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Models for Motion-Based Video Indexing and
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_ Abstract—With the rapid proliferation of multimedia applica-  priori model ofreference framess used to semantically clas-
tions that require video data management, it is becoming more de- sify the identified shots into the constituent components of a
sirable to provide proper video data indexing techniques capable of news broadcasting program. An icon-based browsing environ-

representing the rich semantics in video data. In real-time applica- . . .
tions, the need for efficient query processing is another reason for ment constructed from the recognized shots is presented in [17].

the use of such techniques. We present models that use the object hierarchical Viqeo stream mOde_| Whi_Ch uses a templatg or
motion information in order to characterize the events to allow sub- histogram matching technique to identify scene changes in a

sequent retrieval. Algorithms for different spatiotemporal search  video segment is proposed in [15]. These methods, however, are

cases in terms of spatial and temporal translation and scale in- ,sefy| jn specific domains, and therefore not readily applicable
variance have been developed using various signal and image pro-

cessing techniques. We have developed a prototype video search” the development of ger)gral-purpose video data '”0!@?'“9 and
engme’P|CTURESQUE(p|Ctor|a| information and content trans- retrieval SyStemS. In add|t|0n, these methods have limited ca-
formation unified retrieval engine for spatiotemporal queries) to  pability since semantics associated with scene changes are cap-
verify the proposed methods. Development of such technology will tyred, but temporal events within a scene are not modeled.
enable true multimedia search engines that will enable indexing A hnymber of researchers have proposed techniques for video
and searching of the digital video data based on its true content. - . -

content modeling involving temporal events. Some of these
~ Index Terms—Content-based retrieval, imprecise querying, mo- techniques rely on modeling the interplay among physical
tion modeling, video databases, video indexing. objects in time along with spatial relationships between these

objects. In [6], spatial and temporal attributes of objects and

l. INTRODUCTION persons are modeled through a directed graph model. Although

. L . . a formal method of representing video data is proposed, the
ECENT initiatives in digital video technology have Slg'underlying spatial models for motion-based characterization

nificant applications in many areas, including digital II'are not provided, rendering severe limitations to the system.

branes.,t.wdeto ?fgrvelllance, Iavxt/ enforcemdent, dautotmz?tlctta%A approach that uses spatial relations for representing video
recognition, fraffic management, command and control, elc. mantics is spatiotemporal logic [2], [5]. In [2], a prototype

research community in this area is exploring better ways of rl'?ﬁage sequence retrieval system is developed, where video

trieving information from large repositories ofmultimediadata‘,r mes are processed and simple events are represented by
With exp_onennal growth in m”'“”_‘ed'a data f'”Ch'Yes' the ne atiotemporal logic. The prototype provides a query interface
to organize, store, search, andi dlsplgy multllmedla data hask5 “which query-by-sketch is employed to query video data.
prgasg d treg1end0l;]sly. Thherg IS e:n mcr;aa?fg r:ged for rfo ?Bvever, spatial and temporal predicates are manually anno-
Indexing and search mechanisms to enable eflective USe of Miie 4 i the database, thus requiring considerable manual effort

tlmTedﬁtQatal,l antch] n pe}[rtlctulfr,_?gltﬁl V|dbeo. ted for event specification. The framework discussed in [8] defines
raditionally, thecontentot video has been represented €ly o o algebraic operators to allow spatiotemporal modeling
ther by simple textual techniques or low-level image featur

Shd provide video editing capabilities. After extracting trajec-
m[?)\@/ of a macro-block in an MPEG video, all trajectories of

tion of video into smaller units. Various scene change deteIﬁ"l’erarchy is established for representing video. This technique

tion techniques have been employed to automatically SeIMABLS not address the handling of interobject relationships and

y|de0 da_lta into shots. A <_:o|or hlstogram comparison routing, o ¢ description due to its limited analysis at lower-levels.
is used in [11] to parse video data into scenes. In [14]aan

VideoQ [3] is one of the very few models that directly address
motion-based content characterization. However, the approach
lacks an explicit temporal formalism and comprehensive spatial
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action present in video datdClips with a touch-down event”  As a graphical data structure, VSDG offers a visual envi-
is a much more meaningful description thH&lips with green ronment where the temporal relations can be effectively rep-
background”. Similarly, queries likésearch for a head-on col- resented and constructed. For a more complete representation
lision involving a car and a van'cannot be answered by in-scheme, however, mechanisms must be defined for an effective
dexing techniques based on color histograms. An effective spatiotemporal characterization. The mechanism of searching
dexing scheme cannot be restricted to preassigned keyword$oorevents in such a system will involve modeling and com-
just be simple raw data that carries no semantic meaning. P@afisons of motion features of the salient objects in video. In
erful intermediate spatiotemporal models are needed that pitwe next section, we analyze the desired characteristics of such
vide enough semantic power while supporting an efficient rechemes which lead to the two motion models in subsequent
trieval mechanism for effective content-based access. sections.

In this paper, we propose several motion description
schemes that serve as intermediate spatiotemporal mogelSpegired Characteristics of Motion-Based Modeling and
for event-based retrieval of video. We summarize the basigirieval
components of our approach and the major contributions as
follows. In order to process user-sketched queries gkee me the

« Description of characteristics and identification of reCliPS where an object draws a circle like this (a sketched path),

quirements for motion-based video retrieval. Based &Ghsimilarity measuring mechanism between motion representa-

this discussion, we propose two alternative and compl@QnS must be developed. Our experience shows that in order

mentary schemesrajectory and trail-based modelsor to answer such queries effectively, any similarity measurement
motion-based indexing of video mechanism must possess certain features. The nature of query
« Based on these models, we propose efficient searching%rlgcessmg in a multimedia database system is significantly dif-
gorithms. Specifically, these techniques address the inva{ﬁ_rent from traditional databases in this regard. According to our
ance features in spatial and temporal domains. observations, the major issues pertaining to the video database

« For the search case that does not require any invariafi€lrieval includduzzinessefficiency andspace and time invari-

feature, we propose computationally efficient searchirfif'c€
Different user perceptions introduce fuzziness in

techniques based on common statistical methods. These®
methods also provide flexibility to the user in determining
the right search parameters for optimum accuracy/perfor-
mance tradeoff.

