; N � 1

5. Repeat 3 & 4 for the upper left quadrant,

or the lower right quadrant.

6. Compute the Similarity by inverting the

dissimilarity measure DSM = min(M):

Scale invariance of Mellin transform can be easily proven by
substitution. For

(23)

Therefore

(24)

Another property of the Mellin transform is its close relationship
to Fourier transform. Mellin coefficients can be easily computed
from Fourier coefficients by scaling the input signal by a loga-
rithmic scale. Substituting one can show that

(25)

which is the basis of Step 3 in the algorithm. For details on this
scale-invariant method, please refer to [1].

It is worthwhile to comment on the shift and scale invariance
option of the algorithm TRAIL_RETRIEVAL in more detail. Typ-
ical user queries will not specify the desired object motion in its
exact scale and translation. In other words, it may be desirable
to retrieve all object movements resembling a specified trajec-
tory regardless of their exact location on the screen or what the
dimensionality of the trajectory is. For example, the querygive
me the clips with right to left passesfrom a football clip can be
answered correctly only if the algorithm can retrieve cases with
different scales in both the size of the object and the size of the
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Fig. 3. Overall architecture of PICTURESQUE.

trajectory (e.g., longer or shorter passes). The scale invariant al-
gorithm is used in such cases to retrieve video clips independent
of the object and trajectory scales as demonstrated in the next
section.

V. IMPLEMENTATION AND EXPERIMENTS

We have built a prototype video indexing and retrieval engine,
PICTURESQUE, as a testbed for the methods we have proposed
in this paper. The tool was implemented in Windows platform
and consists of two main components: Video Motion Indexing
Tool (VMIT) and Video Search Engine (VSE).

The architectural components of the system is depicted in
Fig. 3. In this framework, VMIT comprises of the preprocessing
and spatiotemporal indexing modules and VSE contains the
query processor and user interface modules. According to this
model, a user can query the video database by first specifying
trajectories of objects. Then, based on the mode of retrieval
(spatial-absolute, spatial-invariant and scale-invariant), proper
algorithms are invoked, and the input trajectory is compared
with the data items stored in the database in the query processor
module. The retrieved data items are ranked according to their
similarity and the corresponding video clips are returned.

In order for the video clips to be accessed by such a system,
raw data has to be processed first, which is done in the pre-
processing module. Incoming video clips are first indexed, and
the spatio-temporal indexing schema is constructed according
to three models: trajectory, trail (as discussed in Sections III
and IV) and projection intervals (not subject of this paper). This
schema is used in the query processor module to search for the
desired clips based on their motion characteristics.

During the preprocessing step, objects of interest are identi-
fied and their position and size are specified with a bounding
box, MBR. Despite their known limitations, MBR’s provide an
efficient way to represent approximate location of objects on the

video coordinate space. Automatic detection and recognition of
objects for this purpose is an extremely challenging task. It is
widely accepted that with the current state of the art in the tech-
nology, software tools can most effectively be used as an aid to
human users for the purpose of extraction of the “interesting”
information, and fully automated indexing is far from being
accomplished. Toward this goal, we use a semi-manual object
tracking tool for capturing MBR’s where we use limited object
tracking based on error thresholding. In this method, the encap-
sulated objects (areas within the bounding boxes) are tracked as
long as a user-set threshold is not exceeded in the error between
consecutive frames. An alternative method could be indexing at
certain intervals and interpolating for “interframes” to reduce
the redundancy at high frame rates.

The requirement of preprocessing of video within the pro-
posed framework is a significant shortcoming and is a general
handicap in content-based multimedia access. The widespread
use of the upcoming content-aware video representation stan-
dards such as MPEG4 or MPEG7 are expected to help alleviate
such problems in the future.

The query tool (VSE) is similarly used for retrieval of the data
objects according to the constructed indices. In order to enter a
query, a rectangle (MBR) is drawn for each object and dragged
on the screen to specify the motion trajectory to be searched.
During this process, its coordinates are recorded at specified
time intervals in real time. Prerecorded object trajectories can
be played back while the new trajectories are entered thereby
allowing a multiobject metaphor.

