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Abstract. In this paper, we propose a multi-level abstraction editing, etc. Due to shear volume of such data, these capabili-
mechanism for capturing the spatial and temporal semanticges require efficient computer vision/image-processing algo-
associated with various objects in an input image or in a serithms for automatic abstractions and indexing of images and
guence of video frames. This abstraction can manifest itself’ideo clips. In addition, there are two prominent issues as-
effectively in conceptualizing events and views in multime- sociated with video/image data modeling and management.
dia data as perceived by individual users. The objective isto e Development of formal techniques for semantic model-
provide an efficient mechanism for handling content-basedng of multimedia information, especially for video and image
gueries, with the minimum amount of processing performeddata. These models should be rich in their capabilities for
on raw data during query evaluation. We introduce a multi-abstracting multimedia information and capturing semantics.
level architecture for video data management at different lev-They should be able to provide canonical representations
els of abstraction. The architecture facilitates a multi-levelof complex images, scenes, and events in terms of objects
indexing/searching mechanism. At the finest level of gran-and their spatio-temporal behavior. These models need to be
ularity, video data can be indexed based on mere appeacompared and evaluated, in case of their varied theoretical
ance of objects and faces. For management of informatioases and complexities.
at higher levels of abstractions, an object-oriented paradigm e Design of powerful indexing, searching and organi-
is proposed which is capable of supporting domain specifization methods for multimedia dat&earch in multimedia
views. databases can be computationally intensive, especially if
content-based retrieval is needed for image and video data
Key words: Semantic modeling — Video databases — Con-stored in compressed or uncompressed form.
tent-based retrieval — Spatio-temporal logic — Object-oriented The key characteristic of video data is its spatial/temporal
modeling semantics that makes it unique from other types of data such
as text, voice, and image. A user of video database can
generate queries containing both temporal and spatial con-
cepts. However, considerable semantic heterogeneity may
exist among users of such data due to differences in their
pre-conceived interpretation or intended use of the informa-
1 Introduction tion provided in a video clipSemantic heterogeneityas
been a difficult problem for conventional databases [7], and

Multimedia databases have recently been the subject of in€Ven today this problem is not clearly understood. Conse-

tensive research. A number of Web-based emerging applicaque”t_ly* prowdlng_a comprehensive interpretation of video

tions such as telemedicine, digital libraries, distance learnd@t@ is a challenging problem. , ,

ing, tourism, distributed CAD/CAM, GIS, etc., are expected ' @n effort to address these issues in an organized man-

to use general-purpose multimedia database systems. Unlik€": We view the video data modeling at two levels of ab-

traditional relational databases, multimedia databases allowtraction as depicted in Fig. 1.

direct manipulation of multimedia objects consisting of text, . . e . .

images, graphics, audio, music, and full-motion video data. 1. Low_level mc_)delmg.The identification of objepts, their
Many Web-based multimedia applications require dig- ~ '€lative positions and movements, segmentation and grou-

itizing large archives of image and video data for interac-  PINg Of video data using image/video-processing tech-

tive retrieval including searching, browsing, selective replay, ~ Nidues fall into this category. The major challenge at
this level is accurate recognition and tracking the move-

* This research has partially been supported by an NSF grant, Ments of objects at an intra- and inter-frame level. At this
IRI-9619812 level, recognition of objects of interest in each frame
Correspondence toA. Ghafoor is performed by automatic or manual techniques and
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\conic Based Knowledge-Based the perception of video contents is done manually by users,
Grouping and Higher Level not through an automatic image-processing/computer-vision-
) Browsing Semantics based mechanism.
High Level . .
7y A number of systems that automate the indexing mech-
””””””” - % - anism have also been proposed, such as [19] that auto-
Low Level

matically parses video data into scenes using a color his-
togram comparison routine. This method has limited capabil-
ity, since only semantics associated with scene changes are
captured. In [24], a hierarchical video stream model is pro-
posed that uses a template- or histogram-matching technique
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Analysis

Video Parsing Object tem, a video stream is parsed, and the information is stored

and Segmentation Recognition in the database. However, this system is limited to specific
types of videos and uses only manual indexing mechanism.
. _ . Additionally, there is no modeling of temporal events within
Coarse-Grained Fine-Grained

a shot.

An approach based on spatio-temporal logic is presented
in [6], which is used to describe the content of an image
or a sequence of images. A prototype image sequence re-

intermediate-level data indexes are created for subsefieval system is developed, where images are processed

quent, higher level analyses. One such data—indexinggnd represented by spatio-temporal logic, and query is in-
technigue is the model Video Semantic Directed GraphPUt by using example images, which is then translated into
(VSDG) proposed in [8]. VSDG is used to maintain tem- spatio-temporal logic. Query processing is done by match-

poral information of objects once they are identified by "9 Spatio-temporal logic representations of query images
object recognition techniques. This model forms the ba-2"d images stored in the database. This work represents a
sis for developing a higher level abstraction and indexings'gn'f'cam progress in qor)terjt—based retrieval of video data.
mechanism. However, due to the limitation of the methodology used

2. High-level modeling.The high-level semantics can be N this approach, the modeling of higher level concepts of
formulated by the users to construct different views of SPatio-temporal events is not addressed, nor is the grouping
the video data. There has been a growing interest ifPf information across video clips.

developing efficient theoretical foundations to represent " [28], @ mulimedia database system for content-based

high-level semantics and event specifications. Severaqetrieval is presented. An object-oriented data model and

methods have been proposed in the literature on thi@ 9uery language are used. The database schema is repre-
topic. The essence of these formalisms is the tempoS€ntéd through a hierarchy wii.a and partof relation-
ral modeling and specification of events present in videoSHiPS @mong classes. A class is associated with a domain
data. Semantic operators, including logic, set, and Spaltiol_mowledge to represent a certain concept. Retrieval is done

temporal operators, are extensively used to develop sucRY Mmatching the query and the domain knowledge stored in
formalisms. Logical operators inciude the conventionaldasses' Video data is associated with textual annotation-like

knowledge.

Another video database system based on an algebraic
tion, and differenceare mostly used for event specifi- Video model is presented in [26]. The proposedeo alge-
cation, as well as for video composition and editing. bra_ prqwdes functionalities for creating video presentations
Spatio-temporal operators, based on temporal reIationé’,"h'C,h |nc[ude nested structures, tempora} composition, and
are employed for event specification and modeling. Thismultiple views. It also allows users to assign multiple coex-
leads to a high-level characterization of information in

Fig. 1. Semantic modeling of video data

boolean connectives such aset, and, or, if-then only-
if, and equivalent-to Set operators likeinion intersec-

isting interpretations to same video segment, and provides

video data, and subsequently an object-oriented COncep';lssociative access based on the information content. The
tual modelyas presented in the following section,s. contents of a video segment can be arranged in a hierarchy.
Yet, there is no spatio-temporal modeling of the video data

itself.

In [9], a three-level motion analysis methodology is pro-
posed. Starting from the extraction of trajectory of a macro-
block in an MPEG video, followed by averaging all trajec-
Most of the existing video database systems to a limitectories of the macro-blocks of the objects, and finally relative
extent address the spatio-temporal semantics either by enposition and timing information among objects, a dual hi-
ploying primitive image-processing techniques for indexing erarchy (spatial + temporal) is established for representing
of video data or using traditional database approaches baseatideo.
on keywords or annotated textual descriptors [4, 10, 21, 22].