» We have developed tha@ctorial information and content
transformation unified retrieval engine for spatiotem-
poral queries (PICTURESQUE), a video database
retrieval system that provides an effective example-based
guerying mechanism and alleviates the limitations of
keyword-based search techniques. Our implementation
covers the preprocessing of the raw video for subsequent
retrieval as well.

The remainder of the paper is organized as follows: In the next
section, we outline the characteristics and requirements of mo-
tion-based video modeling and present the formal statement of*
the problem addressed in this paper. Based on this foundation,
we present thérajectory (Section Ill) andtrail models (Sec-
tion 1V). Section V lays out the implementation details and ex-
perimentation results of the proposed models. Section VI con-
cludes the paper.

Il. MOTION-BASED MODELING IN VIDEO DATABASES

In our earlier work, we have presented a graphical model
called video semantic directed graplvSDG) as a represen-
tation scheme for temporal specification of video content [5].
VSDG provides an effective means for interobject temporal
specification for multiple objects that enables temporal content
based access to the semantics in digital video. Based on this
foundation, we now present new models that extend the func-
tionality of VSDG in terms of trajectory specification support
that enables object movements to be modeled and queried.

querying, since a rough sketch may not exactly rep-
resent the desired scenario. Furthermore, typically more
than one clip is expected to be returned for a given query
and these clips will not possess the exact motion features
of the query. For these reasons, the similarity criterion
should provide a fuzzy measure based on a numeric scale
rather than merely accepting/rejecting database items.
Computational efficiency is an important and often un-
derestimated factor in multimedia database applications.
With unrestricted length of the database clips, it becomes
more important for a motion similarity mechanism to
function with an acceptable complexity for real-time and
scalable query processing.

The issue of spatial invariance arises when the queries may
specify a translation-invariant motion which may be lo-
cated in arbitrary locations in the spatial domain(screen
space). However, in some cases it may be desirable to re-
strict the location to exact coordinates in the spatial do-
main, such as surveillance applications where the camera
is fixed and the environment is defined. Therefore, spatial
translation invariance should be optional rather than a de-
fault behavior. In addition, spatial scale invariance may be
desired for retrieval which is independent of the motion or
object dimensions.

Similar to the spatial invariance, temporal scale in-
variance refers to the flexibility of the speeds of the
object movements. Users may describe motion with
arbitrary speeds and may be interested in the general path
the objects follow rather than exact locations at exact
time instances. For this reason, the similarity matching
mechanism should be able to match motion descriptions
regardless of the speeds of the objects when necessary.
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TABLE | we do not propose a solution, however, it can easily be derived
MOT'ON'BASEJA\T/"Q'IDXEO RETRIEVAL from the all-invariant casé-{l ) as a special case. All others are

labeled by their corresponding section numbers.

AA AL} 1A II

B. Video Content Organization and Query Formulation
A|ILAl C |LILB]| C

We have emphasized the important role of spatiotemporal
characterization of video data for content-based retrieval. We
perceive such characterization with an event-centered viewpoint
and rather call ievent-basedetrieval. An event can simply be

Similarly, there should be a mechanism to externallyefined as “an interesting happening” in a clip. The formal de-
manipulate the general duration of the queried events fexription of events, however, must be made through a well-de-
the users to have control over the temporal features of tfiwed spatiotemporal characterization model. We construct this
described scenario. Translation invariance in temporeéscription based on the two aforementioned models. We begin
domain refers to searching of queried motion throughotliis by presenting an overall data organization and then define
the entire temporal domain and is the default behavior. the query formulation which is the formal problem statement for

The first two criteria, regarding the flexibility and perfor-both models.
mance of the comparison techniques, are subjective featuredn our approach, video data is organized as follows: Raw
The invariance properties, however, can be characterized mei@eo is segmented intdips that form the atomic unit in the
objectively and associated retrieval techniques can be develogétabase. Each clip contains several semaottiects (cars,
based on such distinctions. In such a framework, dependifigmans, etc.) which carry two types of informati@escrip-
on the application and the environment, users should have ttv_dataand Motion_data Descriptive_data refers to object
ability to choose for invariance options in spatial and temportgatures like the identity of an object, its color, shape, types,
domains as part of the querying process. These features nfist, which is not addressed in this paper as part of the proposed
be facilitated by the right combination of motion representatiohotion based retrieval methods. For event-based characteriza-
and comparison techniques. In other words, the representafi®n, spatiotemporal features of moving objedw#o(ion_datg
scheme is as important as the retrieval technique employechii¢ more important and therefore are the focus of our work. We
possessing the right features. adopt the minimum bounding rectangles (MBR’s) to represent

Ideally, a motion representation scheme should possess tii@ objects. Despite their limitations, MBR's provide a concise
features listed above as closely as possible. Among the vari@l simple low level representation of the object boundaries.
motion representation schemes, four are considered the modtormally, object = {Descriptive data Motion data},
prominent [7]: B-spline, chain code, differential chain code, arithere Descriptive data = [ObjectID, Size, Color,---],
raw trajectory. For majority of the retrieval cases discussed amd Motion data = [C(k), W(k), H(k)], which contains
the next sections, we use the last one tthgectory modedue C(k) = [Z(’Z)] k =1, ---, N, the center point locations of
to its flexibility in employing various numerical retrieval tech-MBR’s for the frames that range from 1 f§, and the widths
niques. For temporal scale (speed) invariant retrieval, howev@t/) and the heightsH) of the object. The arrag’ has two
this model does not prove to be viable and we propose a nelements, one for each coordinate axisandy. Note that
scheme, therail model This model is based on trail imagesr denotes the sequence (vector) whilgt) corresponds to
constructed by highlighting the areas covered by moving o#n individual element. The components Mbtion_dataare
jects and is elaborated in Section IV. used to build the intermediate database indexing scheme for

