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Abstract. In this paper, we propose a multi-level abstraction
mechanism for capturing the spatial and temporal semantics
associated with various objects in an input image or in a se-
quence of video frames. This abstraction can manifest itself
effectively in conceptualizing events and views in multime-
dia data as perceived by individual users. The objective is to
provide an efficient mechanism for handling content-based
queries, with the minimum amount of processing performed
on raw data during query evaluation. We introduce a multi-
level architecture for video data management at different lev-
els of abstraction. The architecture facilitates a multi-level
indexing/searching mechanism. At the finest level of gran-
ularity, video data can be indexed based on mere appear-
ance of objects and faces. For management of information
at higher levels of abstractions, an object-oriented paradigm
is proposed which is capable of supporting domain specific
views.

Key words: Semantic modeling – Video databases – Con-
tent-based retrieval – Spatio-temporal logic – Object-oriented
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1 Introduction

Multimedia databases have recently been the subject of in-
tensive research. A number of Web-based emerging applica-
tions such as telemedicine, digital libraries, distance learn-
ing, tourism, distributed CAD/CAM, GIS, etc., are expected
to use general-purpose multimedia database systems. Unlike
traditional relational databases, multimedia databases allow
direct manipulation of multimedia objects consisting of text,
images, graphics, audio, music, and full-motion video data.

Many Web-based multimedia applications require dig-
itizing large archives of image and video data for interac-
tive retrieval including searching, browsing, selective replay,
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editing, etc. Due to shear volume of such data, these capabili-
ties require efficient computer vision/image-processing algo-
rithms for automatic abstractions and indexing of images and
video clips. In addition, there are two prominent issues as-
sociated with video/image data modeling and management.

• Development of formal techniques for semantic model-
ing of multimedia information, especially for video and image
data. These models should be rich in their capabilities for
abstracting multimedia information and capturing semantics.
They should be able to provide canonical representations
of complex images, scenes, and events in terms of objects
and their spatio-temporal behavior. These models need to be
compared and evaluated, in case of their varied theoretical
bases and complexities.

• Design of powerful indexing, searching and organi-
zation methods for multimedia data.Search in multimedia
databases can be computationally intensive, especially if
content-based retrieval is needed for image and video data
stored in compressed or uncompressed form.

The key characteristic of video data is its spatial/temporal
semantics that makes it unique from other types of data such
as text, voice, and image. A user of video database can
generate queries containing both temporal and spatial con-
cepts. However, considerable semantic heterogeneity may
exist among users of such data due to differences in their
pre-conceived interpretation or intended use of the informa-
tion provided in a video clip.Semantic heterogeneityhas
been a difficult problem for conventional databases [7], and
even today this problem is not clearly understood. Conse-
quently, providing a comprehensive interpretation of video
data is a challenging problem.

In an effort to address these issues in an organized man-
ner, we view the video data modeling at two levels of ab-
straction as depicted in Fig. 1.

1. Low level modeling.The identification of objects, their
relative positions and movements, segmentation and grou-
ping of video data using image/video-processing tech-
niques fall into this category. The major challenge at
this level is accurate recognition and tracking the move-
ments of objects at an intra- and inter-frame level. At this
level, recognition of objects of interest in each frame
is performed by automatic or manual techniques and
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Fig. 1. Semantic modeling of video data

intermediate-level data indexes are created for subse-
quent, higher level analyses. One such data-indexing
technique is the model Video Semantic Directed Graph
(VSDG) proposed in [8]. VSDG is used to maintain tem-
poral information of objects once they are identified by
object recognition techniques. This model forms the ba-
sis for developing a higher level abstraction and indexing
mechanism.

2. High-level modeling.The high-level semantics can be
formulated by the users to construct different views of
the video data. There has been a growing interest in
developing efficient theoretical foundations to represent
high-level semantics and event specifications. Several
methods have been proposed in the literature on this
topic. The essence of these formalisms is the tempo-
ral modeling and specification of events present in video
data. Semantic operators, including logic, set, and spatio-
temporal operators, are extensively used to develop such
formalisms. Logical operators include the conventional
boolean connectives such asnot, and, or, if-then, only-
if, andequivalent-to. Set operators likeunion, intersec-
tion, and differenceare mostly used for event specifi-
cation, as well as for video composition and editing.
Spatio-temporal operators, based on temporal relations,
are employed for event specification and modeling. This
leads to a high-level characterization of information in
video data, and subsequently an object-oriented, concep-
tual model as presented in the following sections.

1.1 Background

Most of the existing video database systems to a limited
extent address the spatio-temporal semantics either by em-
ploying primitive image-processing techniques for indexing
of video data or using traditional database approaches based
on keywords or annotated textual descriptors [4, 10, 21, 22].
For indexing, keywords and textual descriptions have also
been suggested in an object-oriented realm [18, 20]. Video
segments can be joined or concatenated based on their se-
mantics. However, these approaches are very tedious, since

the perception of video contents is done manually by users,
not through an automatic image-processing/computer-vision-
based mechanism.

A number of systems that automate the indexing mech-
anism have also been proposed, such as [19] that auto-
matically parses video data into scenes using a color his-
togram comparison routine. This method has limited capabil-
ity, since only semantics associated with scene changes are
captured. In [24], a hierarchical video stream model is pro-
posed that uses a template- or histogram-matching technique
to identify scene changes in a video segment. In this sys-
tem, a video stream is parsed, and the information is stored
in the database. However, this system is limited to specific
types of videos and uses only manual indexing mechanism.
Additionally, there is no modeling of temporal events within
a shot.

An approach based on spatio-temporal logic is presented
in [6], which is used to describe the content of an image
or a sequence of images. A prototype image sequence re-
trieval system is developed, where images are processed
and represented by spatio-temporal logic, and query is in-
put by using example images, which is then translated into
spatio-temporal logic. Query processing is done by match-
ing spatio-temporal logic representations of query images
and images stored in the database. This work represents a
significant progress in content-based retrieval of video data.
However, due to the limitation of the methodology used
in this approach, the modeling of higher level concepts of
spatio-temporal events is not addressed, nor is the grouping
of information across video clips.

In [28], a multimedia database system for content-based
retrieval is presented. An object-oriented data model and
a query language are used. The database schema is repre-
sented through a hierarchy withis a and part of relation-
ships among classes. A class is associated with a domain
knowledge to represent a certain concept. Retrieval is done
by matching the query and the domain knowledge stored in
classes. Video data is associated with textual annotation-like
knowledge.

Another video database system based on an algebraic
video model is presented in [26]. The proposedvideo alge-
bra provides functionalities for creating video presentations
which include nested structures, temporal composition, and
multiple views. It also allows users to assign multiple coex-
isting interpretations to same video segment, and provides
associative access based on the information content. The
contents of a video segment can be arranged in a hierarchy.
Yet, there is no spatio-temporal modeling of the video data
itself.

In [9], a three-level motion analysis methodology is pro-
posed. Starting from the extraction of trajectory of a macro-
block in an MPEG video, followed by averaging all trajec-
tories of the macro-blocks of the objects, and finally relative
position and timing information among objects, a dual hi-
erarchy (spatial + temporal) is established for representing
video.
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1.1.1 A classification of existing models
for spatio-temporal specification

Above mentioned techniques forhigh-level modelingcan be
classified into two categories; object-centered models and
event-centered models.