For indexing, keywords and textual descriptions have also
been suggested in an object-oriented realm [18, 20]. Video
segments can be joined or concatenated based on their se-
mantics. However, these approaches are very tedious, since

1.1 Background
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1.1.1 A classification of existing models Object-Oriented Intra-Clip Modeling
for spatio-temporal specification

encoded
i ; . . raw video ———) (_ information using ) —— A event
Above mentioned techniques fbigh-level modelingan be data low-level model characterization

classified into two categories; object-centered models an
event-centered models.

— In object-centered modelsthe coordinates of the cen- object-oriented
ters of objects are used as a sequence that describes the m“é‘{f\i‘;:r;‘q‘:m
spatio-temporal behavior of an object [8, 9]. This de-
scription can be relative to the starting point of the tra-
jectory or a fixed point (origin) on the screen. Similarly, L
relative position of two objects can be represented as the Object-Oriented Inter-Clip Modeling

difference vector between them. While trajectory-based - ctoriomed
methods offers such generality, they lack the flexibility eterogeneous ) —) retresntation
to correctly categorize similar events that may be repre-

sented by a wide variety of trajectory descriptions.
— According to theevent-centered modelsa set of spatial
relations [1] are used to determine the relative positions

of two objects at each time instance based on their spatighnd characterization of events present in the video data. This
projection intervals on each axis [3, 6]. For a video se-modeling deals with information at the level of a video clip.
quence, this translates into a series of symbols which arghe pottom flow corresponds to the users’ view of the data,
generally handled by algorithmic methods with a polyno- where grouping/linking of information across clips is sup-
mial computational complexity. A conversion from sym- ported using an object-oriented paradigm. Integration of both
bolic to numerical representation, however, allows ana-intra- and inter-clip modeling leads to an efficient indexing
lytical methods to be used for categorization purposesmechanism for on-line content-based query processing. For
and eliminates the computational burden. Symbolic de-ngst of the queries, the proposed framework avoids per-
scriptions are suitable only for_multiple object_ events byforming computation on raw data during query processing,
design, but offers a more flexible and effective way t0 since such computations can be quite extensive and should
describe events. be carried out off-line. Also, this framework allows concep-
tualization of video data using both bottom-up and top-down
object-oriented data abstraction approaches. In the bottom-

tion mechanism which otherwise is needed to handle semartP approach, a user can build complex events using simple

tic heterogeneity that may exist across a large population of VeNtS: while in the FOD'dOWH approac_h, a user can.inte-
g y y ge pop grate/group events with shared semantics. We also discuss

Fig. 2. An object-oriented approach to data abstraction of video data

In summary, most of the existing video database sys
tems lack the ability to provide a general-purpose abstrac

users. L ) )
an overall description of a database architecture for imple-
menting an indexing scheme for video data. Throughout this

1.2 Our approach paper we will use a hypothetical sports video database as a
running example to illustrate various concepts.

This paper deals with the issues relatediser-independent The organization of this paper is as follows. In the next

view and semantic modeling of image/video data. We em-Section, we present a model for capturing spatial and tem-
phasize that a general-purpose multimedia database Syggral rela_t|0nsh|ps.among salient objects present in a video
tem should provide an environment for users to expres$lip. Section 3 outlines a methodology for formally charac-
and for the system to process semantically heterogeneod§'izing “events” embedded in video data. For this purpose,
queries. Toward this goal, we propose a model that Capge.nerahz.ed n-ary relapona.re mtroduced.lnthls section. An
tures spatio-temporal aspects of information associated witQPject-oriented paradigm is proposed in Sect. 4 to catego-
objects (such as persons, buildings, and vehicles) present fiZ€ events into classes and to provide powerful abstraction
video data. This provides a somewlsatmantically unbiased t00Is to users for indexing of video data. We also discuss
abstractionof video data. For each input video clip, using a @n overall description of the proposed database architecture
database of known objects, we first suggest to identify thOr implementing the object-oriented indexing scheme. The
corresponding objects, their sizes and locations, their relativéonclusion section summarizes the paper.
positions and movements, and then encode this information
in a spatio-temporal model. The encoded data potentially can
be used to develop a semantically riztformation space 2 Low-level modeling of image/video
The proposed model helps in avoiding extensive computa-
tion on raw data during on-line query processing. Generally, most worldly phenomena can be expressed in the
In addition, we propose a two-pronged approach forform of knowledge by describing the interplay among phys-
modeling image/video data as illustrated in Fig. 2. Weical objects in the course of their relationship in space and
introduce an object-oriented model to store and retrieveime. Physical objects may include persons, buildings, vehi-
these spatio-temporal events and semantics associated wittckes, etc. Video is a typical replica of such a worldly environ-
video. The top flow corresponds to spatio-temporal modelingment. In conceptual modeling of video data, it is therefore
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important that we identify physical objects and their rela-the applications. Also, the overhead associated with such

tionships in space and time. Subsequently, we can represedetailed specification may be formidable. Alternatively, a

these relations in a suitable structure that is useful for usersoarse-grained temporal specification can be maintained by

to manipulate. only analyzing frames at distance apart. This skip distance
Various models have been proposed in the literaturg) in terms of number of frames will depend upon the com-

to specify temporal relations among objects, including theplexity of episodes. There is an obvious tradeoff between

well-known model of temporal-interval [1, 13, 17]. For spa- the amount of storage needed for temporal specification and

tial relations, most of the modeling techniques are basedhe detailed information maintained by the model.

on projecting objects onto a 2D or 3D coordinate sys-

tem. Very little attempt has been made to formally express

spatio-temporal interactions of objects in a single frame-2.2 The proposed model

work. Though, in [14], spatial/temporal meta-data for video ) o ) ]

database is defined, no detailed approach has been providéd object appearing in the video clip can be represented by

for data modeling and information management. In this sec2 tuple containing a set of spatio-temporal descriptions. It is

tion, we present a model to capture both spatial and tempora@ssumed that a video clip’C) is first parsed into segments

semantics of video data. An important feature of this modelusing histogram comparison [19] and a sequence of segments

is that it allows a low-level unbiased representation of video(S:s) are identified. Within each segment, motion tracking

information. The key concept of the model is that such q0f identifiable domain .obJects is performed. Then the model

representation of a video database can provide a stable af@n be formally described as follows.

unified reference framework for specifying complex spatio-1. For each segmerff; of VC, 1 < i < m (assume that

temporal events, and hence allows users to construct a wid€ C' consists ofm segments)

range ofviews For each identified domain objeot; in S;, record the
Formally, a video sequence can be viewed as a structurtollowing information,

7 =(7, <, Z, h), where o = (oid,d-d, {s_t}), where,

— .7 is a set of video framesf{(), also called a sequence, — oid: object identifier assigned by the system;

— < is a binary, transitive, irreflexive relation o& . (7, — d_d: descriptive data, e.g., object type, name (for human
<) is called the flow of video sequence, beings, whenever possible); o

— & is the domain of frames. Each franfehas a domain ~ — {s-t}: an ordered set of spatio-temporal descriptian,
d; which consists of extractable features (e.g., salient = (m,7,m-v), where .
physical objects), — m: the starting frame number of the object’'s appear-

— h is a map such that, for any predicgiethere exists ance; o o
a possible sefs;}, s;s are disjoint subsequences.&f — 7: the duration (in frames) of the object’s appearance;
such thath(p,s;) is true. T=nd+1,n>0andis an integer.

. . . . — m_v: a motion vector associated with;; during
' By applying a set of functions to a video C|Ip., a colleq— the interval starting atr with duration 73 m_v =
tion of tuples representing the appearance of salient physical (Zu, . "Z’T‘lﬂ)' The elementZ; (Vil < i <

objects are generated.