A. Experiments with the Trajectory Model

We have used the PICTURESQUE tool to measure the perfor-
mance of the models and algorithms we have proposed in this
paper. In doing that, we have faced the common challenge in
the multimedia research area: Measuring retrieval performance
of video objectively is very difficult given the complexity of the
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TABLE II
TRAJECTORYMODEL RETRIEVAL RESULTS: TRANSLATION-ABSOLUTE QUERIES

TABLE III
TRAJECTORYMODEL RETRIEVAL RESULTS: TRANSLATION—INVARIANT QUERIES

data and subjectivity of the “success” criteria. There is no ana-
lytical or concrete way of measuring the quality of the results
similar to peak signal-to-noise ratio (PSNR) technique in tra-
ditional signal processing. In addition, due to relatively short
history of the video databases, there is no commonly used data
for benchmarking the retrieval methods. For these reasons, we
have to rely on home-grown methods to report the results until
a universal performance measuring framework emerges in the
video database field.

In order to partially overcome these shortcomings we have
chosen to use a common data set and performed testing with the
MPEG7 sample sequences that are distributed as part of the ex-
perimentation effort for the upcoming standard. These clips are
accompanied with their object segmentation information which
allows practical object indexing. In this set, there are a total of
13 sequences with an average length of approximately 12 s. We
have extracted the center point locations from these and sup-
plied to our trajectory-based retrieval mechanism.

Due to the limited number of items in the data set and the
aforementioned reasons, traditional recall-precision experi-
ments cannot be used for a conclusive testing. We have therefore
devised the following technique for performance evaluation
of our trajectory algorithm: we have picked five distinctive
sequences from the data set and asked the user to query for each
one. Then, the similarity measures between the query sequence
and 13 data items are computed and ranked. The motion types
associated with each of these sequences are as follows: balloon:

bouncing; car: horizontal; train, zigzags; dancer, circular; fish,
horizontal (right-to-left followed by left-to-right).

Table II shows the results for absolute translation queries
(where the user inquires the position as well as the trajectory)
and Table III lists the results with translation-invariant queries
(where a given trajectory is searched in the entire search space).
In these tables, the first two columns contain the results for the
intended case (Absolute or Invariant) and the other case is also
shown as a reference. “Abs. Rank” indicates the rank of the de-
sired sequence in the results list (1 being the best and 13 being
the worst). “Over Ave.” is the ratio of the dissimilarity of the de-
sired sequence to the average of all, which signifies the overall
differentiability of the metric with smaller numbers indicating a
better measure. “Over Second” is the ratio to the second (for the
first ranks), an indication of how distinctive the “right pick” is.

As the tables indicate, trajectory model produces generally
satisfactory results with the MPEG7 data set. Translation-ab-
solute queries result in more accuracy as the employed metric
is more strict and the user is givena priori information about
the location of the motion. The reduced accuracy with transla-
tion-invariant scheme using the same query (second half of the
same table) is due to the fact that there may be similar motions
with a different location and matches the query better than the
desired motion. The results in this column are similar to the re-
sults for invariant queries in Table III. The reverse, however, is
not true because two motions will not be regarded similar un-
less their locations match in an absolute search mode, as shown
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(a) (b)

(c)

Fig. 4. Recall-precision graphs for the trail model: (a) spatial-absolute retrieval, (b) spatial-invariant retrieval, (c) distance results between sample images for
scale-invariant retrieval with SCALE_INV_RETRIEVAL.

in the second portion of the table. An exception is the fish se-
quence which is merely a coincidence.

B. Experiments with the Trail Model

In order to test the effectiveness of the Trail Model, we
have experimented with each retrieval case in the algorithm
TRAIL_RETRIEVAL and obtained the results shown in Fig. 4. In
this case, we have used a data set that consists of 30 manually
generated sequence indices with an average length of 7.5 s. The
recall-precision graphs proves to be more useful with a larger
data set with more representatives from each ground-truth
categories.