– In object-centered models, the coordinates of the cen-
ters of objects are used as a sequence that describes the
spatio-temporal behavior of an object [8, 9]. This de-
scription can be relative to the starting point of the tra-
jectory or a fixed point (origin) on the screen. Similarly,
relative position of two objects can be represented as the
difference vector between them. While trajectory-based
methods offers such generality, they lack the flexibility
to correctly categorize similar events that may be repre-
sented by a wide variety of trajectory descriptions.

– According to theevent-centered models, a set of spatial
relations [1] are used to determine the relative positions
of two objects at each time instance based on their spatial
projection intervals on each axis [3, 6]. For a video se-
quence, this translates into a series of symbols which are
generally handled by algorithmic methods with a polyno-
mial computational complexity. A conversion from sym-
bolic to numerical representation, however, allows ana-
lytical methods to be used for categorization purposes
and eliminates the computational burden. Symbolic de-
scriptions are suitable only for multiple object events by
design, but offers a more flexible and effective way to
describe events.

In summary, most of the existing video database sys-
tems lack the ability to provide a general-purpose abstrac-
tion mechanism which otherwise is needed to handle seman-
tic heterogeneity that may exist across a large population of
users.

1.2 Our approach

This paper deals with the issues related touser-independent
view and semantic modeling of image/video data. We em-
phasize that a general-purpose multimedia database sys-
tem should provide an environment for users to express
and for the system to process semantically heterogeneous
queries. Toward this goal, we propose a model that cap-
tures spatio-temporal aspects of information associated with
objects (such as persons, buildings, and vehicles) present in
video data. This provides a somewhatsemantically unbiased
abstractionof video data. For each input video clip, using a
database of known objects, we first suggest to identify the
corresponding objects, their sizes and locations, their relative
positions and movements, and then encode this information
in a spatio-temporal model. The encoded data potentially can
be used to develop a semantically richinformation space.
The proposed model helps in avoiding extensive computa-
tion on raw data during on-line query processing.

In addition, we propose a two-pronged approach for
modeling image/video data as illustrated in Fig. 2. We
introduce an object-oriented model to store and retrieve
these spatio-temporal events and semantics associated with a
video. The top flow corresponds to spatio-temporal modeling

object-oriented
   video data 
 management

heterogeneous
   users’ views

object-oriented
representation

Object-Oriented Inter-Clip Modeling

       event
characterization

raw video
    data
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Fig. 2. An object-oriented approach to data abstraction of video data

and characterization of events present in the video data. This
modeling deals with information at the level of a video clip.
The bottom flow corresponds to the users’ view of the data,
where grouping/linking of information across clips is sup-
ported using an object-oriented paradigm. Integration of both
intra- and inter-clip modeling leads to an efficient indexing
mechanism for on-line content-based query processing. For
most of the queries, the proposed framework avoids per-
forming computation on raw data during query processing,
since such computations can be quite extensive and should
be carried out off-line. Also, this framework allows concep-
tualization of video data using both bottom-up and top-down
object-oriented data abstraction approaches. In the bottom-
up approach, a user can build complex events using simple
events, while in the top-down approach, a user can inte-
grate/group events with shared semantics. We also discuss
an overall description of a database architecture for imple-
menting an indexing scheme for video data. Throughout this
paper we will use a hypothetical sports video database as a
running example to illustrate various concepts.

The organization of this paper is as follows. In the next
section, we present a model for capturing spatial and tem-
poral relationships among salient objects present in a video
clip. Section 3 outlines a methodology for formally charac-
terizing “events” embedded in video data. For this purpose,
generalized n-ary relationsare introduced in this section. An
object-oriented paradigm is proposed in Sect. 4 to catego-
rize events into classes and to provide powerful abstraction
tools to users for indexing of video data. We also discuss
an overall description of the proposed database architecture
for implementing the object-oriented indexing scheme. The
conclusion section summarizes the paper.

2 Low-level modeling of image/video

Generally, most worldly phenomena can be expressed in the
form of knowledge by describing the interplay among phys-
ical objects in the course of their relationship in space and
time. Physical objects may include persons, buildings, vehi-
cles, etc. Video is a typical replica of such a worldly environ-
ment. In conceptual modeling of video data, it is therefore
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important that we identify physical objects and their rela-
tionships in space and time. Subsequently, we can represent
these relations in a suitable structure that is useful for users
to manipulate.

Various models have been proposed in the literature
to specify temporal relations among objects, including the
well-known model of temporal-interval [1, 13, 17]. For spa-
tial relations, most of the modeling techniques are based
on projecting objects onto a 2D or 3D coordinate sys-
tem. Very little attempt has been made to formally express
spatio-temporal interactions of objects in a single frame-
work. Though, in [14], spatial/temporal meta-data for video
database is defined, no detailed approach has been provided
for data modeling and information management. In this sec-
tion, we present a model to capture both spatial and temporal
semantics of video data. An important feature of this model
is that it allows a low-level unbiased representation of video
information. The key concept of the model is that such a
representation of a video database can provide a stable and
unified reference framework for specifying complex spatio-
temporal events, and hence allows users to construct a wide
range ofviews.

Formally, a video sequence can be viewed as a structure
V = (T , <, D , h), where

– T is a set of video frames (fi), also called a sequence,
– < is a binary, transitive, irreflexive relation onT . (T ,

<) is called the flow of video sequence,
– D is the domain of frames. Each framefi has a domain

di which consists of extractable features (e.g., salient
physical objects),

– h is a map such that, for any predicatep, there exists
a possible set{si}, sis are disjoint subsequences ofT

such thath(p,si) is true.

By applying a set of functions to a video clip, a collec-
tion of tuples representing the appearance of salient physical
objects are generated.

2.1 Spatio-temporal modeling over a sequence of frames

The spatial attribute of a salient physical object present in
a frame can be extracted as a bounding volumeV , that
describes the spatial projection of an object in three di-
mensions. It is a function ofBounding Rectangular(L),
centroid, anddepth information related to the object. The
bounding rectangular is computed with reference to a coor-
dinate system with an origin at the lower left corner of each
frame. The pair (x, y) represents the coordinate of the lower
left corner of rectangularL. Both V andL are expressed as

Bounding Rectangular (L) = (width, height, x, y), (1)

Bounding V olume (V ) = (Bounding Rectangular,

centroid, depth). (2)

Temporal information of objects can be captured by spec-
ifying the changes in the spatial parameters associated with
the bounding volume (V ) of objects in a given sequence
of frames. At the finest level of granularity, these changes
can be recorded at each frame. Although such a fine-grained
temporal specification may be desirable for frame-based in-
dexing of video data, it may not be required in most of

the applications. Also, the overhead associated with such
detailed specification may be formidable. Alternatively, a
coarse-grained temporal specification can be maintained by
only analyzing frames atδ distance apart. This skip distance
(δ) in terms of number of frames will depend upon the com-
plexity of episodes. There is an obvious tradeoff between
the amount of storage needed for temporal specification and
the detailed information maintained by the model.