TT‘l +1) of m_v is thebounding volumat i-th sam-

pled frame. In other words7; = (Bounding Box;,

2.1 Spatio-temporal modeling over a sequence of frames depth;, centroid;), and Bounding Box; = (width;,
height;, x;, y;), wherer represents the number of

The spatial attribute of a salient physical object present in frames associated with the objeef; in a certain

a frame can be extracted as a bounding volurethat subinterval ofS;, and ¢ is the time granularity for

describes the spatial projection of an object in three di- tracking motion of every object in a video segment.

mensions. It is a function oBounding_Rectangular(L),
centroid, anddepth information related to the object. The
bounding rectangular is computed with reference to a coor-— If an oid is unique across segments, then put the cor-
dinate system with an origin at the lower left corner of each  responding tuple in the object collectio/O of V C;
frame. The pair4, y) represents the coordinate of the lower  otherwise, perform concatenation as follows.
left corner of rectangulaf. BothV and L are expressed as — If g;.0id = g;.0id, then create a new tuple,, where
Bounding_Rectangular (L) = (width, height, x,y), (1) gfﬁ;i} Lﬁ)z.g;i’s,gtg:d;iut Qi"ﬁ]’dv%.ng%thé tgﬁags\;cl}thln
Bounding_Volume (V) = (Bounding_Rectangular, ok {5t} if s_tr = (s Ty M), Sty = (Taps Toos M_Vw),
centroid, depth). (2) and . + 7. = m,, then creates_t, = (my, T, M_Vy),
wherer, = ., Ty = T + Ty, M-V, = M_v, U M_v,, Put
sty IN p;.{s-t}, removes_t, ands_t,, from g;.{s_t}.

2. Perform concatenation across segments as follows.

Temporal information of objects can be captured by spec-
ifying the changes in the spatial parameters associated with
the bounding volume() of objects in a given sequence Conceptually, the model can be illustrated by Fig. 3,
of frames. At the finest level of granularity, these changeswvhere thex-axis represents frame numbers. Within each seg-
can be recorded at each frame. Although such a fine-grainedhent, an identified domain object is represented by a set of
temporal specification may be desirable for frame-based inintervals in which it appears. In Fig. 3, there are two seg-
dexing of video data, it may not be required in most of ments. Object®)1, O,, O3, andO4 are identified in segment
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A Segment 1 : Segment 2 Table 1. n-ary relations
) |I @ Relation name Symbol constraints;i, 1 <: <n T
: - - ——
o ] ;o el B R D Vi
' i = il Zi:" i
o ] - i e Y o Pt
| O6 | R
H 1 . . . . ~1 .
= overlaps O ri<ritanl <t S i
3 ! contains C Tl critloqi rt
: : starts S Ti=r ATl < it T
| O | O | completes  CO 7l < LAl =704 1
. _ equals E Tl=r A=t 1
frame number i = starting coordinate of objeet’; 72 =ending coordinate of objeet’;
Fig. 3. Conceptual representation of low-level modeling st =7t — 7l

1, O; disappeared for a number of frames and then reapdeneralization to both spatial and temporal domains is to
peared. The two intervals whet@; appears are related by €xpress spatial/temporal events in a unified format. We first
a beforerelation (see next section). Similarly, five domain 9ive a definition for aninterval, then present a definition for
objects are identified from segment 2, where two objéxts @ generalized n-ary relation

and O4 have appeared in segment 1. Definition 1. Interval

There are three choices for representing the data strug-q¢ [S_T, <] be a partially ordered set, and let, b be any

ture for the proposed model. In the first choice, an object'syyq elements a§.T such thaiz < b. The sef{za < z < b}
appearances are represented by a tupl@#, segment#, is called an interval. - -

oid, xd_d, {m,7,m_v)}). Note, thatsegment# may be a list.

For the second choice of data structure, each appearance Bgfinition 2. Generalizedn-ary relation

an object is represented agip#, segment#, oid, xd_d, =, 7, A generalized n-ary relatiomRS (r%,...,7"), n > 2, is a

m_v). The third choice is to use the VSDG model presentedpermutation among intervals, 7, < = 1,...,n which re-

in [8]. side on an axig with an origino, RS satisfies one of the
From motion vectorsif,_vs) we can perform inter-object condition s in Table 1.

g]b(}ggtns agﬂyséi;osiﬁiﬁgn?rggﬁere,ltﬁgv?erlggzgn;%gﬁ??gg? The relation is represented by the.corrgsponding name

tween (.)bjectsOv and O, can be e\,/aluated by applying the and symbol. The operands of the relationsi = 1,... .,

spatial reIation;hip betjween their projections on each coor e e_|ther t.he projections of the_ boundm_g volu.mes of the

dinate axis;z, y, andz phyS|ca}I objects on an axis (spa}nal domain) or time span of
We Woula Ii,ke to .point out that extraction of features 2 certain event (temporal dom_aln). L

such as motion of an object, bounding volumes, etc., directl The/ generalizedrary relations are shown in Fig. 4,

from raw video data is combutationally tedious’ The" curren%"’hereﬂA represents the inter-interval delay between interval

) 1 andi+1. Same relations can be used either in space or time

state-of-the-art techniques in image understanding/computg&omains, since the one-dimensional spatial axis is conceptu-

\r/ésglo?in?ée Eg@;%%ﬂStoi?c;g?rz;ﬁzzsgglfof%r:r?]leg(;;egesa_'ﬁlly equivalent to the time axis, which is one-dimensional by
X ' P 9 SP2- yefinition. The only difference between spatial and temporal

tial/temporal events does not depend on any particular feaﬁ-ary operations is that they apply to different domains. In

ture extraction or recognition .technlque. We bglleve thatthe spatial domain, operands represent the physical position
realization of ?dvanced’FObUSt |rr_1age-undersfcand|ng ENYINESt the objects, whereas in the temporal case they represent
bounds to exist due to its vital importance in commercial !

and defense applications. Currently, we perform these o ert—he duration of a certain phenomenon. Such generality al-
. : PP y Y pert Pelows a formal representation of both spatial and temporal
ations in a semi-automatic way through our implementation

programs events by the seven fundamenmhry relations.shown in

' Fig. 4. Constraints associated with each relation that must
be satisfied to uniquely define the corresponding relation are
shown in Table 1. The aggregate duratiehdf each relation

3 Framework for characterizing events is also listed.

As mentioned in the previous section, the proposed model

is a low-level spatio-temporal representation of video data3 2 Symbols and definitions

However, it provides a mechanism that allows specifica-

tions of more complex spatio-temporal events, based on th8efore introducing the object-oriented model for spatial and

spatio-temporal operations discussed next. temporal events, we first describe constructs of a language
for presenting the model. Similar constructs have been in-
troduced and followed in [2, 11, 12]. Here, we provide only

3.1 Generalized spatial and temporal operations the syntax for the language, the semantics are introduced in
the event definitions. We first need to introduce the follow-

The generalized operators are extensions of our earlier workng symbols and definitions in order to define the syntax of

on temporal relations [17]. The reason for introducing thethe language:
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<y = |
<5, 2 |
| v | | T |
equals | T |
| v |
| v |
| T | Fig. 4. n-ary relations
— a setDOM of domain symbols; frame needs to be identified such that he/she is either stand-
— a countable collectioWAR of variable symbols; ing or sitting on a chair in the center or front of a meeting
— a collectionF'N of function name symbols; room. Similarly, a person may be sitting on a chair or some
— a collectionR¢ of n-ary predicate symbols; physical object. In this case, we have a conceptual spatial
— a collectionEN of event name symbols; object ‘sitting’ with attributes ‘a physical object which sits’
— a set of Types Hobject, interval}; and ‘a physical object being sat on’, and they are related by
— a set of terms, includin@OM, VAR, FN(t1,...,t,), the ‘sitting’ relationship.