Based on the invariance properties discussed above andstiesequent retrieval of the associated video clip.
two motion representation schemes, we propose several spdn the trajectory model, the center point coordinates, desig-
tiotemporal retrieval methods summarized in thetion-based nated by the sequencg, are captured at frame instances (for
video retrieval matrixn Table I. In this table, we identify six dif- eachk) and form the basis for trajectory models. In other words,
ferent cases of retrieval methods based on the distinction aldhgx andy coordinates of the MBR centers define the trajecto-
temporal scale invariance, spatial translation invariance and sfi@s of objects on the screen and are used for similarity measure-
tial scale invariance. The horizontal axes correspond to temporegnt between query{?) and data(’”) indices. The matching
scale invariantl) and absoluteX) and the vertical axes are forprocess for such trajectories can be formally expressed as fol-
combinations of spatial translation and scale invariant cases, laws.
spectively. For example, the columtA corresponds to trans- For every stored database ite@” in Database if
lation invariant and scale-absolute case in spatial domain. \essimilarity(CP, C?) < Threshold then accepC” where
denote cases for which a method is proposed here with corfé? (k) = [gyég] andCP (i) = [;E:;] fork =1,---, N,
sponding section numbers. We do not address three cases inghidi = 1, ---, N, N, is the number of frames in the query
paper: temporal absolute, spatial scale invariant cases (bothslaguence ang, andg, designate the center-point trajectories
beled with a “C”) and temporal invariant, spatial translation alfer = andy axes.
solute-scale invariant case (labeled “X"). For the cases labeledn the next section, we propose several efficient methods for
with a“C,” differential chain code scheme appears to be a vialdemputation ofDissimilarity (CP, C?) and provide detailed
approach [8], but is not elaborated here. For the third case (&palyses of those methods.

I IV-A; X |IV-B|IV-C
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[ll. M OTION-BASED VIDEO RETRIEVAL WITH TRAJECTORY  algorithm we propose computes the distances selectively with
MODEL a two-stage scheme that eliminates unlikely candidates in the

In order to retrieve videos based on their motion character%r—St stage. This makes it possible to achieve a performance even

tics, a similarity measuring mechanism has to be developed t g{tertharO(N log V) inmost cases. Note that this discussion
will search the database using the appropriate indexing schefRd! :
In this section, we propose several techniques based on the heral subse_quence matching problem_s. o
jectory model and analyze their effectiveness for several in- ) A Fourier Tra_nsform—IZBFasgd Sl_mllarlty Computa-
variance situations. These techniques consist of: 1) tempotllg,": Notg that the third terny,, i (2) is con;tant for all
scale-absolute retrieval (using the trajectory model), which iff&u€S Ofi and can be safely omitted for comparison purposes.
cludes: a) translation-absolute retrieval and b) translation-i-ﬁbe secqnd term involves _mult|pI|cat|on 01%1 ar_1d G }'md
variant retrieval; 2) temporal scale-invariant retrieval (using tH" be viewed as convolution over the enttr,esmqea:q IS
trail model), which includes: a) spatial translation and Scale_a%_subsequence_ of. The e'eme”ts Of the (_:onvolunon V?Ctor
solute retrieval, b) spatial translation-invariant and scale-ab&¢ then substituted for the;g, mult_lphc.atlon fqr eachz; . .
lute retrieval, and c) spatial translation and scale-invariant Hé—'s a well-known rqle_ tha}t cgnvolutlon n the signal domal'n
trieval models. corresponds to multiplication in the Fourier tra‘nTsform domain.
In this section, we elaborate on case 1), the temporal scAféerefore, the convolution vect@fonu(i) = z;" ¢, can be
absolute retrieval based on the trajectory model. Trail modgfPressed as
[case 2)] is covered in Section IV. Comv(i) =z % " = F-1(X - Q%) (4)

dot limited in scope to trajectory retrieval but also applies to

A. Spatial Translation-Absolute Retrieval where X and Q% are Fourier transform of: and ¢* (the
Though users will typically require spatial translation-incomplex conjugated—and padded with zeros for matching
variant retrieval, exact locations may be an important pe#tmension—version ofg,), respectively. The advantage of
of the query in certain situations. For example, in securitysing Fourier transforms to compute the" ¢, terms is that
surveillance video taken with a fixed camera, the location of tik@urier transform can be computed (N log N) time
moving objects on the screen will be of importance to deteitanks to efficient fast Fourier transform (FFT) algorithms
certain events (e.g., illegal right turns) and query processiagd provides a logarithmic reduction of the computation time
must be performed to allow such differentiation. of the overall algorithm. The overall complexity is bounded

As a common similarity measure, we use Euclidean distanigg the complexity of the Fourier transformation step due to
for spatial absolute comparisons (matching) of sequenc#se possible linear time computation of the first tenfﬁa:é:
This yields the formulation of theDissimilarity(Dis) and elements of the squared term vec®®(:) = xszxiz can be
Distance(Dist) functions as recursively computed as

p(1)2 + -+ 2(Ny)?

SQ(i — 1) + a(Ny +i)? — (i)?
fori=1,---, N—-N,. (5)

D'L’S(C’D7 CQ) = miin[Dist(a:fI, ) + Dist(yé, )] @) S5Q(0)
5Q(i)

Dist(x’ =(z' — ) (2" — . . . .
() @) = (25 — @) (@ — @2) As a sequential computation, the above equation results in

T T
=l 7y — 2T, G+ @ e (2) a linear time complexity. Algorithm RTRIEVAL_ABS, shown
Dist(y,, ay) = (yy — qy)T(yfI —q) on the next page, summarizes the baglc _steps of _the discussed
T T T 3 method. Steps 1 and 3 are performed in lin€¥rV) time and
=Yg Yy~ W Wt G () the Fourier transform in Step 2 i9(N log N). The overall

complexity of the algorithm therefore @(N log N).
2) Two-Stage MethodWhile the Fourier-based method
; .. i > p L .. 2 reduces the complexity significantly, further reduction can be
and shifted by, i.e.,z,(k) = o(k+i),k =1, -, Ny i = achieved by eliminating unnecessary computation of Euclidean

0, -, N-N,—Liz,y € ZN; gz, qy, xg,yq € ZN4; Ny, < N. _ ; .
In order to avoid unnecessary repetition, discussion here on v%cli“?tances for eachy,. For this purpose, we propose a method

be done only forX axis. Distances obtained independently art«gzt ff'rlgtersstgu; tgﬁ durclglﬁly f:r:g;dzt;s;y dasf;r:ie.rnﬂﬁzsigg d
added to compute the minimizddissimilarity metric in (1). ! 9 pu ual d !