For the spatial-absolute and invariant cases our sample data
set contains three groups of motions:run, pass, andslam. The
run category represents players running from left to right in a
football video clip,passrepresents balls following a parabolic
trajectory andslamrefers to reflection of the ball. Each group

contains an equal number (ten) of video clips that are preclassi-
fied into the group manually. The length of the sequences ranges
between 5 and 10 s. A member from each group is then picked
as a query clip and compared against the entire data set. The
resulting recall-precision graphs in Fig. 4 indicate that all three
algorithms generally produce satisfactory results. In the spatial
absolute retrieval, the precision of therun query drops rapidly
due to the larger size of the associated object (player), as it is
easier for other objects to have large overlapping areas with a
larger object for other objects. Higher precision forrun in spatial
invariant case in the second diagram indicates the importance
of this option for better retrieval of the desired behavior. Low
precision of thepassquery in the same diagram is proof that
in some cases a more robust retrieval technique will be needed
than a mere translation invariance.

For testing the scale invariant retrieval algorithm, we used a
different data set and a more definitive measuring technique.
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The data set in this case consists of three user-sketched trails in
two different sizes that resemble the letters r, L, and a rectangle,
chosen for a better naming convention. The results are remark-
ably accurate: in each of three categories, dissimilarity mea-
sure of Algorithm SCALE_INV_RETRIEVAL ( ) gives dis-
tinctively close distances between associated classes (small_r
to big_r, etc.) In general terms, this retrieval type gives the most
natural and expected results, but has severe computational dis-
advantage. For this reason, it is concluded that the spatial-abso-
lute and spatial-invariant methods should be used as “quick and
dirty” searches and the scale-invariant algorithm should be de-
ployed for higher precision retrieval.

C. Discussion and Comments

In this section, we comment on several issues that pertain to
the general framework discussed in this paper.

1) Multiple Object Queries:With the trajectory model, sce-
narios involving multiple objects can be described using pair-
wise combinations of the objects involved in the same scene.
The difference vector define the relative position of objects with
respect to each other and is input to the same algorithms as in
the case of single object descriptions under the assumption that
this vector sufficiently defines the relative movements. This is
feasible only when limited number of objects are involved in
each scene, as is the case with most real life situations. With the
trail model, multiple objects and their relationships have to be
handled with an external model for which VSDG is an excellent
example. For more detail on this model, please refer to [5].

2) Precision-Performance Tradeoff:In [9], a prefiltering
method has been proposed similar to our two-stage algorithm
to reduce the computational cost. While the two methods share
the same basic idea,completenessproperty enforced in this
method restricts the solution space. By allowing inaccuracy, our
method offers the ability to adaptively adjust the parameters for
the desired precision-performance combination as formulated
by the optimization problem in Section II.

3) Temporal Invariance:We have demonstrated that the
trail model performs better in cases where retrieval must be
temporal scale invariant. VideoQ [3] offers the same feature
as “Spatial Mode” where the trajectory is similarly projected
onto the – space. However, the size in this case is only an
external variable, which may be an advantage or disadvantage
depending on the retrieval characteristics and our scale-in-
variant retrieval case partially alleviates the disadvantage of
the trail model. In addition, PICTURESQUE addresses spatial
translation and scale invariance, and computational efficiency
issues explicitly.

4) Object Sizes:Note that object sizes are inherent to the
trail model and are treated as an external variable in the trajec-
tory model. The limitations of the trail model in this regard is
partially reduced by the scale invariant algorithm. In its current
implementation, the size is assumed unchanged throughout the
query and this is one of the possible improvement areas of the
model. When the trajectory model is used, size is assumed to be
an external feature such as the color, identity or other object fea-
tures and has not been considered in the experiments presented
in this paper.

5) Camera Motion: Another important issue is the handling
of the camera motion. We compensate for the camera motion,
by eliminating the effect of inter-frame camera movements by
techniques similar to those used insalient stills[16] andmo-
saicking[13]. In these techniques, a still image representation
of a clip is obtained by combining several consecutive frames
of a clip, a process that can also be used for detecting the move-
ments of the salient objects.

VI. CONCLUSION

We have presented PICTURESQUE, a video indexing and
retrieval tool for efficient formulation and processing of user
queries based on object motions. The proposed scheme covers
many aspects of a video database system from processing of
raw video for subsequent indexing to spatiotemporal data mod-
eling. The example-based nature of the visual query tool offers a
user-friendly interface as well as a semantic generality and flexi-
bility of the user queries. We have proposed two complementary
models for motion-based video characterization that lead to an
effective content-based retrieval mechanism for video data.
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