2.2 The proposed model

An object appearing in the video clip can be represented by
a tuple containing a set of spatio-temporal descriptions. It is
assumed that a video clip (V C) is first parsed into segments
using histogram comparison [19] and a sequence of segments
(Sis) are identified. Within each segment, motion tracking
of identifiable domain objects is performed. Then the model
can be formally described as follows.
1. For each segmentSi of V C, 1 ≤ i ≤ m (assume that
V C consists ofm segments)

For each identified domain objectoij in Si, record the
following information,

% = (oid, d d, {s t}), where,

– oid: object identifier assigned by the system;
– d d: descriptive data, e.g., object type, name (for human

beings, whenever possible);
– {s t}: an ordered set of spatio-temporal description,s t

= (π, τ, m v), where
– π: the starting frame number of the object’s appear-

ance;
– τ : the duration (in frames) of the object’s appearance;

τ = nδ + 1, n ≥ 0 and is an integer.
– m v: a motion vector associated withoij during

the interval starting atπ with duration τ ; m v =
(Z1, . . . , Z τ−1

δ +1). The elementZi (∀i 1 ≤ i ≤
τ−1

δ + 1) of m v is thebounding volumeat i-th sam-
pled frame. In other words,Zi = (Bounding Boxi,
depthi, centroidi), andBounding Boxi = (widthi,
heighti, xi, yi), whereτ represents the number of
frames associated with the objectoij in a certain
subinterval ofSi, and δ is the time granularity for
tracking motion of every object in a video segment.

2. Perform concatenation across segments as follows.

– If an oid is unique across segments, then put the cor-
responding tuple% in the object collectionV O of V C;
otherwise, perform concatenation as follows.

– If %i.oid = %j .oid, then create a new tuple%k, where
%k.oid = %i.oid, %k.d d = %i.d d ∪ %j .d d, %k.{s t} =
%i.{s t} ∪ %j .{s t). Put %k in V O. Note that within
%k.{s t}, if s tr = (πr, τr, m vr) , s tw = (πw, τw, m vw),
and πr + τr = πw, then creates tu = (πu, τu, m vu),
whereπu = πr, τu = τr + τw, m vu = m vr ∪ m vw, put
s tw in %j .{s t}, removes tr ands tw from %j .{s t}.

Conceptually, the model can be illustrated by Fig. 3,
where thex-axis represents frame numbers. Within each seg-
ment, an identified domain object is represented by a set of
intervals in which it appears. In Fig. 3, there are two seg-
ments. ObjectsO1, O2, O3, andO4 are identified in segment
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1, O1 disappeared for a number of frames and then reap-
peared. The two intervals whereO1 appears are related by
a before relation (see next section). Similarly, five domain
objects are identified from segment 2, where two objectsO1
andO4 have appeared in segment 1.

There are three choices for representing the data struc-
ture for the proposed model. In the first choice, an object’s
appearances are represented by a tuple (clip#, segment#,
oid, ∗d d, {π, τ, m v)}). Note, thatsegment# may be a list.
For the second choice of data structure, each appearance of
an object is represented as (clip#, segment#, oid, ∗d d, π, τ,
m v). The third choice is to use the VSDG model presented
in [8].

From motion vectors (m vs) we can perform inter-object
motion analysis to determine the relative movements among
objects. For any sampled frame, the relative position be-
tween objectsOi andOj can be evaluated by applying the
spatial relationship between their projections on each coor-
dinate axis,x, y, andz.

We would like to point out that extraction of features
such as motion of an object, bounding volumes, etc., directly
from raw video data is computationally tedious. The current
state-of-the-art techniques in image understanding/computer
vision are not robust enough to handle complex scenes in
real time. However, our formalization for composing spa-
tial/temporal events does not depend on any particular fea-
ture extraction or recognition technique. We believe that
realization of advanced/robust image-understanding engines
bounds to exist due to its vital importance in commercial
and defense applications. Currently, we perform these oper-
ations in a semi-automatic way through our implementation
programs.

3 Framework for characterizing events

As mentioned in the previous section, the proposed model
is a low-level spatio-temporal representation of video data.
However, it provides a mechanism that allows specifica-
tions of more complex spatio-temporal events, based on the
spatio-temporal operations discussed next.

3.1 Generalized spatial and temporal operations

The generalized operators are extensions of our earlier work
on temporal relations [17]. The reason for introducing the

Table 1. n-ary relations

Relation name Symbol constraints,∀ i, 1 ≤ i < n τ

before B τ i
e < τ i+1

s

∑n−1
i=1

τδ
i + τn

meets M τ i
e = τ i+1

s

∑n

i=1
τ i,

∑n−1
i=1

τδ
i + τn

overlaps O τ i
s < τ i+1

s < τ i
e < τ i+1

e

∑n−1
i=1

τδ
i + τn

contains C τ i
s < τ i+1

s < τ i+1
e < τ i

e τ1

starts S τ i
s = τ i+1

s ∧ τ i
e < τ i+1

e τn

completes CO τ i
s < τ i+1

s ∧ τ i
e = τ i+1

e τ1

equals E τ i
s = τ i+1

s ∧ τ i
e = τ i+1

e τ1

τ i
s = starting coordinate of objectτ i; τ i

e =ending coordinate of objectτ i;
τδ

i = τ i+1
s − τ i

s

generalization to both spatial and temporal domains is to
express spatial/temporal events in a unified format. We first
give a definition for aninterval, then present a definition for
a generalized n-ary relation.

Definition 1. Interval
Let [S T, ≤] be a partially ordered set, and leta, b be any
two elements ofS T such thata ≤ b. The set{x|a ≤ x ≤ b}
is called an interval.

Definition 2. Generalizedn-ary relation
A generalized n-ary relationRG

n (τ1, . . . , τn), n ≥ 2, is a
permutation amongn intervals,τ i, i = 1, . . . , n which re-
side on an axisL with an origin o, RG

n satisfies one of the
condition s in Table 1.

The relation is represented by the corresponding name
and symbol. The operands of the relations,τ i, i = 1, . . . , n,
are either the projections of the bounding volumes of the
physical objects on an axis (spatial domain) or time span of
a certain event (temporal domain).

The generalizedn-ary relations are shown in Fig. 4,
whereτ i

4 represents the inter-interval delay between interval
i andi+1. Same relations can be used either in space or time
domains, since the one-dimensional spatial axis is conceptu-
ally equivalent to the time axis, which is one-dimensional by
definition. The only difference between spatial and temporal
n-ary operations is that they apply to different domains. In
the spatial domain, operands represent the physical position
of the objects, whereas in the temporal case they represent
the duration of a certain phenomenon. Such generality al-
lows a formal representation of both spatial and temporal
events by the seven fundamentaln-ary relations shown in
Fig. 4. Constraints associated with each relation that must
be satisfied to uniquely define the corresponding relation are
shown in Table 1. The aggregate duration (τ ) of each relation
is also listed.

3.2 Symbols and definitions

Before introducing the object-oriented model for spatial and
temporal events, we first describe constructs of a language
for presenting the model. Similar constructs have been in-
troduced and followed in [2, 11, 12]. Here, we provide only
the syntax for the language, the semantics are introduced in
the event definitions. We first need to introduce the follow-
ing symbols and definitions in order to define the syntax of
the language:
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– a setDOM of domain symbols;
– a countable collectionVARof variable symbols;
– a collectionFN of function name symbols;
– a collectionRG

n of n-ary predicate symbols;
– a collectionEN of event name symbols;
– a set of Types ={object, interval};
– a set of terms, includingDOM , V AR, FN (t1, . . . , tn),

EN (t1, . . . , tn), wheret1, . . . , tn are terms;
– the set of closed terms, being those terms in which vari-

able symbols do not appear;
– atomic formula, being of the formt1 = t2, t1 <

t2, t1 > t2, t1 ∈ t2 (for terms t1 and t2), >, or
RG

n (t1, . . . , tn) for terms t1, . . . , tn and n-ary predicate
symbolRG

n ;
– the set of formulae, being the smallest set which includes

all the atomic formula and also¬α, α ∧ β, α ∨ β, ∀ xα,
∃xα, andα → β for any formulaeα andβ;

– the usual concepts of the free variables, bound variables,
and substitution.