EN(t4,...,t,), wherety, ..., t, are terms;

In order to express such events in a precise manner, we

— the set of closed terms, being those terms in which vari-now present a formal definition of a spatial event based on

able symbols do not appear;
— atomic formula, being of the fornt;

= to, t1 <

to, t1 > tp, t1 € tp (for termst; andty), T, or
R,Cf(tl, ..., tp) for termst,, ..., t, andn-ary predicate
symbol RS

— the set of formulae, being the smallest set which includes _

all the atomic formula and alsea, a A 3, aV 3,V za,
Jxa, anda — (3 for any formulaea and g;

— the usual concepts of the free variables, bound variables,_

and substitution.

3.3 Spatial events

The information provided by the bounding volumes of ob-

jects in a frame can be used to describe more meaningful

semantic information present in a frame. As it provides the

most fundamental information about a frame, such as the

locations of individual objects, it can be used to construct
higher level content in the frame. Such detailed information
contents in a single frame can be termedspatial events

For examplepresidinga meeting attaches a meaning to
some spatial area in a scene. For this event, a person in

the spatial operations discussed in the previous section.

Definition 3. Spatial Event.
A spatial eventb,(so) can be defined as an assertian @,
. 1), where

@, is the name of the class of event;

— so is a tuple (1,02, . .,ax), Whereq; is a variable rep-
resenting a physical object in the domain;

7 is the collection of projections af;s on x-, y-, z-axes,
T= {T;‘i,T;’L,TSi}, 1<i<m;

O, is a spatial assertion which specifies the spatial rela-
tionships amongs usingn-ary operators. Formally,

O, = Ry(rl,. .., 71™) 01 Ro(r2, ..., 722) Oz ...
Om—lRm(Trrnnla )7 (3)

whereR;, j = 1,...,m is a generalized n-ary relation,
Ok, k=1,...,m — lis one of the logical operators\(
or V) and rj is the projection of objecy; in relation

My,
‘m
.y Tm

j onz-, y-, or z-axis. A termR,(r;*,...,7,"") may be
substituted byb? (so;), whered’ is the name of a spatial
event, andso; C so;

& p is the frame number of the spatial event;
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Algorithm SE-Identification: identification of a spatial event within a scene
Spatial-Event-ldentificatioa(as,. . .,ax)

There is a set of intervals; (maybe an empty set) for eaely in
which the physical object represented &y appears.

Each Spatial event instance is stored in the database inperform Intersectiordy, Io, . . ., I;,) as follows:

the following format: Intersection(s, Io, . . ., I};)
(T AG, clip#, segment#, class, oid, = Intﬁrsectiog(lntersectiom s Ie—1)dk)
participating_physical_object(oidlist), §1 - {§ e ’ﬁjb}
component_events, starting_frames, 2={ e 2} ) o
. . Intersection(y, I) = U%,Y_, intersection(?, I7)
duration(in frames)). Perform concatenation ézrij_—llntersection(l 12 Iy,) so that the
TAG is used by the identification algorithm given later; . Li2y e Tk
class represent®,; oud is the system-assigned object id of | o each member: of 1,

— n is the duration of the spatial event and is default to one
frame.

member ofl,. are related by before relation.

the spatial eventparticipating_physical_object(oidlist) do for each sampled framg,
stores the object ids af;, 1 < i < k, component_events if assertion associated withis true in f;
represent®’ (so;). Other terms are self-explanatory. then an instancer of e(a, . .., ay) is identified
An object’s projection on an axis may appear in more Perform concatenation anto form a simple temporal

event if necessary and record corresponding information.

than one relationR;). Note that the definition allows more
complex spatial events to be constructed by relating several
spatial events using logical operators. Also, the separation . . L . .
of a physical object and its projections is made. The interval To fa_C|I|tate |den_t|f|cat|on of.sp_atlal events, umon_and
(r) for the result of am-ary (R;) as well as of a logical intersection of two intervals, within thg domain of Vl.deO
operation, is the aggregate interval, i.e., the spatial intervaf€duence consisting of frames, are defined as follows:
between the smallest starting coordinate and the largest end- union(Iy, I) = {z|z € LV x € L},
ing coordinate of the objects involved. intersection(Iy, I) = {z|x € I1 ANz € I}.

As an example of a spatial event, consider a pldngtd-
ing the ball in a basketball game. To simplify the charac- Similarly, the union and intersection of intervals can be
terization of this situation, we assume, when the boundinglefined recursively as follows:
rectangles of the objecidayerandball are in contact with
each other in a frame, the event “player holding the ball” is .
asserted. This is characterized by a set ofrsacy relations ~ intersection(ly, I, . . ., I)
betweenr,? (r,P), the projection of the bounding rectan- =intersection(intersection(Iy, Iz, . .., I,_1), Ip).
gular associated with object playeron the x (y-)-axis and
. (7,%), which is the projection of the bounding rectangu-
lar associated with the object ball on the x (y-)-axis. Their
relation is as follows:

dp € player,3b € ball,

union(I1, I, . .., I,) = union(union(I1, I, . .., I,_1), 1),

We now present an algorithm (Algorithm SE-Identification)
for identifying a spatial event from a segment. We assume
that low-level processing as proposed in Sect. 2.2 has been
performed and stored in the data structure given earlier.

As an example of this algorithm, consider the hypothet-

E; a0, 0) = (71 6L 1t 0t ical segment consisting of three players and a basketball,
— (P D b b p b as shown in Fig. 5, Suppose the evéift ,,(playerl, ball)
(2, 7y 72, my), (M.O.C.S.CO. Bry, 7 needs to be identified. The above algworithm first finds the
ANM.O.C.5.CO.E(F, 7)), pu*, 1). (4)  intersection of the existence intervals betweémyerl and
‘ ball, i.e., Ip, = {I% }, Iyan = {I,;;}, and
If the specified condition is satisfied for a specific frame,Ia L tPl ‘E.PI}I b ? { ”j”} . vion(IL I1
the event functionE, is said to be valid in that frame. - — ."tersec ion(Ipy, Ipau) = intersection(lp,, Iyay)-

Since the resulf,. contains only one interval, noncatena-
tion of intervals is needed. Next, for each sampled frame ex-
isting in I,., we check whether or not it satisfies the assertion
given earlier. If it does, an instance &% ,,(playerl, ball)
is identified. Many such instances may be present.inn
this case, a continuous sequence of instances correspond to
a simple temporal event. It is assumed that all the frames
in interval I,’ satisfy the assertion. Heré.' corresponds
to a simple temporal evert! ,, (playerl, ball). Similarly,
E} epip(a,b) = (72,02, 1%, %) to identify spatial event&;,, (player2, ball), intersection

e b 0 b 2 on existence intervals of playerZy = {I%,1%}) and

=((rg, 7)), B.M.O(T2, 1), 17, 1). (5) b _n . 27" 1%

all Iqy = {I;,,} is performed. In other words, we com-

[}

Spatial events can be used as the low-level (fine-grainpute Intersection(Ip,, Ian) = intersection(Ip,, Iy,;) U
indexing mechanisms for video data where information Con-fmtersection(]]zjz, It ). Suppose the result consists of two
tents at the frame-level are generated. Modeling more comintervals, I, and I,.,, related bybeforerelation as shown
plex information contents, such afoomy weatherthat in the figure. For each such interval, identification and con-
can be extracted via image/vision-processing techniques isatenation procedures are performed. This results in an in-
a more challenging problem and may require color-basederval I, that corresponds to the specified event of interest
content-modeling technique [14]. E} a(player2, ball).