For translation-absolute retrieval, we carry out the Euclideé:i'ﬁage for the items satisfying the first criterion. A natural can-

: S . . idate for the first criterion is the absolute difference between
distance computation in a translation-absolute fashion. WhgVera es of the elements.gf ande.. Namelv. the condition
performed straightforwardly, computation of (2) hasC:a(rj\fq2 ) 9 f G- Y

whereg, andg, are the query sequences, andy/, indicate
portions ofz andy with length equal to the length qf, andg,

time complexity whereV, is the length ofy,., which is in the | Ave(zi) — Ave(g)]
same order withV. We demonstrate that better performance . N — <7 (6)
can be achieved: 1) by computing the Euclidean distances more 1

efficiently or 2) by avoiding unnecessary comparisons. First, weust be satisfied in order for the Euclidean distanfes¢) to
propose atO(N log N) solution based on computing the threde computed for that particulaifl. Division by N, is to allow
terms in (2) separately and using Fourier transform. A secotite right hand side of the inequality,( to be an independent
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Algorithm R ETRIEVAL_ABS Fourier-Based Temporal
and Spatial-Absolute Retrieval

Algorithm T wo STAGE Dissimilarity Computation
in Two Stages

Input:  Data and Query sequences, c” and C%
Output:  Dissimilarity between C” and C%
Step 1 For each o), 0<i< N-N,

>q’

Input:  Data and Query sequences, cP and C¢
Output:  Dissimilarity between C? and C©

Step 1 Construct the complex conjugate of qx

for i=1to N, o vele) el L ey
0:(i) = ¢z (Ng + 1 — 1) Y , o
for i=N,+1to N Dist(z}, q.) = (2 — q.)" (2} = ¢.) /N,
12 (1) = else
q:(1) =0 o
Step 2 Take Fourier transforms of both signals Dist(xy, ¢2) = oo o
X = F(x), Qx = Flqz) Step 2 Repeat Step 1 to compute Dist(y;, qy)

Step 3 Compute Dis(CP, C?) as

Step 3 Using (4) and (5), compute - )
P g9 @ ) P min; [Dist(xr, ¢o) + Dist(y,. qy)]

Dist(z}. q.) = SQ(i) — 2Conv(i)
for each ¢, 0<i< N -N,
Step 4 Repeat Steps 1-3 to compute
Step 5 Compute Dis(C°, C?) as
min;[Dist(x}. q.) + Dist(yl, qy)]

Dist(yy, qy)

“success” measures in terms of these parameters. In order to de-
fine an error bound for the “misclassification” in the first stage,
we defineError_Probability(r, ) as:

| 23]l = llg=|l |
. (9
N, > T 9

To simplify the notation, letl, = =’ (k) — ¢.(k). Then the
expression in (7) can be written as

7t — . 2
Hw{quqngﬁ
variable. A match is eventually decided according to the condi- 1
tion

(37?1 - qgc)T(ajé ~ )
Nq

3 2
@ -l
N(I

Dist(a:i, Qz) = )
q I - )l

df +di+ -+ dy,
N, '

Ny

(10)
@)

< 7.
Note that thed;. values represent the differences between co-
in Algorithmordi”ate values of the query location and the location of the

data objects. In order to come up with a statistical bound for

The philosophy behind this method is that if a sequencetl%e above probability, we a_ssign a random va_triable for the dif-
not close to another sequence by its average, it is unlikely tfigf€nce between consecutilg values and define them recur-
the Euclidean distance will be close enough to grant a match Se!Y asdu+1 = di + I whereR is a random variable. This
the next section, we provide a theoretical analysis of the abd¥ill resultin the closed form expression
formulation and present an optimization case for determining

Main steps of the method are outlined
Two_STAGE, shown at the top of the page.

the right parameters for optimal computational and functional di = di+ B, Rp=ritret 41 (11)
efficiency. Therefore
3) Analysis of the Two-Stage AlgorithnT:he correlation be-
tween the two criteria, namely the difference of the first and the di+ (it R+ + (dit Ry, 1)
second norms of the differences, makes it possible to carry out a Ny
statistical analysis of the error for the two stage algorithm. The Ng—1 Ng—1
error is defined as the ratio of data items rejected in the first Ny} +2dy > Ri+ > R}
stage that satisfies the second criterion(false negatives). In this _ k=1 k=1 (12)
section, we provide an analysis of this error and discuss the de- N,

termination of the optimal values for the threshotdsandr.
First, we rewrite (6) as

Lemma 1:Letx!, ¢, € Z) anddy, = z(k) — ¢ (k)
di + Ry, 1 £ k £ N, andRy is a random variable. Given
2%l = llge|l | NS
— < 7. 8 gl Wl
N, <7 (8) N, >

Clearly, there is a trade-off between the values of the thresholti probability
71 in (8) andr; in (7). Their choice determines the “tightness”

of the similarity measures in both stages, therefore is important

in the resulting error rate. It becomes imperative to express the

) 2
LTy — 4z
mm{”qm)ms@}
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has an upper bound equal to Using the corresponding probability distribution and cumula-
tive distribution functions, one can express the conditional prob-
ability of (15), which is a function of the variables and as

4 2 3\
N,—1 Ng—1
S R 3 R, / SB(x)Fap(a|x)[l - §C|B($|$)] dx (16)
Pt =1 y 2ER(A, B,C) [1— Fp(r{)]