3.3 Spatial events

The information provided by the bounding volumes of ob-
jects in a frame can be used to describe more meaningful
semantic information present in a frame. As it provides the
most fundamental information about a frame, such as the
locations of individual objects, it can be used to construct
higher level content in the frame. Such detailed information
contents in a single frame can be termed asspatial events.

For example,presidinga meeting attaches a meaning to
some spatial area in a scene. For this event, a person in a

frame needs to be identified such that he/she is either stand-
ing or sitting on a chair in the center or front of a meeting
room. Similarly, a person may be sitting on a chair or some
physical object. In this case, we have a conceptual spatial
object ‘sitting’ with attributes ‘a physical object which sits’
and ‘a physical object being sat on’, and they are related by
the ‘sitting’ relationship.

In order to express such events in a precise manner, we
now present a formal definition of a spatial event based on
the spatial operations discussed in the previous section.

Definition 3. Spatial Event.
A spatial eventΦs(so) can be defined as an assertion (τ , Θs,
µ, η), where

– Φs is the name of the class of event;
– so is a tuple (α1,α2,. . .,αk), whereαi is a variable rep-

resenting a physical object in the domain;
– τ is the collection of projections ofαis on x-, y-, z-axes,

τ = {ταi
x , ταi

y , ταi
z }, 1 ≤ i ≤ m;

– Θs is a spatial assertion which specifies the spatial rela-
tionships amongτs usingn-ary operators. Formally,

Θs = R1(τ11
1 , . . . , τ

1n1
1 ) ♦1 R2(τ21

2 , . . . , τ
2n2
2 ) ♦2 . . .

♦m−1Rm(τm1
m , . . . , τ

mnm
m ), (3)

whereRj , j = 1, . . . , m is a generalized n-ary relation,
♦k, k = 1, . . . , m − 1 is one of the logical operators (∧
or ∨) and τ ji

j is the projection of objectji in relation

j on x-, y-, or z-axis. A termRi(τ
i1
i , . . . , τ

ini
i ) may be

substituted byΦi
s(soi), whereΦi

s is the name of a spatial
event, andsoi ⊆ so;

– µ is the frame number of the spatial event;
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– η is the duration of the spatial event and is default to one
frame.

Each spatial event instance is stored in the database in
the following format:
(TAG, clip#, segment#, class, oid,
participating physical object(oidlist),
component events, starting frames,
duration(in frames)).

TAG is used by the identification algorithm given later;
class representsΘs; oid is the system-assigned object id of
the spatial event;participating physical object(oidlist)
stores the object ids ofαi, 1 ≤ i ≤ k, component events
representsΦi

s(soi). Other terms are self-explanatory.
An object’s projection on an axis may appear in more

than one relation (Rj). Note that the definition allows more
complex spatial events to be constructed by relating several
spatial events using logical operators. Also, the separation
of a physical object and its projections is made. The interval
(τ ) for the result of ann-ary (Ri) as well as of a logical
operation, is the aggregate interval, i.e., the spatial interval
between the smallest starting coordinate and the largest end-
ing coordinate of the objects involved.

As an example of a spatial event, consider a playerhold-
ing the ball in a basketball game. To simplify the charac-
terization of this situation, we assume, when the bounding
rectangles of the objectsplayer andball are in contact with
each other in a frame, the event “player holding the ball” is
asserted. This is characterized by a set of sixn-ary relations
betweenτx

p (τy
p), the projection of the bounding rectan-

gular associated with object playerp on the x (y-)-axis and
τx

b (τy
b), which is the projection of the bounding rectangu-

lar associated with the object ball on the x (y-)-axis. Their
relation is as follows:

∃p ∈ player,∃b ∈ ball,

Es
hold(p, b) = (τ1, Θ1

s, µ
1, η1)

= ((τp
x , τp

y , τ b
x, τ b

y ), (M.O.C.S.CO.E(τp
x , τ b

x)

∧(M.O.C.S.CO.E(τp
y , τ b

y )), µ1, 1). (4)

If the specified condition is satisfied for a specific frame,
the event functionEs is said to be valid in that frame.
Note that R1.R2. . . . .Rm(τ1, . . . , τn) = R1(τ1, . . . , τn) ∨
R2(τ1, . . . , τn)∨. . . Rm(τ1, . . . , τn). In this example,player,
ball ∈ DOM ; p, b, τs ∈ V AR; M , O, C, S, CO, E ∈ RG

n ;
Es

hold ∈ EN ; andplayer is of object type, whileτp
x is of

interval type.
As another example, the expression for “a is to the left

of b ”(in the observer-centered view) is
∃a, b ∈ physical object,

Es
a left b(a, b) = (τ2, Θ2

s, µ
2, η2)

= ((τa
x , τ b

x), B.M.O(τa
x , τ b

x), µ2, 1). (5)

Spatial events can be used as the low-level (fine-grain)
indexing mechanisms for video data where information con-
tents at the frame-level are generated. Modeling more com-
plex information contents, such asgloomy weather, that
can be extracted via image/vision-processing techniques is
a more challenging problem and may require color-based
content-modeling technique [14].

Algorithm SE-Identification: identification of a spatial event within a scene
Spatial-Event-Identification(ε,α1,. . .,αk)
There is a set of intervalsIi (maybe an empty set) for eachαi in
which the physical object represented byαi appears.
Perform Intersection(I1, I2, . . . , Ik) as follows:

Intersection(I1, I2, . . . , Ik)
= Intersection(Intersection(I1, . . . , Ik−1),Ik)

I1 = {I1
1 , . . . , Iu

1 }
I2 = {I1

2 , . . . , Iv
2 }

Intersection(I1, I2) = ∪u
i=1

v
j=1 intersection(Ii

1, Ij
2 )

Perform concatenation onIr = Intersection(I1, I2, . . . , Ik) so that the
member ofIr are related by before relation.
for each memberIi

r of Ir

do for each sampled framefs

if assertion associated withε is true infs

then an instanceε of ε(α1, . . . , αk) is identified
Perform concatenation onε to form a simple temporal
event if necessary and record corresponding information.

To facilitate identification of spatial events, union and
intersection of two intervals, within the domain of video
sequence consisting of frames, are defined as follows:

union(I1, I2) = {x|x ∈ I1 ∨ x ∈ I2},
intersection(I1, I2) = {x|x ∈ I1 ∧ x ∈ I2}.

Similarly, the union and intersection ofn intervals can be
defined recursively as follows:

union(I1, I2, . . . , In) = union(union(I1, I2, . . . , In−1), In),

intersection(I1, I2, . . . , In)

= intersection(intersection(I1, I2, . . . , In−1), In).

We now present an algorithm (Algorithm SE-Identification)
for identifying a spatial event from a segment. We assume
that low-level processing as proposed in Sect. 2.2 has been
performed and stored in the data structure given earlier.