Note that Ri.R»..... Ry(r,...,m) = Ri(m,...,7) V
Ro(71,...,Tw)V... Ru(1, . .., 7). In this exampleplayer,
ball € DOM; p, b, 7s€ VAR; M, O, C, S,CO, E € RS,
E; .4 € EN; andplayer is of object type, while? is of
interval type.

As another example, the expression fari$ to the left
of b”(in the observer-centered view) is

Ja, b € physical_object,



whereR;, j = 1,...,m is a generalized n-ary relation,
Ok, k=1,...,m — lis one of the logical operators\(
or V) and Tjﬁi is the duration for thej;th temporal event

(a member ofp) in relation i. A term R;(r*, ..., 7"
may be substituted b:(so;), whered! is the name of
a temporal event, ango; C so. ®i(so;) may or may not
be a member of;

— u is the starting frame of the temporal event;

— 7 is the aggregate duration (in frames) 6%.

player 3

playef 1

Iy

player 2

Each temporal event instance can be represented as fol-
lows:
(T AG, clip#, segment#, class, oid,
participating_physical _object(oid list),
participating_events, starting_frames,

duration(in frames)).

It is important to note that, if a spatial evepersists . A e _
over a number of contiguous frames it can be considered he meaning of the |n_d|V|duaI field is similar to those in the
ata structure of spatial events.

a
a simple temporal event. Not all persistent spatial events ca% At the lowest level simole temporal events are first con-
be meaningfully transformed into temporal events, as will be ) pie temp S .
structed from spatial events using the above definition, with

seen in the next section. a condition that the:-ary operators are of typmeetsand

all operands of a certain operation belong to the same spa-
tial event. This allows us to represent the “persistence” of a
specified spatial event over a sequence of frame. This also
The next level of video data modeling involves the temporalcorresponds to a simple temporal event that is valid for the
dimension. Temporal modeling of a video clip is important corresponding range of frames with duratignIf the event

for users to ultimately construct complex views or to de- starts at frame & and ends at frame@ thent; = 5 —a+1.
scribe events in a clip. Events can be expressed by interprefAt higher levels where operands themselves are also tempo-
ing collective behavior of physical objects. In a simplistic ral events (in the case of composite temporal events), the du-
manner, the behavior can be described by observing the taation of ann-ary/logical operator is the aggregate duration
tal (or partial) duration during which an object appears in aof its operatorsr’s, that are associated with corresponding
given video clip. Its relative movement with respect to othertemporal events.

objects over the sequence of frames in which it appears is An important property of temporal events égencaten-
also observed. For example, occurrence sfaan-dunkin a  ability [2] , which is the foundation for constructing a simple
sports video clip can be an event in a user’s specified quentemporal event. Before presenting this property, we intro-
Modeling of this event requires occurrence of at least twoduce the notion of predicates. A predicate (eveét)i, . . .,
temporalsub-eventsvhich include tracking the motions of a,,)(e) if true during an interval can be represented as
the player involved in the slam-dunk and of the ball in a care-P(as, . . . , anm, 7)(e(7)). Concatenability means that, if an ev-
ful manner, especially when the ball approaches the hoopent is true in intervalsI and J, and I meets.J, then

The overall process of composing a slam-dunk event requirethe event is true in an intervak = M(Z,J). Formally,

a priori specification of multiple temporal sub-events. It is Vi, j e(i) Ae(j) A M (i, j) — e(M(i, 7)). An example of con-
noted that a simple temporal event can be expressed formallgatenability is that if personl is walking during intervald

as a logical expression consisting of various spatial eventand.J, and meets.J, then A is walking during an interval
that span a number of frames. Subsequently, more complek =M eets(,J). On the other hand, if persoA performs
temporal events can be defined recursively in terms of otheslam-dunkonce in each interval and J, and I meetsJ,
temporal events related by timeary relations. We now for- then A is not performing slam-dunk once in the intervl
mally give the definition of temporal events as follows. = M(I,J), instead,A performs slam-dunk twice.

An example for a temporal event consisting of two spa-
tial events is “passing of a ball between two players”. This
event can be characterized by relating two similar spatial
eventsE} ,,(u,b), “holding of the ball by player.” and
Ef .4, b), “holding of the ball by playew”, which can be

frame number

Fig. 5. Example of algorithm SE-Identification

3.4 Temporal events

Definition 4. Temporal event (composite)
A temporal eventb,(so) can be defined as an assertion
(¢,6:,m), where

— @, is the name of the class of event;

— sois a tuple @u,az,...,ax), Whereq; is a variable rep-
resenting a physical object in the domain;

— ¢ is a set of temporal event®);(so;)}, andso; C so;

— O, is a temporal assertion which specifies the temporal
relationships among membersg@®tising n-ary operators.
Formally,

1, 2,
@f, :Rj_(Ti-l,...,Tl 1) ()1R2(7‘221,...,7'2 2) <>2

Mn
<>m—lRm(7_777?1» ey Tmnm)y

(6)

described as in the previous section.

A pass event can be composed of these events joined
with two predicates. The first predicate is that batf, ,(u,
b) andE; (v, b) should persist for a finite duration. In other
words, the ball should be in contact with each player for a
period of time for each event to be considered “holding”.
The second predicate specifies that these events should fol-
low each other with a certain delay bounded by some spec-
ified value. The first predicate regarding persistence can be
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formally described as a temporal event that useseatop- "

eration with occurrences ot} ,,(u,b) or E; ,,(v,b) over

¢, number of frames as its operands:
dp € player,3b € ball,

E}14(p, b) = Persistent(E} ,4(p, b), pu, lt)
= Vi, IN(l},1;) — Persistent(E},4(p, ), 1})
= (B3 0P ®.0), - - - Brpd " (0, b)),

M(l(l)v ) l(lt))v iy lt) (7)
Fin.a”y’ we can etxpress tmassezlent usingbeforen-ary multiple instances of multiple instances of
operation betweet; ,,(u,b) and £}, (v, b) as: E. over |* frames EL over |"frames

Ju, v € player, 3b € ball,

Eg's are identified from low-level indexing

t - t t
Epass(uv v,b) = ((Ehold,(ua b), Ehold(vv b)), Fig. 6. An example of composition hierarchy of ‘pass’
L1 .2
B(ll . TAJZ . TA)7M577)' (8) . . . e ..
Algorithm TE-Identification: identification a temporal event within a scene
Here 7} and 7% are the inter-interval offsets between | Temporal-Event-identification:)
the temporal events. Input: ©: = P, + P, + ... + Py, whereP; = t;1t;2. - tig, and

. . ht;; is ann-ar ression
As discussed earlier, temporal events can be spec eacht;; Is ann-ary expressio

fied in a more general way by assigning ranges to inter for(,gei:cc?gf’is ann-ary operator

val lengths and inter-interval offsets instead of exact val- then for eacht,;

ues. In our example, for instance, one can allgwand do Unmark all temporal events in the segment