Prob ~ — N2 <79 —75 7. (13)
1 ] where R(A4, B, C) is the intersection of the ranges of the
random variablesi, B, andC.
\ J Clearly, the distributions ford, B, C, andD are needed in

order to compute the above probability. If the distribution func-

Proof: See [4] for a proof. .. ._tionof Ry’sis known, these functions can be determined by ana-
The fact that the above limit is independent of the initial d'ffyticalornumerical methods. Recall thilf, = 71+ - 7%

ference valué; is interesting but natural; both criteria deal wit L : B P AN

the differences of two sequences, and the absolute initial V;and” = (2 +1) = 2(4) = (G + 1) — ¢(4)), i.e., the
hould h & h ,b havi distributi #ﬂﬁerence of the differences. One possibility is to assume that

should not have any effect on the behavior or distribution. Tr? (the differences of coordinate values in consecutive frames)

threshold values, on the other hand &nd ;) directly affect

h bound 4. the hiahewal q h has a normal distribution with zero mean as often done in many
the error bound. As expected, the highewvalues decrease the, jications. In this case, the random variabigs will also

error bound, as a I.oo_ser_first stage Iimit.would .reduce the pr.ogé normal with zero mean by the well known rule that sum of

ability of falsely eliminating data items in the first stage. Th'snormal variables is also normal [12]. The same rule also ap-

however, would have a negative effect on the overall compu "es to the distribution of the terrEAq_l R, as the summa-
k=1 )

tional complexity of the algorithm which is the main reason su n would be another normal random variable with zero mean

a scheme is used. Therefore, the choice of the thresholds S higher variance. Similarly, the distribution &2 can be

comes a][] op:!mlz;t:cgn pdrpblﬁmfwlrlch caphbe formulated USIZsumed exponential although it would have a discontinuity at

an erroriunc .|on eilne n ﬁ oflowing ieorem. zero. This simplifies the analytical form dfe as the sum of
Theorem 1:Letzy, ¢. € Z,' anddy = z; (k) — ¢.(k) = S

b+ R 1<k<N andR. b d iable. Defi gamma distribution [10].

tﬁ + ’“’d - = bléﬁarjg C’g egl;an om variable. LEN€ ~ 1he normal distribution assumption for the object movements
ree random varia » &, &, andljas in consecutive frames of the video data will reduce the com-

plexity of the computation of the error probability of the two-

2 stage algorithm. However, numerical simulation and functional
N,—1 . R ; ;
approximation is still needed for the computation of the integral
Z By, in (16). This will also allow arbitrary distributions for the actual
A=r2— k=1 data to be correctly processed, removing a restrictive assump-
N2 tion.
Ng—1 As the last step in formulating the optimization problem,
2d, Z Ry, we express the inverse of what Theorem 1 formulates: the
B=d+ k=1 probability (ratio) of the data items accepted in the first stage
! N, and eliminated in the second, i.e., flakse alarnrate. This ratio
Ny—1 is critical in the overall efficiency of the algorithm, because
Z R? the unnecessary computation of the Euclidean distances in the
O =y — =L sepqnd stage will significantly increase the complgxﬂy and
N, eliminate the advantage of the two-stage scheme with respect
) N1 2 to the Fourier-based method discussed in the previous section.
Nad . R As an application of ther and/3 error optimization concept
2d, Z Ry ; * in statistics, we defindalse_Alarm(r, 72) as

(14)

D=d =t
1t N

q

N
N, N,

q q

2 = llgn 2 — )2
Pmb{w ol =l |||Sﬁ‘||<q q>||2>72}. an

Following the same line of argument, we can express the
above probability as

Prob{A < B <} (15)
Prob{D > %} Prob{C < B < A}
Prob{E > 12}

Error_Probability(ry, m2) =
(18)

Proof: See [4] for a proof.
In order to determine a distribution and a possible optimumhich can alternatively be expressed [similar to (16)] as
threshold value, we need the distribution @ in (11). This
will then lead to the computation of the probability in (15) as a / fr(@)Foip(z|z)[l — Fap(z|r)] do (19)
function of the thresholds which can be optimized. 2ER(A, B, C) [1— Fr(m2)]
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Combined Error

1200

Fig. 1. Combined error plot for different values of andr..

where the variablé’ is defined as the user to dynamically determine the tradeoff between the ac-
N1 N1 curacy and efficiency.
2, Z R, Z R A_s an |I_Iustra§|on of this analysis, we ha\_/e cgrrled o_ut anu-
) P — merical simulation of (20), the plot of which is provided in
E=di+ N + N2 Fig. 1. In this simulation, we have generated queries With=
q

1 100. The values ofr; range between one and 25, whereas
and F is the corresponding cumulative distribution function.goes from one up to 1000. Under the assumption that differ-
Using the functions in (16) and (19) we express the optimizances ¢ values) in the distances between every two points in
tion problem as the query have a normal distribution with 0 mean and a variance
of two, we have generated 10 000 queries. In this graph, the com-
min prError_Probability(ry, 72) 4 2 Fulse_Alarm(ry, 72)  pined error (objective function in the optimization problem) is
subject tory, 7 > 0 (20) Plotted for different values of, andr,. The graph contains two
nonzero sections; the right hand side of the figure is mainly due
where the elementSrror_Probability andFalse_Alarmare as to the Error_Probability part and the left side originates from
defined in (16) and (19), respectively. the False_Alarmpart of the objective function. Using such nu-
Now, we demonstrate a numerical illustration of the abovaerical data, one can determine a feasible (optimmjalue
nonlinear optimization problem and how the optimum valudbat keeps the error under certain limit and does not compro-
for the thresholds can be computed. An important factor is theise computational efficiency with high values. This is due
choice of the coefficientg, and /.. As in any optimization to the fact thaFalse_Alarmincreases with increasing values.
problem, their values have a deterministic effect on the optimumthis graph, the flat areas where the probabilities are near zero
threshold values. Conceptually; and /3, are the weights as- would represent the optimum combinations of the thresholds.
signed to the relative importance of the error rate and comprbhese areas will be larger for distributions with small variances
mise in the computation efficiency, respectively. White the due to smaller estimation error, and hence less error probability.
weight of the redundant computations, can easily be quantifiedA major advantage of using the proposed two-stage method
in terms of the ratio of the complexity of the second and fir§tn addition to possible performance gain) is the flexibility it
stages/i;, the cost of the error is not as easy to describe quanifers to determine the right tradeoff between performance and
titatively. Its choice, therefore, is left to the user at the time gfrecision. The combination of threshold values in the above
the query entry within a certain predetermined range to alldermulation determine the compromise between precision
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Fig. 2. Example trails used in the trail-based match method.