As an example of this algorithm, consider the hypothet-
ical segment consisting of three players and a basketball,
as shown in Fig. 5, Suppose the eventEs

hold(player1, ball)
needs to be identified. The above algorithm first finds the
intersection of the existence intervals betweenplayer1 and
ball, i.e., IP1 = {I1

P1
}, Iball = {I1

ball}, and
Ir = Intersection(IP1, Iball) = intersection(I1

P1
, I1

ball).
Since the resultIr contains only one interval, noconcatena-
tion of intervals is needed. Next, for each sampled frame ex-
isting in Ir, we check whether or not it satisfies the assertion
given earlier. If it does, an instance ofEs

hold(player1, ball)
is identified. Many such instances may be present inIr. In
this case, a continuous sequence of instances correspond to
a simple temporal event. It is assumed that all the frames
in interval Ir ’ satisfy the assertion. HereIr ’ corresponds
to a simple temporal eventEt

hold(player1, ball). Similarly,
to identify spatial eventEs

hold(player2, ball), intersection
on existence intervals of player2 (IP2 = {I1

P2
, I2

P2
}) and

ball Iball = {I1
ball} is performed. In other words, we com-

pute Intersection(IP2, Iball) = intersection(I1
P2

, I1
ball) ∪

intersection(I2
P2

, I1
ball). Suppose the result consists of two

intervals,Ir1 and Ir2, related bybefore relation as shown
in the figure. For each such interval, identification and con-
catenation procedures are performed. This results in an in-
terval Ir2’ that corresponds to the specified event of interest
Et

hold(player2, ball).
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frame number

ball

player 2 player 2

player 1

player 3

Ir

Ir1 Ir2

Ir’

Ir2
’

Fig. 5. Example of algorithm SE-Identification

It is important to note that, if a spatial eventpersists
over a number of contiguous frames it can be considered as
a simple temporal event. Not all persistent spatial events can
be meaningfully transformed into temporal events, as will be
seen in the next section.

3.4 Temporal events

The next level of video data modeling involves the temporal
dimension. Temporal modeling of a video clip is important
for users to ultimately construct complex views or to de-
scribe events in a clip. Events can be expressed by interpret-
ing collective behavior of physical objects. In a simplistic
manner, the behavior can be described by observing the to-
tal (or partial) duration during which an object appears in a
given video clip. Its relative movement with respect to other
objects over the sequence of frames in which it appears is
also observed. For example, occurrence of aslam-dunkin a
sports video clip can be an event in a user’s specified query.
Modeling of this event requires occurrence of at least two
temporalsub-eventswhich include tracking the motions of
the player involved in the slam-dunk and of the ball in a care-
ful manner, especially when the ball approaches the hoop.
The overall process of composing a slam-dunk event requires
a priori specification of multiple temporal sub-events. It is
noted that a simple temporal event can be expressed formally
as a logical expression consisting of various spatial events
that span a number of frames. Subsequently, more complex
temporal events can be defined recursively in terms of other
temporal events related by then-ary relations. We now for-
mally give the definition of temporal events as follows.

Definition 4. Temporal event (composite)
A temporal eventΦt(so) can be defined as an assertion
(φ,Θt,η), where

– Φt is the name of the class of event;
– so is a tuple (α1,α2,. . .,αk), whereαi is a variable rep-

resenting a physical object in the domain;
– φ is a set of temporal events{φi(soi)}, andsoi ⊆ so;
– Θt is a temporal assertion which specifies the temporal

relationships among members ofφ using n-ary operators.
Formally,

Θt = R1(τ11
1 , . . . , τ

1n1
1 ) ♦1 R2(τ21

2 , . . . , τ
2n2
2 ) ♦2 . . .

♦m−1Rm(τm1
m , . . . , τ

mnm
m ), (6)

whereRj , j = 1, . . . , m is a generalized n-ary relation,
♦k, k = 1, . . . , m − 1 is one of the logical operators (∧
or ∨) and τ ji

j is the duration for thejith temporal event

(a member ofφ) in relation i. A termRi(τ
i1
i , . . . , τ

ini
i )

may be substituted byΦi
t(soi), whereΦi

t is the name of
a temporal event, andsoi ⊆ so. Φi

t(soi) may or may not
be a member ofφ;

– µ is the starting frame of the temporal event;
– η is the aggregate duration (in frames) ofΘt.

Each temporal event instance can be represented as fol-
lows:
(TAG, clip#, segment#, class, oid,
participating physical object(oid list),
participating events, starting frames,
duration(inframes)).
The meaning of the individual field is similar to those in the
data structure of spatial events.

At the lowest level, simple temporal events are first con-
structed from spatial events using the above definition, with
a condition that then-ary operators are of typemeetsand
all operands of a certain operation belong to the same spa-
tial event. This allows us to represent the “persistence” of a
specified spatial event over a sequence of frame. This also
corresponds to a simple temporal event that is valid for the
corresponding range of frames with duration`t. If the event
starts at frame #α and ends at frame #β, then`t = β −α+ 1.
At higher levels where operands themselves are also tempo-
ral events (in the case of composite temporal events), the du-
ration of ann-ary/logical operator is the aggregate duration
of its operatorsτ js, that are associated with corresponding
temporal events.

An important property of temporal events isconcaten-
ability [2] , which is the foundation for constructing a simple
temporal event. Before presenting this property, we intro-
duce the notion of predicates. A predicate (event)P (a1, . . . ,
am)(e) if true during an intervali can be represented as
P (a1, . . . , am, i)(e(i)). Concatenability means that, if an ev-
ent is true in intervalsI and J , and I meetsJ , then
the event is true in an intervalK = M (I, J). Formally,
∀i, j e(i)∧e(j)∧M (i, j) → e(M (i, j)). An example of con-
catenability is that if personA is walking during intervalsI
andJ , andI meetsJ , thenA is walking during an interval
K=Meets(I, J). On the other hand, if personA performs
slam-dunkonce in each intervalI and J , and I meetsJ ,
thenA is not performing slam-dunk once in the intervalK
= M (I, J), instead,A performs slam-dunk twice.

An example for a temporal event consisting of two spa-
tial events is “passing of a ball between two players”. This
event can be characterized by relating two similar spatial
eventsEs

hold(u, b), “holding of the ball by playeru” and
Es

hold(v, b), “holding of the ball by playerv”, which can be
described as in the previous section.

A pass event can be composed of these events joined
with two predicates. The first predicate is that bothEs

hold(u,
b) andEs

hold(v, b) should persist for a finite duration. In other
words, the ball should be in contact with each player for a
period of time for each event to be considered “holding”.
The second predicate specifies that these events should fol-
low each other with a certain delay bounded by some spec-
ified value. The first predicate regarding persistence can be
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formally described as a temporal event that uses ameetsop-
eration with occurrences ofEs

hold(u, b) or Es
hold(v, b) over

`t number of frames as its operands:
∃p ∈ player,∃b ∈ ball,

Et
hold(p, b) = Persistent(Es

hold(p, b), µt, lt)

≡ ∀l′t, IN (l′t, lt) → Persistent(Es
hold(p, b), l′t)

≡ ((Es
hold

(1)(p, b), . . . , Es
hold

(lt)(p, b)),

M (l(1), . . . , l(lt)), µt, lt). (7)

Finally, we can express thepassevent usingbeforen-ary
operation betweenEt

hold(u, b) andEt
hold(v, b) as:

∃u, v ∈ player,∃b ∈ ball,

Et
pass(u, v, b) = ((Et

hold(u, b), Et
hold(v, b)),

B(l1 : τ1
4, l2 : τ2

4), µ, η). (8)

Here τ1
4 and τ2

4 are the inter-interval offsets between
the temporal events.