I to vary between 15 and 90 frames amg between repeat _

6 and 45 frames for the temporal event to be consid- g'”d o (L;E,ma’kedico”es’)c’r}q'gg"q°f bij
ered as a pass (actual time depends on the frame rate Cgﬁ;‘;psndif];t(?zf“”iil) o find events

of the video). This means that, at 30 frames/s, we re; if search is successful

quire a holding persist for 0.5-3s and the period when then create a sub-event instancd of t;;

the ball is in the air be between 0.2 and 1.5s. For examt record its component events corresponding
ple, the event ®} ,,(X,b), E} ,,(Y,b)), B(1.0 : 0.3,2.0 : 1071, ... Tn

0), 11, m1) which specifies that “player X holds the ball for ~ calculate its aggregate interval using Table 1
1.0s and after 0.3 s player Y holds the ball for 2.0s” is con- (lg‘“' ”?Z)U[‘mm)arke?nfve”ts correspondingetois found
sidered to be a pass event whereds] ((,(Z,b), E}, (W, BT = bty g

b)), B(L5: 25,2.0 : 0), y1,72) is not valid, sincerk (which 1< ({1 = #tin), 1< m <#ltiz), ..., 1< n < #(tij)
equals 2.5s) does not lie within the specified range. Note that 7(P;) = minimum interval containing ait s
inter-interval offsetr, is always zero for the last operand Oftiftip” -t

elseFind the corresponding event in the collection for

of a relation. temporal events

The pass event example can be recursively used to de
scribe more complex temporal events such as “two succes-

sive passes”. The expression for such an event is as follows: _ L1 L . .
Ju, v, w € player, 3 € ball, = t11 = B(ly @ 72,0 : 7X). First, unmarkT AG field

of all four temporal events in the segment. Assume that
B3 pass(u,0,w0,0) = (B 4us(u, v,0), B, (0,0, 1)), the events are sorted in an ascending order of starting
B(ll : Tia Iz 7—2)7/’&7 dur) (9)

frames. Then, the algorithm finds an unmarked event cor-
responding toE} ,,(playerl, ball) (e1); in this case, it is
Figure 6 summarizes the whole process of event specevent A. Next, it finds an unmarked event correspond-
ification for the pass example. Note that the spatial eventdg to Ej ,;(player2,ball) (e), such that this event is
ESs are as described in Sect. 3.3. related to eventA with the before relation, and it has
An algorithm (Algorithm TE-Identification) for identify- the earliest starting frame number among all instances of
ing a temporal event within a video segment is given next.E} q(player2, ball) existing in the segment; let it be event
This algorithm can also be used to identify a temporal evenB. Then the condition for @assevent between player 1 and
within a clip, except in this case the search scope is theolayer 2 is tested. The duration of this event can be cal-
whole video clip instead of a segment. culated. The process is repeated and the algorithm finds an
As an example of this Algorithm, suppose four instancesunmarked even€ corresponding te, the first component
of holding a ballevent exist in a segment as shown in Fig. 7. event of the pass event. Howeveg, which is the second
To identify the temporal evertt!,, ., (playery, player2, ball), ~ Component event of the pass event, cannot be found. There-
we need to find an instance of evehf , (playerd, ball) fore,lonly one mstancelof pafs is found, which is d(i5|gnated
and !, (player2, ball). Subsequently, we need to check ast{;. Finally, it setsP™ = ¢{), and finds duratiorit"”) =
whether these events are related Hay ore with an inter- durationt(lll)).
interval delay less than a specified value. The algorithm In summary, the proposed framework of generalized
for this example works as follows. We haw@; = P; ary operators and the encoded information of the model

ass
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Table 2. Generic spatial event

[ o ]

hold(player 3,bal) CLASS Generic (Persistent) Spatial Event

ATTRIBUTE
objectidentifier (oid)
hold(pl 1,ball - .
old(player 1,balh eventdefinition.expression* /* class method */
hold(player 2,ball) BQOLEAN TAG, IS,_TEMPORAL_
Il clip#, segment#, startinffame#, duration

oid_list_of_participatingobject*

hold(player 1,ball I
‘0 (player 1,ball) oid_list_of_componentevent*

pass(player 1,player 2,ball) METHOD
> identificationprocedure() /* class method */
frame number (
Fig. 7. Example of algorithm TE-ldentification For each tuple-collection representation of a video clip in the

video DB (or a group of clips)
Perform Algorithm 1 to identify the (persistent) spatial events
can provide a mechanism for constructing and character-)
izing events. More importantly, we can develop hierarchical retumsinglevalueattribute(attributename)
relationships among different types of complex events that :giziggggcf:émng\?:ﬁ%'d()
inherit properties of simple events. Such a hierarchical struc P 0
ture can help in indexing and searching events of interest.

event in a class, not only necessary information of an event
can be recorded as attributes, but most importantly, the iden-
tification of an event can be treated as method(s) of a class.

Considerable semantic heterogeneity may exist among use@so_, if an attribute is another event (class), tht_a current class
of video data due to the differences in their pre-conceivedt@n invoke the methods of that class by sending message(s)
interpretation or intended use of the video information. 1© 1t
Semantic-based integration of different views may be re-
quired for a large number of users. Data management and
efficient query processing, in the process of such integration4-1 From events to classes
is a complex and challenging problem. Conventional data-
modeling techniques lack the ability of managing complexFor mapping events to classes, events can be categorized
events of video data and supporting heterogeneous views dfto two generic classes. generic spatial eventlass and
the data. For example, the relational model has a drawback generic temporal evertlass are defined for spatial events
of losing semantics, which can cause erroneous interpretaand temporal events, respectively. These two classes are
tion of views and events. calledperspective$l5, 23] since they do not have instances
The object-oriented technology, on the other hand, carof their own, rather they are used for generating new classes.
provide a powerful paradigm to meet the requirements of In Table 2, we provide a generic template for declar-
our semantic modeling and management of complex videdng aspatial class. Along with the attributes, such as object
data. Its data and computational encapsulation features offéd, pointer-to-object definition, object id list of participating
elegant data-modeling capabilities at various levels of infor-physical objects, etc., the main component of the class is the
mation granularity in a video database system. The paradigrolass methodo identify the given spatial event. The actual
can allow users to combine multiple views of the data intoevents identified are the instances of a spatial event class.
a single comprehensive view. The basic concept that dat&ince a spatial event definition has parameters, the identifica-
is associated with procedures manipulating it is especiallytion procedure is performed for each combination of param-
appealing in modeling video data, where the raw data needsters. The system is updated with new instances and event
to be processed and spatio-temporal contents of the infortypes as they are identified, during the archiving/retrieval
mation needs to be combined using rather complex logicprocess. Note that the identification procedure is only asso-
Object-oriented modeling allows such complexity to be inde-ciated with the class definition, i.e., it is a class method, not
pendently managed and linked together via communicatiora method of an instance of a class. Additionally, dueation
among objects using messages. Tlassconcept in object-  attribute is used to record theersistenceof a spatial event.
oriented paradigm is especially suitable for semantic-baseds a result, it is not necessary to record a lot of redundant in-
grouping of events. formation. A spatial event persisting for a number of frames
In this section, we discuss a modeling process of multi-can be called a simple temporal event if it is meaningful
ple and heterogeneous views of users in an object-orientetb do so. That is, not all persistent spatial events represent
environment and describe how multiple events in video dataneaningful temporal events. The users have to make the
can be integrated into a single framework. The fundamentatlecision if a persistent spatial event is a simple temporal
premise here is that we can establish a correspondence bevent. Attributes’AG andIS_.TEM PORAL are used for
tween hierarchical relationship of video events (e.g., Fig. 6)identification procedures and for denoting temporalness, re-
discussed in the previous section and different classes dfpectively. The methoaeturn_single_value_attribute is
objects using various object-oriented abstractions. In objectused to return any attribute with a single value, e.qg., clip#.
oriented environment, objects, classes, and meta-classes can Table 3 provides a template for declaringtemporal
be defined recursively at arbitrary levels. By embedding arclass. For an instance of this class, a component can be