(Error_Probability) and performanceHalse_Alarm). Note that be compared in different ways including spatial-invariant, spa-
even with optimization, two-stage algorithm will not offer theial-absolute, rotation-invariant, etc.

best solution in all cases. If the precision requirement is too Trail model is inherently temporal scale invariant due to the
tight (i.e., the elimination in the first stage does not significantlfact that the time information is not preserved during the con-
reduce the overall complexity), then the Fourier-based distarsteuction of the trail images (for a similar approach and further
computation discussed in the previous section will be superieliaboration on its scale invariance, see [3]). Time is essentially
in terms of the computational complexity. The "breaking pointtozen throughout the clip and the varying speed of the object
will be determined by the distribution parameters, in othés not reflected in its trail image. However, the duration infor-

words, the motion characteristics of the retrieved video. mation of each trail is recorded so that it can be utilized by the
higher level queries that may also involve the durations, e.g.,
B. Spatial Translation-Invariant Match Search for circular motion that lasts between 10 and 28usch

, . ) external control capability on temporal duration provides flexi-
An important factor for robust retrieval of video based on MGsility in user description of the complex events.
tion is the spatial-invariance, the ability for retrieval of motion A, important factor that must be considered in this method is
trajectories irrespective of their exact locations on the screenp, impact of the temporal length of the clips. When converted
such a case, a query trajectory would be compared in a trangl@yraj images, very long clips will lose their trajectory infor-

tion-invariant fashion against the data trajectories. If the Usef$;tion as the repeated scans of the same area is not reflected
choice is to search for the pattern anywhere in the screen, whighne pinary trail image representation. For the method to be

may often be the case, the plain exact matching algorithms @fe tively used, this factor has to be taken into account at the
the previous section will not return the desired results. This §s,o of parsing the video data.

due to the fact that the offset between the two sequences willgy, gpatial-absolute and invariant retrievals can be an op-
have an accumulative error in the overall dissimilarity measufig, \where the user may choose to either restrict the starting
and change the results significantly. In this case, Fourier rangsin; of the motion or perform a translation-invariant search for

form-based computation will not work due to its aggregate cofflje gesired motion regardless of the exact locations on screen.
putation of the entire sequence at once. We therefore perfofMirg case is where spatial scale invariance is required. The
computations of the Euclidean distance individually for eachery trail in this case is searched independent of the size of the
subsequence after compensating for the initial value, i.e., COgkject or the dimensions of the trail. For example, a small circle

pute the Euclidean distance plainly at the expense of the IoWwg{q 3 pig circle can be matched to each other and are considered
efficiency. The results for the spatial invariant case are presentgflyiiar” in this method. Below. we propose algorithms that ef-

in Section V. ficiently compute the similarity between two trails according to
all three cases.

The algorithm RAIL_RETRIEVAL, shown at the top of the
next page, summarizes the steps of our trail-based retrieval
method. According to the user’s choice of the retrieval type, the

In order to retrieve video clips independent of their temporalssociated images that represent the clip as a motion trail are
characteristics (speeds of the moving objects), we use a traidmpared in three different ways. The output of the algorithm,
based model that captures the motion of salient objects over aSimilarity is sorted and the “besV matches” are displayed
quence of frames. In this method, we highlight the areas covegsttording to the user's choice of the numbérin the user
by the (bounding boxes of the) objects throughout the courseiferface implementation.
its motion as illustrated in Fig. 2. This results in an “image” ) ) )
of the trajectory for each object. In a sense, this is equivalght SPatial Translation and Scale-Absolute Retrieval
to taking the mosaic image of the object trajectory in a clip. For a spatial-absolute retrieval, the user inquires for a motion
The motion comparison is then carried out using the trail intrail that occurs in an absolute screen location. In this case, two
ages by performing an image similarity comparison that maintyails such as those in Fig. 2 are directly compared against each
measures the overlap of two trails. For example, the objectsdther for a pixel to pixel match. The fact that the trail images
Fig. 2 span similar trajectories and therefore, their resulting traite binary images provides a significant performance advantage,
images have a large overlapping area. Two such images ta@comparisons are merely a bitwise multiplication between the

IV. TEMPORAL SCALE-INVARIANT VIDEO RETRIEVAL BASED
ON TRAIL IMAGES
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Algorithm T RAIL_RETRIEVAL: Motion-Based Retrieval Algorithm S CALE | NV_RETRIEVAL: ( g1, ¢2):
using Trail Model Scale-Invariant Retrieval using Trail Images
Input:  Data objects OF =[CP, WP, HP] and Input: g1z, y), g2(x, y): (2N x ZY) — {0, 1}
Query object 0% = [C%, W<, HY Output:  Similarity between trail images n &
Output:  Similarity between O” & 0% go.
For each O" and the given 0% do 1. Calculate the 2-D discrete Fourier trans-
Construct data & query images D(i, j), Qi j) form
with 0 for background & 1 for areas covered Gi(fe, fy) of gi(z, y)
by trails. where f., fy =—-(N/2),---,0,---, N/2-1, & i=1,2.
If User_Choice = Spatial_Absolute_Retrieval 2. Take absolute value of the transform & nor-
then Similarity = sum(D x Q) * (sum(D) + sum(Q))/.5 malize all values to the maximum value at
elseif User_Choice = Spatial_Invariant_Re- zero frequency.
trieval then Hi(fs, fy) = M i=1,2.
Compute the Fourier transforms of the im- G0, 0) :
3. Logarithmically distort H; in the f. & f,
ages as Dp = F(D) & Qr = F(Q) direction, putting the result in D, i=1,2.

g —1 . )
Similarity = maz(abs(F~ (Dr x Qr)))* 4. Compute the measure function

(sum(D) + sum(Q))/.5 N—1N-1 1/2
elseif User_Choice = Scale_Invariant_Re- (Z Z [Di(u, v) = Do(u —k, v — k)]z>
trieval then M(k) = ~usk v=k 73

Similarity = SCALE INV_RETRIEVAL (D, Q) Nt
(Z > [Di(u, v)]? +[Da(u, 'v)]ﬁ)
k=01, N

5. Repeat 3 & 4 for the upper left quadrant,
or the lower right quadrant.

Compute the Similarity by inverting the
dissimilarity measure DSM = min(M).

corresponding pixels. The Similarity step in the algorithm in this
case has a quadratic time complexityN2), N being the width

or height dimension of the input trail images, which is generally
proportional to the screen size.