As discussed earlier, temporal events can be speci-
fied in a more general way by assigning ranges to inter-
val lengths and inter-interval offsets instead of exact val-
ues. In our example, for instance, one can allowl1 and
l2 to vary between 15 and 90 frames andτ1

4 between
6 and 45 frames for the temporal event to be consid-
ered as a pass (actual time depends on the frame rate
of the video). This means that, at 30 frames/s, we re-
quire a holding persist for 0.5–3 s and the period when
the ball is in the air be between 0.2 and 1.5 s. For exam-
ple, the event ((Et

hold(X, b), Et
hold(Y, b)), B(1.0 : 0.3, 2.0 :

0), µ1, η1) which specifies that “player X holds the ball for
1.0 s and after 0.3 s player Y holds the ball for 2.0 s” is con-
sidered to be a pass event whereas ((Et

hold(Z, b), Et
hold(W,

b)), B(1.5 : 2.5, 2.0 : 0), µ2, η2) is not valid, sinceτ1
4 (which

equals 2.5 s) does not lie within the specified range. Note that
inter-interval offsetτ4 is always zero for the last operand
of a relation.

The pass event example can be recursively used to de-
scribe more complex temporal events such as “two succes-
sive passes”. The expression for such an event is as follows:

∃u, v, w ∈ player,∃b ∈ ball,

Et
2−pass(u, v, w, b) = ((Et

pass(u, v, b), Et
pass(v, w, b)),

B(l1 : τ1
4, l2 : τ2

4), µ, dur). (9)

Figure 6 summarizes the whole process of event spec-
ification for the pass example. Note that the spatial events
Ess are as described in Sect. 3.3.

An algorithm (Algorithm TE-Identification) for identify-
ing a temporal event within a video segment is given next.
This algorithm can also be used to identify a temporal event
within a clip, except in this case the search scope is the
whole video clip instead of a segment.

As an example of this Algorithm, suppose four instances
of holding a ballevent exist in a segment as shown in Fig. 7.
To identify the temporal eventEt

pass(player1, player2, ball),
we need to find an instance of eventEt

hold(player1, ball)
and Et

hold(player2, ball). Subsequently, we need to check
whether these events are related bybefore with an inter-
interval delay less than a specified value. The algorithm
for this example works as follows. We haveΘt = P1

before

sE X
l

multiple instances of
over frames sE Yl

multiple instances of
over framesX Y

 τX

X
l

meets

1

sE
X

:s sE
X

:s τX
 τY

Y
l

meets

1

sE
Y

:s sE
Y

:s τY

tE 
Y

tE 
X

tE 
XY

τ t∆
X

sE ’s are identified from low-level indexing

Fig. 6. An example of composition hierarchy of ‘pass’

Algorithm TE-Identification: identification a temporal event within a scene
Temporal-Event-Identification(Θt)
Input: Θt = P1 + P2 + . . . + Pk, wherePi = ti1ti2 . . . tij , and

eachtij is ann-ary expression
for eachPi

do if Pi is ann-ary operator
then for eachtij

do Unmark all temporal events in the segment
repeat

Find e1 (unmarked) corresponding toτ1 of tij
Search alle′s π(e) ≥ π(e1) to find events
corresponding toτ2 . . . τn

if search is successful
then create a sub-event instancet(l)

ij of tij
record its component events corresponding
to τ1, . . ., τn

calculate its aggregate interval using Table 1
until no unmarked events corresponding toe1 is found

P (q)
i = t(l)

i1t(m)
i2 . . . t(n)

ij ,
1 ≤ l ≤ #(ti1), 1 ≤ m ≤ #(ti2), . . . , 1 ≤ n ≤ #(tij )
τ (P (q)

i ) = minimum interval containing allτ s
of t(l)

i1t(m)
i2 . . . t(n)

ij

elseFind the corresponding event in the collection for
temporal events

= t11 = B(l1 : τ1
4, l2 : τ2

4). First, unmarkTAG field
of all four temporal events in the segment. Assume that
the events are sorted in an ascending order of starting
frames. Then, the algorithm finds an unmarked event cor-
responding toEt

hold(player1, ball) (e1); in this case, it is
event A. Next, it finds an unmarked event correspond-
ing to Et

hold(player2, ball) (e2), such that this event is
related to eventA with the before relation, and it has
the earliest starting frame number among all instances of
Et

hold(player2, ball) existing in the segment; let it be event
B. Then the condition for apassevent between player 1 and
player 2 is tested. The duration of this event can be cal-
culated. The process is repeated and the algorithm finds an
unmarked eventC corresponding toe1, the first component
event of the pass event. However,e2, which is the second
component event of the pass event, cannot be found. There-
fore, only one instance of pass is found, which is designated
as t(1)

11. Finally, it setsP (1)
1 = t(1)

11, and finds duration(P (1)
1 ) =

duration(t(1)
11).

In summary, the proposed framework of generalizedn-
ary operators and the encoded information of the model
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A

B

C

D

hold(player 1,ball)

hold(player 2,ball)

hold(player 1,ball)

hold(player 3,ball)

pass(player 1,player 2,ball)

frame number

Fig. 7. Example of algorithm TE-Identification

can provide a mechanism for constructing and character-
izing events. More importantly, we can develop hierarchical
relationships among different types of complex events that
inherit properties of simple events. Such a hierarchical struc-
ture can help in indexing and searching events of interest.

4 Object-oriented modeling of video data

Considerable semantic heterogeneity may exist among users
of video data due to the differences in their pre-conceived
interpretation or intended use of the video information.
Semantic-based integration of different views may be re-
quired for a large number of users. Data management and
efficient query processing, in the process of such integration,
is a complex and challenging problem. Conventional data-
modeling techniques lack the ability of managing complex
events of video data and supporting heterogeneous views of
the data. For example, the relational model has a drawback
of losing semantics, which can cause erroneous interpreta-
tion of views and events.

The object-oriented technology, on the other hand, can
provide a powerful paradigm to meet the requirements of
our semantic modeling and management of complex video
data. Its data and computational encapsulation features offer
elegant data-modeling capabilities at various levels of infor-
mation granularity in a video database system. The paradigm
can allow users to combine multiple views of the data into
a single comprehensive view. The basic concept that data
is associated with procedures manipulating it is especially
appealing in modeling video data, where the raw data needs
to be processed and spatio-temporal contents of the infor-
mation needs to be combined using rather complex logic.
Object-oriented modeling allows such complexity to be inde-
pendently managed and linked together via communication
among objects using messages. Theclassconcept in object-
oriented paradigm is especially suitable for semantic-based
grouping of events.

In this section, we discuss a modeling process of multi-
ple and heterogeneous views of users in an object-oriented
environment and describe how multiple events in video data
can be integrated into a single framework. The fundamental
premise here is that we can establish a correspondence be-
tween hierarchical relationship of video events (e.g., Fig. 6)
discussed in the previous section and different classes of
objects using various object-oriented abstractions. In object-
oriented environment, objects, classes, and meta-classes can
be defined recursively at arbitrary levels. By embedding an

Table 2. Generic spatial event

CLASS Generic (Persistent) Spatial Event
ATTRIBUTE

object identifier (oid)
eventdefinition expression* /* class method */
BOOLEAN TAG, IS TEMPORAL
clip#, segment#, startingframe#, duration
oid list of participatingobject*
oid list of componentevent*

METHOD
identificationprocedure() /* class method */
(
For each tuple-collection representation of a video clip in the
video DB (or a group of clips)

Perform Algorithm 1 to identify the (persistent) spatial events
)
return single value attribute(attributename)
return participatingobject id()
return componenteventid()

event in a class, not only necessary information of an event
can be recorded as attributes, but most importantly, the iden-
tification of an event can be treated as method(s) of a class.
Also, if an attribute is another event (class), the current class
can invoke the methods of that class by sending message(s)
to it.