4 Object-oriented modeling of video data
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Table 3. Generic temporal event Event Composition Object-Oriented
Abstraction

CLASS Generic Temporal Event

ATTRIBUTE
objectidentifier (oid)
eventdefinition.expression* /* class method */
BOOLEAN SpatialComponentT'AG

n-ary relation

before

clip#, segment#, startinframe#, duration O\r/neerlez:;s (
oid_list_of_participatingobject* SEREE ¥ Aggregate (IS-PART-OF)
oid_list_of_componentevent*
METHOD starts Aggregate (n-ary
completes

identificationprocedure() /* class method */

(

For each clip in the video DB (or a group of clips)
Perform Algorithm 2 to identify the temporal events

)

returnsinglevalue attribute(attributename)

returncomponenteventid()

returnparticipatingobjectid()

equals
AND
OR

Fig. 8. Mapping between event composition constructors and object-
oriented abstractions(1)

() O
an instance of another temporal event class or may be an
instance of a persistent spatial class with the property tha
instances of the spatial class are related with the temporal_/ "7\ \U 7"
relationmeets. The structure of the temporal class is similar ~ sum(© Product () n-ary
to that ofgeneric spatiaklass, except that the identification
procedure is different.

4.2 Abstraction of video data in object-oriented paradigm

We now consider spatial and temporal events as object
classes to show how existing object-oriented abstractions can

Porduct of Sum (POS)

be used to define new classes and how inheritance can be @

used to construct complex views. An important aspect of

these abstractions is that they allow grouping and merging

of information entities which may not have any temporalor -~/ @

spatial relationship among them, but some general seman-
tics. This is not possible, otherwise, with the use of simple
n-ary spatial or temporal relations.

In Sects. 3.3 and 3.4, spatialtemporal events are con- Sum of Product (SOP)
structed usingr-ary relations and ‘AND’ and ‘OR’ logical  Fig. 9. Mapping between event composition constructors and object-
operators. To represent these relations in the object-orientegliented abstractions(2)
environment, one possible approach is the mapping shown
in Fig. 8. An n-ary relation among events can be mod-
eled using aggregation abstractionaty), where the super- For developing an abstraction of a video database, we
class is the result of the-ary relation, and the subclasses can use either a top-down (specialization) or bottom-up (gen-
are related by one of the-ary relation. The logical op- eralization) approach [16]. Irrespective of the abstraction
erators ‘AND’ and ‘OR’ are modeled through aggregation used, we can utilize three types of semantic relationships
(IS-PART-OF) and specialization/generalization (IS-A), re- between classes. These include, generalization (1S-A), aggre-
spectively. The graphical representations of the mapping igation (IS-PART-OF), and aggregatiom4ry), and are used
shown in Fig. 9. Note that an event definition expressiontogether, depending on the grouping requirements of users.
is defined either through product of sum (POS) or sum ofA four-level object-oriented abstraction of the framework is
product (SOP), where each term in the SOP or POS is, irshown in Fig. 10. Level one consists of identified physi-
turn, a POS or SOP. However, in Algorithm 2 presentedcal objects. Spatial objects (events), identified from spatial
in Sect. 3.4, the event definition expression is assumed toelationships among objects at level one, constitute level-
be a SOP expression, since a POS expression can be trarigto abstraction. Temporal objects (simple or complex) con-
lated into a SOP expression. For the composition of a spatiadtructed usingn-ary relations (aggregate) form level-three
class, the parent node represents the result of-ary spa-  abstraction. Objects generated using generalization (I1S-A) or
tial operation and all the children nodes are also the spatiahggregation (IS-PART-OF) constitute level-four abstraction.
classes. Similarly, for the temporal classes, the parent nodéemporal inheritance property exists among subclasses and
represents an-ary temporal operation and the child nodes superclass of a generalization abstraction. However, there are
are either spatial or temporal classes. some rules that must be observed while using these abstrac-
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Generalized Aggrf_egate
Object Object

Level4 / cmmmmmmeee
Aggregate Generalized
Object Object
- Composite Composite
Temporal )  [..... Temporal
Object Object
Level3 / -----
Simple™\ =~ ------ Simple
""" Temporal Temporal
Object Object
Level 2 Spatial
Object
Level 1 Low-Level Indexing
P P P
c T Ch C Ca Gt Cn
IS-A Aggregate Aggregate
(n-ary) (IS-PART-OF)
basketball_game
field non_team_activity team_activity

multiple_person_activity free — jump

\ \ throws  ball

slamdunk steal pass turnover block

front_center back individual_activity
court court court
3-pointer
shot
holding_a_ball

Fig. 11. An object-oriented view of basketball events

Generalized
Object

Simple
Temporal

Spatial
Object

Fig. 10. Object-oriented abstraction of video databases

The interconnection ofis, H4, and Hy are defined
through the following constraints. Given a superckass,.,
a number of its subclassés.,;,, i = 1, ..., m, m a positive
integer > 1, and an abstraction#, we list the following
rules. Assume that, for a classy - represents the set of
abstractions it can participate as a subclass.
A =1S-A

1.1 If Vi, Csup, is a spatial event, the@'s,,., represents a
categoryand is called aerived spatial classCsyper'S
¢ is equal tofIS-A, IS-PART-OF n-ary (persistence)

1.2 1fVi, Csup, is a temporal event, thed,,,,., represents a

tions for modeling of video data. These rules are discussed categoryand is called alerived temporal classCsyper

later in the section. We proceed by defining the view hierar-

has?-¢ equal to{lS-A, IS-PART-OF,n-ary}.

chy (a video database abstraction from users’ point of view$-3 If Ji,j.k, i # j # k, 1 < i,j,k < m, such thatCjs,

and present associated constraints.

A view hierarchy Hy consists of the following part :

HG! HA! andHNl

is a spatial event(’s,;, is a temporal events,s, is a
non-spatio-temporal class, théf,,., represents a gen-
eralization and has” -4 = {IS-A,|IS-PART-OR.

1.4 If Vi, Csy, is either a spatial or temporal event, and

— Hg is the set of generalization abstraction axioms, each  #(C,,;, € spatial) > 1, #Csup, € temporal) > 1, then

of the form : ‘Fy IS-A E,’ iff Va, E1(x) — Eu(zx), Ei,
E5> € Node(H), and— means ‘imply’.

Csuper represents a generalization agd-# is equal to
{IS-A,IS-PART-OR.

— H, is the set of aggregation (IS-PART-OF) abstraction

axioms, each of the formEs, ..., E, IS-PART-OFEY’
iff Vo Eo(x) — E1(f1(x)) A E2(f2(2)) A ... En(fn(2)),

.6 = 1S-PART-OF.

E1,...,E, € Node(H), and f; is a function that spec- 2.1 IfVi, Cs.p, is a spatial event, theds,,.. is a composite

ifies F; being part of iy in some way.E; through E,,
are called direct components &f.

spatial event, and it hag?-¢ = {IS-A, IS-PART-OF,n-
ary (persistence)

— Hy is the set of aggregatiom{ary) abstraction, each of 2.2 If Vi, Cy., is a temporal event, the@'s,,.. is an ag-

the form: Eq = RG(Fn, . .., E,) iff duration of (Ep) =
aggregate duration oR%(ls,...,l,) andVz FEo(z) —
Er(fa(2)) N Ea(fo(2)) A ... En(fu(2)), En,...,En €
Node(H), and f; is a function denoting théth compo-
nent of ann-ary relation.

gregation of temporal events where no temporal relation

is specified among’s,p,S. Csuper’'S #2¢ is equal to
{IS-A,IS-PART-OR.