B. Spatial Translation-Invariant and Scale-Absolute Retrieval
Spatial-invariant retrieval refers to the comparison of twgcale invariance of Mellin transform can be easily proven by

trails in a translation-invariant fashion. This involves th&ubstitution. Fow, (k) = z(ak)
comparison of two images for all possible translations in both

. —ju
dimensions and is computationally intensive. As an efficient [Mza)l(w) = e M@)](w). (23)
way to compare the images in such a fashion, we use thgerefore
convolution property of the Fourier transform which can be
stated as |[M(za)l(w)] = [[M(2)](w)]. (24)
Conv[D, Q=D +Q=F YD Q*). (21) Another property of the Mellin transform is its close relationship

to Fourier transform. Mellin coefficients can be easily computed
With an FFT implementation of the Fourier transform, this stefpom Fourier coefficients by scaling the input signal by a loga-
can be reduced to an(N? log N) time complexity. rithmic scale. Substituting= log & one can show that

C. Spatial Translation and Scale-Invariant Retrieval [M(2)](w) = [Fla(d))(u) = [F(z)](log u)  (25)

For matching two trails independent of both their startinghich, is the basis of Step 3 in the algorithm. For details on this
points and their sizes, we use a Mellin transform-based sc@lg,e-invariant method please refer to [1].

invariant pattern recognition technique which is summarized in |1 is worthwhile to comment on the shift and scale invariance
Algorithm SCALE_INV_RETRIEVAL [1], shown at the top of the ,ption of the algorithm RalL_RETRIEVAL in more detail. Typ-
page. This method provides both spatial translation invariangg yser queries will not specify the desired object motion in its
and spatial scale invariance, due to the scale-invariant natur,Qf -t scale and translation. In other words, it may be desirable
the Mellin transform and the convolution scheme used in the g retrieve all object movements resembling a specified trajec-

gorithm. _ _ _ o tory regardless of their exact location on the screen or what the
Mellin transform of a discrete-time signa(k) is given by gimensionality of the trajectory is. For example, the qugine
N1 me the clips with right to left passé®m a football clip can be
[M(2)](u) = Z a(k)k~ 0D, (22) answered correctly only if the algorithm can retrieve cases with

o different scales in both the size of the object and the size of the
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Fig. 3. Overall architecture of PICTURESQUE.

trajectory (e.g., longer or shorter passes). The scale invariantatteo coordinate space. Automatic detection and recognition of
gorithmis used in such cases to retrieve video clips independebjects for this purpose is an extremely challenging task. It is
of the object and trajectory scales as demonstrated in the neidely accepted that with the current state of the art in the tech-
section. nology, software tools can most effectively be used as an aid to
human users for the purpose of extraction of the “interesting”
information, and fully automated indexing is far from being
accomplished. Toward this goal, we use a semi-manual object
We have built a prototype video indexing and retrieval engintfacking tool for capturing MBR’s where we use limited object
PICTURESQUE, as atestbed for the methods we have propogi@gking based on error thresholding. In this method, the encap-
in this paper. The tool was implemented in Windows platforrgulated objects (areas within the bounding boxes) are tracked as
and consists of two main components: Video Motion Indexirlgng as a user-set threshold is not exceeded in the error between
Tool (VMIT) and Video Search Engine (VSE). consecutive frames. An alternative method could be indexing at
The architectural components of the system is depicted gartain intervals and interpolating for “interframes” to reduce
Fig. 3. In this framework, VMIT comprises of the preprocessintie redundancy at high frame rates.
and spatiotemporal indexing modules and VSE contains theThe requirement of preprocessing of video within the pro-
query processor and user interface modules. According to thigsed framework is a significant shortcoming and is a general
model, a user can query the video database by first specifyipgndicap in content-based multimedia access. The widespread
trajectories of objects. Then, based on the mode of retriewsle of the upcoming content-aware video representation stan-
(spatial-absolute, spatial-invariant and scale-invariant), progards such as MPEG4 or MPEG?7 are expected to help alleviate
algorithms are invoked, and the input trajectory is comparétich problems in the future.
with the data items stored in the database in the query processaorhe query tool (VSE) is similarly used for retrieval of the data
module. The retrieved data items are ranked according to thelijects according to the constructed indices. In order to enter a
similarity and the corresponding video clips are returned.  query, a rectangle (MBR) is drawn for each object and dragged
In order for the video clips to be accessed by such a systedn, the screen to specify the motion trajectory to be searched.
raw data has to be processed first, which is done in the pfedring this process, its coordinates are recorded at specified
processing module. Incoming video clips are first indexed, atighe intervals in real time. Prerecorded object trajectories can
the spatio-temporal indexing schema is constructed accordlpgy played back while the new trajectories are entered thereby
to three models: trajectory, trail (as discussed in Sections #llowing a multiobject metaphor.
and IV) and projection intervals (not subject of this paper). This i . )
schema is used in the query processor module to search forfheEXPeriments with the Trajectory Model
desired clips based on their motion characteristics. We have used the PICTURESQUE tool to measure the perfor-
During the preprocessing step, objects of interest are identiance of the models and algorithms we have proposed in this
fied and their position and size are specified with a boundingaper. In doing that, we have faced the common challenge in
box, MBR. Despite their known limitations, MBR’s provide arthe multimedia research area: Measuring retrieval performance
efficient way to represent approximate location of objects on tloé video objectively is very difficult given the complexity of the

V. IMPLEMENTATION AND EXPERIMENTS
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TABLE I
TRAJECTORYMODEL RETRIEVAL RESULTS TRANSLATION-ABSOLUTE QUERIES
Clip Name || Abs. Rank | Over Ave. | Over Second || Inv. Rank | Over Ave. | Over Second
Balloon 1 .32 .56 3 15 X
Car 1 14 .07 i A1 .04
Train 1 .03 14 2 10 X
Dancer L .04 33 1 .16 A48
Fish 1 .19 .81 5 .38 X
TABLE Il
TRAJECTORYMODEL RETRIEVAL RESULTS TRANSLATION—INVARIANT QUERIES
Clip Name || Inv. Rank | Over Ave. | Over Second || Abs. Rank | Over Ave. | Over Second
Balloon 1 31 .58 13 3.41 X
Car 1 .04 .10 8 91 X
Train 3 27 X 13 3.24 X
Dancer 1 12 .39 10 1.42 X
Fish 3 .38 X 1 15 Ab