4.1 From events to classes

For mapping events to classes, events can be categorized
into two generic classes. Ageneric spatial eventclass and
a generic temporal eventclass are defined for spatial events
and temporal events, respectively. These two classes are
calledperspectives[15, 23] since they do not have instances
of their own, rather they are used for generating new classes.

In Table 2, we provide a generic template for declar-
ing a spatial class. Along with the attributes, such as object
id, pointer-to-object definition, object id list of participating
physical objects, etc., the main component of the class is the
class methodto identify the given spatial event. The actual
events identified are the instances of a spatial event class.
Since a spatial event definition has parameters, the identifica-
tion procedure is performed for each combination of param-
eters. The system is updated with new instances and event
types as they are identified, during the archiving/retrieval
process. Note that the identification procedure is only asso-
ciated with the class definition, i.e., it is a class method, not
a method of an instance of a class. Additionally, theduration
attribute is used to record thepersistenceof a spatial event.
As a result, it is not necessary to record a lot of redundant in-
formation. A spatial event persisting for a number of frames
can be called a simple temporal event if it is meaningful
to do so. That is, not all persistent spatial events represent
meaningful temporal events. The users have to make the
decision if a persistent spatial event is a simple temporal
event. AttributesTAG andIS TEMPORAL are used for
identification procedures and for denoting temporalness, re-
spectively. The methodreturn single value attribute is
used to return any attribute with a single value, e.g., clip#.

Table 3 provides a template for declaring atemporal
class. For an instance of this class, a component can be
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Table 3. Generic temporal event

CLASS Generic Temporal Event
ATTRIBUTE

object identifier (oid)
eventdefinition expression* /* class method */
BOOLEAN SpatialComponent,TAG
clip#, segment#, startingframe#, duration
oid list of participatingobject*
oid list of componentevent*

METHOD
identificationprocedure() /* class method */
(
For each clip in the video DB (or a group of clips)

Perform Algorithm 2 to identify the temporal events
)
return single value attribute(attributename)
return componenteventid()
return participatingobject id()

an instance of another temporal event class or may be an
instance of a persistent spatial class with the property that
instances of the spatial class are related with the temporal
relationmeets. The structure of the temporal class is similar
to that ofgeneric spatialclass, except that the identification
procedure is different.

4.2 Abstraction of video data in object-oriented paradigm

We now consider spatial and temporal events as object
classes to show how existing object-oriented abstractions can
be used to define new classes and how inheritance can be
used to construct complex views. An important aspect of
these abstractions is that they allow grouping and merging
of information entities which may not have any temporal or
spatial relationship among them, but some general seman-
tics. This is not possible, otherwise, with the use of simple
n-ary spatial or temporal relations.

In Sects. 3.3 and 3.4, spatial/temporal events are con-
structed usingn-ary relations and ‘AND’ and ‘OR’ logical
operators. To represent these relations in the object-oriented
environment, one possible approach is the mapping shown
in Fig. 8. An n-ary relation amongn events can be mod-
eled using aggregation abstraction (n-ary), where the super-
class is the result of then-ary relation, and the subclasses
are related by one of then-ary relation. The logical op-
erators ‘AND’ and ‘OR’ are modeled through aggregation
(IS-PART-OF) and specialization/generalization (IS-A), re-
spectively. The graphical representations of the mapping is
shown in Fig. 9. Note that an event definition expression
is defined either through product of sum (POS) or sum of
product (SOP), where each term in the SOP or POS is, in
turn, a POS or SOP. However, in Algorithm 2 presented
in Sect. 3.4, the event definition expression is assumed to
be a SOP expression, since a POS expression can be trans-
lated into a SOP expression. For the composition of a spatial
class, the parent node represents the result of ann-ary spa-
tial operation and all the children nodes are also the spatial
classes. Similarly, for the temporal classes, the parent node
represents ann-ary temporal operation and the child nodes
are either spatial or temporal classes.

Event Composition Object-Oriented
    Abstraction

IS-A

Aggregate (IS-PART-OF)

Aggregate (n-ary)

n-ary relation

   before 
   meets
 overlaps
 contains
    starts
completes
   equals

AND
OR

Fig. 8. Mapping between event composition constructors and object-
oriented abstractions(1)

Product (∧)Sum (∨) n-ary

Porduct of Sum (POS)

Sum of Product (SOP)

✚ ✚

✚

✚

✖

✖

✖

✖

Fig. 9. Mapping between event composition constructors and object-
oriented abstractions(2)

For developing an abstraction of a video database, we
can use either a top-down (specialization) or bottom-up (gen-
eralization) approach [16]. Irrespective of the abstraction
used, we can utilize three types of semantic relationships
between classes. These include, generalization (IS-A), aggre-
gation (IS-PART-OF), and aggregation (n-ary), and are used
together, depending on the grouping requirements of users.
A four-level object-oriented abstraction of the framework is
shown in Fig. 10. Level one consists of identified physi-
cal objects. Spatial objects (events), identified from spatial
relationships among objects at level one, constitute level-
two abstraction. Temporal objects (simple or complex) con-
structed usingn-ary relations (aggregate) form level-three
abstraction. Objects generated using generalization (IS-A) or
aggregation (IS-PART-OF) constitute level-four abstraction.
Temporal inheritance property exists among subclasses and
superclass of a generalization abstraction. However, there are
some rules that must be observed while using these abstrac-
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Fig. 10. Object-oriented abstraction of video databases
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Fig. 11. An object-oriented view of basketball events

tions for modeling of video data. These rules are discussed
later in the section. We proceed by defining the view hierar-
chy (a video database abstraction from users’ point of view)
and present associated constraints.

A view hierarchyHV consists of the following part :
HG, HA, andHN ;

– HG is the set of generalization abstraction axioms, each
of the form : ‘E1 IS-A E2’ iff ∀x, E1(x) → E2(x), E1,
E2 ∈ Node(H), and→ means ‘imply’.

– HA is the set of aggregation (IS-PART-OF) abstraction
axioms, each of the form ‘E1, . . . , En IS-PART-OFE0’
iff ∀x E0(x) → E1(f1(x)) ∧ E2(f2(x)) ∧ . . . En(fn(x)),
E1, . . . , En ∈ Node(H), andfi is a function that spec-
ifies Ei being part ofE0 in some way.E1 throughEn

are called direct components ofE0.
– HN is the set of aggregation (n-ary) abstraction, each of

the form: E0 = RG
n (E1, . . . , En) iff duration of (E0) =

aggregate duration ofRG
n (l1, . . . , ln) and ∀x E0(x) →

E1(f1(x)) ∧ E2(f2(x)) ∧ . . . En(fn(x)), E1, . . . , En ∈
Node(H), andfi is a function denoting thei-th compo-
nent of ann-ary relation.

The interconnection ofHG, HA, and HN are defined
through the following constraints. Given a superclassCsuper,
a number of its subclassesCsubi , i = 1, . . ., m, m a positive
integer ≥ 1, and an abstractionA, we list the following
rules. Assume that, for a class,PA represents the set of
abstractions it can participate as a subclass.
A = IS-A

1.1 If ∀i, Csubi
is a spatial event, thenCsuper represents a

categoryand is called aderived spatial class. Csuper ’s
PA is equal to{IS-A, IS-PART-OF,n-ary (persistence)}.

1.2 If ∀i, Csubi is a temporal event, thenCsuper represents a
categoryand is called aderived temporal class. Csuper

hasPA equal to{IS-A, IS-PART-OF,n-ary}.
1.3 If ∃i, j, k, i /= j /= k, 1 ≤ i, j, k ≤ m, such thatCsubi

is a spatial event,Csubj
is a temporal event,Csubk

is a
non-spatio-temporal class, thenCsuper represents a gen-
eralization and hasPA = {IS-A,IS-PART-OF}.