23 If 3,4,k i #7 #k, 1 <4i,5,k < m, such thatCy,,
is a spatial event(,,;, is a temporal event,,;, is
a non-spatio-temporal class, thé€h,,., represents an
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Spatio-Temporal Semantic: AR
Event/Concept | Formal Specification of - I(Ztr?;|os?5m Movement
Definitions Event/Activity/Epsiode Y
for content-based retrieval
Temporal Abstraction Intra/Inter Frame
Spatial Abstraction Analysis (Motion
Tracking)
4
Spatial Semantics Semarntic of objects
of Objects = (President, Capital, ...)
(human, building, ...) Bounding Box
\ r 4
Image Features Physical Object Database Sequence of Frames
(indexed)
Object Description Raw Image Database
Frame < Raw Video Database
Fig. 12. System abstraction for the proposed image/video
database
aggregation of heterogeneous events and/itg is {IS- In the proposed modehheritancein the IS-A relation is
A IS-PART-OR. realized through a bottom-up approach catiederalization

2.4 1f Vi, Cs,p, is either a spatial or temporal event, and A new class (parent) is formed by extracting the common
#(Csup;, € spatial) > 1, #(Csup, € temporal) > 1, structure from existing classes (children). For aggregation
thenC,,,.- represents an aggregation of spatio-temporalabstraction, the parent class does not possess anything from
events and has” 4 = {IS-A,|S-PART-OR. its children classes.

4 = n-ary.

3.1 If Vi, Cyuy, is @ spatial event, all’,.;, are of the same ;1.3 Systembarchgectu_re alnd management of objects
class with the same parameters, and hary relation ~ 'Of content-based retrieva

is meets thenCs,,er iS @ sSimple temporal event and its . ) ) ] ]
24 = {IS-A,IS-PART-OFp-ary}. Based on the discussion of the previous sections, we envi-

3.2 If Vi, Cup, is @ temporal event, thefi,,,., is a com- sion four levels of indexing of video databases to facilitate
posite temporal event and it hag-2 = {IS-A IS-PART-  content-based query processing. The first level maintains
OFn-ary} low-level spatial/temporal information about salient physi-

cal objects using the proposed model in Sect. 2. At higher
An example of video abstraction for a sports databasdevels, the indexing is mainly based on user-specified se-

is given in Fig. 11. Clasbasketballgameis the aggrega- mantics/contents. For example, at the second level, spatial
tion of three subclasses, nameligld, teamactivity, and  events are constructed by processing the spatial information
nonteamactivity. The derived spatial clasBeld is com-  maintained by the low-level model. The third level maintains
posed of three spatial subclasses, namiehnt court cen-  indices for temporal events (objects) using the information
ter court andback court All these subclasses may not be available at the second level and also temporal information
promoted, i.e., they may not be considered as simple temat the same level through recursive formulations of complex
poral events if they persist. Classieslividualactivity and  events. The fourth level manages complex objects and pro-
multiple personactivity are related tmonteamactivityclass  vides indexing mechanism to groups of events with related
by a IS-A relation.teamactivity is a temporal event with contents, where those objects and class objects are generated
two temporal subclassdeee throwsandjump ball From a  through generalization and aggregation as shown in Fig. 10.
user’s point of view, grouping of object classes can be purelyAccordingly, a system architecture for a video database is
based on shared semantics without any spatial or temporahown in Fig. 12.
relationship among them. An exampleimglividual activity As mentioned earlier, the first-level indexing is based
class, which is a generalization of two temporal classeon a low-level model (such as VSDG), where the relevant
(3 — pointer shot andslam — dunk) and one spatial class information such as the identities of the salient objects of in-
(holding_a_ball). This class is neither temporal nor spatial in terest and their bounding volumes have been extracted from
its characteristic. On the other hamdultiple personactivity =~ raw video data. This constitutes a challenging problem even
class is a derived temporal class, since all its children ardor today’s advanced computer vision technology. Although
temporal subclasses. It can be noticed that all the leaf nodediscussion of this problem is not the main theme of this pa-
are spatial or temporal classes where objects operate on theer, it's worthwhile to mention some issues related to the
low-level model in Sect. 2. initial processing.
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First, for easier and more efficient object recognition, 5 Conclusion
physical objects should be grouped into clasdelysical

Object Databasen Fig. 12). This enables pre-defined ob- \ve have presented a framework for semantic-based mod-
ject models to be used and simplifies the recognition problené”ng of video data using generalizegary operators. The
through appropriate matching techniques. Since the identitieg,y video data is processed to extract the spatial information
of human objects, which are obviously of special interest ingpoyt physical objects. This information can lead to the first-
video databases, are determined by their faces, their recogniayel indexing of spatial events that are expressed formally
tion should be given a special treatment [25, 27]. The secongising spatial relations. Subsequently, higher level indexing
important problem is to obtain information about the bound-of events involving temporal dimension is created using
ing volume for any recognized object, a process which caryeneralized temporal operators. The management of video
be carried out through well-established feature extraction alayents can be efficiently carried out using object-oriented
gorithms and can be used in the later steps to construct th%chnology, since it can provide an elegant paradigm for
entire database. This processing corresponds tBaeding  semantic-based modeling and grouping of information. A
Box module of the architecture shown in Fig. 12. The pro-yjdeo & image database system architecture is then pro-
cessed information is maintained via the low-level modelposed, which consists of three major components to process
and constitutes the first-level indexing. The second, third,g manage image & video data and spatio-temporal events.

and fourth level of indexing ( as shown in Fig. 10) is main-
tained in the module labeled &vent/Concept Definitions

From a system implementation point of view, there are
three major components, namebpatial abstraction tem-
poral abstraction and Event/Concept Definitionss shown
in Fig. 12. In the spatial abstraction component, an image orl:
a frame of a video clip is processed using tigect descrip-
tion information to obtain features of the image. With the
knowledge fromphysical object databasepatial semantics 3.
of objects in an image are identified. On the other hand,
in the temporal abstractiocomponentpounding boxnfor-
mation is obtained from the spatial abstraction component,
which is then used for intra-/inter frame analysis (motion
tracking) of a single object. The next step is inter-object
movement analysis, i.e., identifying relative movement be- 5.
tween objects. This information is then utilized by compo-
nent event/concept definitioto identify events. This com-
ponent stores the definitions as well as the procedures of®:
identifying events.

The logic of constructing events can be used to derive a5
content-based query language. A user can specify and store
more events, as needed. New classes can also be formesl
based on the existing classes at lower/same level through
n-ary operations and class inheritance. The proposed syste
should be able to support the following types of queries,
where any clip, segment, or sub-clip (several segments) sat-

isfying one or more of the following conditions may be re- 10.

turned as an answer to a query:

appearance of physical objects.
existence of spatial events.
existence of user-defined conditions equivalent to spatial
events.

existence of temporal events.

poral events.

Note, that these conditions can be logically combined toig4,

form more complex conditions.

Queries about the view structure may also be supportedL5.

Occasionally, the system may resort to processing of raw
video data to identify objects that were not previously iden-
tified. We expect the proposed methodology can be used,
to implement a system with on-line capabilities for query
processing.

11.

12.

existence of user-defined conditions equivalent to tem-13.
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