data and subijectivity of the “success” criteria. There is no anlaeuncing; car: horizontal; train, zigzags; dancer, circular; fish,
lytical or concrete way of measuring the quality of the resultsorizontal (right-to-left followed by left-to-right).
similar to peak signal-to-noise ratio (PSNR) technique in tra- Table 1l shows the results for absolute translation queries
ditional signal processing. In addition, due to relatively shofivhere the user inquires the position as well as the trajectory)
history of the video databases, there is no commonly used datal Table Il lists the results with translation-invariant queries
for benchmarking the retrieval methods. For these reasons, (wénere a given trajectory is searched in the entire search space).
have to rely on home-grown methods to report the results untilthese tables, the first two columns contain the results for the
a universal performance measuring framework emerges in theended case (Absolute or Invariant) and the other case is also
video database field. shown as a reference. “Abs. Rank” indicates the rank of the de-
In order to partially overcome these shortcomings we haseed sequence in the results list (1 being the best and 13 being
chosen to use a common data set and performed testing withttieeworst). “Over Ave.” is the ratio of the dissimilarity of the de-
MPEG7 sample sequences that are distributed as part of thesred sequence to the average of all, which signifies the overall
perimentation effort for the upcoming standard. These clips ati#ferentiability of the metric with smaller numbers indicating a
accompanied with their object segmentation information whidfetter measure. “Over Second” is the ratio to the second (for the
allows practical object indexing. In this set, there are a total @ifst ranks), an indication of how distinctive the “right pick” is.
13 sequences with an average length of approximately 12 s. Wés the tables indicate, trajectory model produces generally
have extracted the center point locations from these and ssptisfactory results with the MPEG7 data set. Translation-ab-
plied to our trajectory-based retrieval mechanism. solute queries result in more accuracy as the employed metric
Due to the limited number of items in the data set and thig more strict and the user is givenpriori information about
aforementioned reasons, traditional recall-precision expetfie location of the motion. The reduced accuracy with transla-
ments cannot be used for a conclusive testing. We have therefiiwa-invariant scheme using the same query (second half of the
devised the following technique for performance evaluatiame table) is due to the fact that there may be similar motions
of our trajectory algorithm: we have picked five distinctivewith a different location and matches the query better than the
sequences from the data set and asked the user to query for edired motion. The results in this column are similar to the re-
one. Then, the similarity measures between the query sequesigks for invariant queries in Table Ill. The reverse, however, is
and 13 data items are computed and ranked. The motion types true because two motions will not be regarded similar un-
associated with each of these sequences are as follows: balldess their locations match in an absolute search mode, as shown
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Fig. 4. Recall-precision graphs for the trail model: (a) spatial-absolute retrieval, (b) spatial-invariant retrieval, (c) distance resatisshetple images for
scale-invariant retrieval with@G\LE_INV_RETRIEVAL.

in the second portion of the table. An exception is the fish seentains an equal number (ten) of video clips that are preclassi-
quence which is merely a coincidence. fied into the group manually. The length of the sequences ranges
between 5 and 10 s. A member from each group is then picked

as a query clip and compared against the entire data set. The
In order to test the effectiveness of the Trail Model, weesulting recall-precision graphs in Fig. 4 indicate that all three

have experimented with each retrieval case in the algoritragorithms generally produce satisfactory results. In the spatial
TRAIL_RETRIEVAL and obtained the results shown in Fig. 4. Ibsolute retrieval, the precision of then query drops rapidly
this case, we have used a data set that consists of 30 manug@illg to the larger size of the associated object (player), as it is
generated sequence indices with an average length of 7.5 s. Fasier for other objects to have large overlapping areas with a
recall-precision graphs proves to be more useful with a largarger object for other objects. Higher precisiontiam in spatial
data set with more representatives from each ground-truivariant case in the second diagram indicates the importance
categories. of this option for better retrieval of the desired behavior. Low
For the spatial-absolute and invariant cases our sample daitecision of thepassquery in the same diagram is proof that
set contains three groups of motionsn, pass andslam The in some cases a more robust retrieval technique will be needed
run category represents players running from left to right inthan a mere translation invariance.
football video clip,passrepresents balls following a parabolic For testing the scale invariant retrieval algorithm, we used a
trajectory andslamrefers to reflection of the ball. Each groupdifferent data set and a more definitive measuring technique.

B. Experiments with the Trail Model
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The data set in this case consists of three user-sketched trails i) Camera Motion: Another important issue is the handling
two different sizes that resemble the letters r, L, and a rectangdé the camera motion. We compensate for the camera motion,
chosen for a better naming convention. The results are remadbok-eliminating the effect of inter-frame camera movements by
ably accurate: in each of three categories, dissimilarity me@chniques similar to those usedsalient stills[16] and mo-

sure of Algorithm $ALE_INV_RETRIEVAL (D, Q) gives dis- saicking[13]. In these techniques, a still image representation
tinctively close distances between associated classes (smaif & clip is obtained by combining several consecutive frames
to big_r, etc.) In general terms, this retrieval type gives the masita clip, a process that can also be used for detecting the move-
natural and expected results, but has severe computational dients of the salient objects.

advantage. For this reason, it is concluded that the spatial-abso-

lute and spatial-invariant methods should be used as “quick and VI. CONCLUSION

dirty searcr_les and th_e _scale-lrjvarlant algorithm should be de-We have presented PICTURESQUE, a video indexing and
ployed for higher precision retrieval.

retrieval tool for efficient formulation and processing of user
gueries based on object motions. The proposed scheme covers
C. Discussion and Comments many aspects of a video database system from processing of
) ) ) _ raw video for subsequent indexing to spatiotemporal data mod-
In this section, we comment on several issues that pertaindhg. The example-based nature of the visual query tool offers a
the general framework discussed in this paper. user-friendly interface as well as a semantic generality and flexi-
1) Multiple Object Queries:With the trajectory model, sce- yjity of the user queries. We have proposed two complementary
narios involving multiple objects can be described using paifiodels for motion-based video characterization that lead to an

wise combinations of the objects involved in the same scengactive content-based retrieval mechanism for video data.
The difference vector define the relative position of objects with
respect to ea}ch othe.r and is m_pqt to the same algorlthms asin REFERENCES
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