1.4 If ∀i, Csubi
is either a spatial or temporal event, and

#(Csubi ∈ spatial) ≥ 1, #(Csubi ∈ temporal) ≥ 1, then
Csuper represents a generalization andPA is equal to
{IS-A,IS-PART-OF}.

A = IS-PART-OF.

2.1 If ∀i, Csubi is a spatial event, thenCsuper is a composite
spatial event, and it hasPA = {IS-A, IS-PART-OF,n-
ary (persistence)}.

2.2 If ∀i, Csubi
is a temporal event, thenCsuper is an ag-

gregation of temporal events where no temporal relation
is specified amongCsubi

s. Csuper ’s PA is equal to
{IS-A,IS-PART-OF}.

2.3 If ∃i, j, k, i /= j /= k, 1 ≤ i, j, k ≤ m, such thatCsubi

is a spatial event,Csubj is a temporal event,Csubk
is

a non-spatio-temporal class, thenCsuper represents an
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aggregation of heterogeneous events and itsPA is {IS-
A,IS-PART-OF}.

2.4 If ∀i, Csubi
is either a spatial or temporal event, and

#(Csubi
∈ spatial) ≥ 1, #(Csubi

∈ temporal) ≥ 1,
thenCsuper represents an aggregation of spatio-temporal
events and hasPA = {IS-A,IS-PART-OF}.

A = n-ary.

3.1 If ∀i, Csubi
is a spatial event, allCsubi

are of the same
class with the same parameters, and then-ary relation
is meets, thenCsuper is a simple temporal event and its
PA = {IS-A,IS-PART-OF,n-ary}.

3.2 If ∀i, Csubi
is a temporal event, thenCsuper is a com-

posite temporal event and it hasPA = {IS-A,IS-PART-
OF,n-ary}
An example of video abstraction for a sports database

is given in Fig. 11. Classbasketballgame is the aggrega-
tion of three subclasses, namely,field, teamactivity, and
non teamactivity. The derived spatial classfield is com-
posed of three spatial subclasses, namely,front court, cen-
ter court, and back court. All these subclasses may not be
promoted, i.e., they may not be considered as simple tem-
poral events if they persist. Classesindividual activity and
multiple personactivityare related tonon teamactivityclass
by a IS-A relation.teamactivity is a temporal event with
two temporal subclassesfree throwsand jump ball. From a
user’s point of view, grouping of object classes can be purely
based on shared semantics without any spatial or temporal
relationship among them. An example isindividual activity
class, which is a generalization of two temporal classes
(3 − pointer shot andslam − dunk) and one spatial class
(holding a ball). This class is neither temporal nor spatial in
its characteristic. On the other hand,multiple personactivity
class is a derived temporal class, since all its children are
temporal subclasses. It can be noticed that all the leaf nodes
are spatial or temporal classes where objects operate on the
low-level model in Sect. 2.

In the proposed model,inheritancein the IS-A relation is
realized through a bottom-up approach calledgeneralization.
A new class (parent) is formed by extracting the common
structure from existing classes (children). For aggregation
abstraction, the parent class does not possess anything from
its children classes.

4.3 System architecture and management of objects
for content-based retrieval

Based on the discussion of the previous sections, we envi-
sion four levels of indexing of video databases to facilitate
content-based query processing. The first level maintains
low-level spatial/temporal information about salient physi-
cal objects using the proposed model in Sect. 2. At higher
levels, the indexing is mainly based on user-specified se-
mantics/contents. For example, at the second level, spatial
events are constructed by processing the spatial information
maintained by the low-level model. The third level maintains
indices for temporal events (objects) using the information
available at the second level and also temporal information
at the same level through recursive formulations of complex
events. The fourth level manages complex objects and pro-
vides indexing mechanism to groups of events with related
contents, where those objects and class objects are generated
through generalization and aggregation as shown in Fig. 10.
Accordingly, a system architecture for a video database is
shown in Fig. 12.

As mentioned earlier, the first-level indexing is based
on a low-level model (such as VSDG), where the relevant
information such as the identities of the salient objects of in-
terest and their bounding volumes have been extracted from
raw video data. This constitutes a challenging problem even
for today’s advanced computer vision technology. Although
discussion of this problem is not the main theme of this pa-
per, it’s worthwhile to mention some issues related to the
initial processing.
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First, for easier and more efficient object recognition,
physical objects should be grouped into classes (Physical
Object Databasein Fig. 12). This enables pre-defined ob-
ject models to be used and simplifies the recognition problem
through appropriate matching techniques. Since the identities
of human objects, which are obviously of special interest in
video databases, are determined by their faces, their recogni-
tion should be given a special treatment [25, 27]. The second
important problem is to obtain information about the bound-
ing volume for any recognized object, a process which can
be carried out through well-established feature extraction al-
gorithms and can be used in the later steps to construct the
entire database. This processing corresponds to theBounding
Box module of the architecture shown in Fig. 12. The pro-
cessed information is maintained via the low-level model
and constitutes the first-level indexing. The second, third,
and fourth level of indexing ( as shown in Fig. 10) is main-
tained in the module labeled asEvent/Concept Definitions.

From a system implementation point of view, there are
three major components, namely,spatial abstraction, tem-
poral abstraction, andEvent/Concept Definitions, as shown
in Fig. 12. In the spatial abstraction component, an image or
a frame of a video clip is processed using theobject descrip-
tion information to obtain features of the image. With the
knowledge fromphysical object database, spatial semantics
of objects in an image are identified. On the other hand,
in the temporal abstractioncomponent,bounding boxinfor-
mation is obtained from the spatial abstraction component,
which is then used for intra-/inter frame analysis (motion
tracking) of a single object. The next step is inter-object
movement analysis, i.e., identifying relative movement be-
tween objects. This information is then utilized by compo-
nent event/concept definitionto identify events. This com-
ponent stores the definitions as well as the procedures of
identifying events.

The logic of constructing events can be used to derive a
content-based query language. A user can specify and store
more events, as needed. New classes can also be formed
based on the existing classes at lower/same level through
n-ary operations and class inheritance. The proposed system
should be able to support the following types of queries,
where any clip, segment, or sub-clip (several segments) sat-
isfying one or more of the following conditions may be re-
turned as an answer to a query:

– appearance of physical objects.
– existence of spatial events.
– existence of user-defined conditions equivalent to spatial

events.
– existence of temporal events.
– existence of user-defined conditions equivalent to tem-

poral events.

Note, that these conditions can be logically combined to
form more complex conditions.

Queries about the view structure may also be supported.
Occasionally, the system may resort to processing of raw
video data to identify objects that were not previously iden-
tified. We expect the proposed methodology can be used
to implement a system with on-line capabilities for query
processing.

5 Conclusion

We have presented a framework for semantic-based mod-
eling of video data using generalizedn-ary operators. The
raw video data is processed to extract the spatial information
about physical objects. This information can lead to the first-
level indexing of spatial events that are expressed formally
using spatial relations. Subsequently, higher level indexing
of events involving temporal dimension is created using
generalized temporal operators. The management of video
events can be efficiently carried out using object-oriented
technology, since it can provide an elegant paradigm for
semantic-based modeling and grouping of information. A
video & image database system architecture is then pro-
posed, which consists of three major components to process
& manage image & video data and spatio-temporal events.
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