IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993 629

OVID: Design and Implementation
of a Video-Object Database System

Eitetsu Oomoto and Katsumi Tanaka, Member, IEEE

Abstract—This paper describes a video-object data model and
the design and implementation of our prototype video-object
database system named OVID based on the model. Notable
features of our video-object data model are to provide (1) a
mechanism to share common descriptional data among video-
objects, called “interval-inclusion based inheritance,” and (2)
operations to composite video-objects. OVID system offers a
browsing/inspection tool VideoChart, an adhoc query facility
VideoSQL, and a video-object definition tool.

Index Terms— Generalization hierarchy, interval inclusion in-
heritance, video object, video object composition, video object
disaggregation, VideoSQL.

I. INTRODUCTION

ECENTLY, much attention has been focused on mul-

timedia information systems, and the Object-Oriented
Database (OODB) Systems [4] are considered as a possible
candidate for comstructing multimedia information systems
because of their modeling power, encapsulation capability, and
so on. Many object-oriented data models, prototype systems
based on their own object models, and a variety of commercial
OODB systems have been developed. Also, recent worksta-
tions and high performance personal computers evolved to
possess hardwares for handling multimedia data, for example,
image compression hardware, and digital signal processor for
handling voices.

Multimedia information systems are to store, retrieve, and
manage still images, video, and voices, etc. (multimedia data).
For describing the structure and the semantics of multimedia
data, in general, the object-oriented concept is regarded as
suitable for data modeling framework. Although some multi-
media (database) systems [14] to handle video data have been
developed, there have been few reports which investigates data
models suitable for video information management in depth.

Especially from the standpoint of the data modeling, the
major features provided by OODB systems are

* representation and management of complex objects;

* handling object identities;

* encapsulation of data and associated procedures into
objects; and

Manuscript received June 1, 1992; revised December 1, 1992. This research
was supported in part by Research Grant on Self-Organizing Information-Base
System of the Science and Technology Agency.

E. Oomoto is with the Department of Information and Communication
Sciences, Kyoto Sangyo University, Kitaku, Kyoto 603, Japan.)

K. Tanaka is with the Department of Computer and Systems Engineering,
Kobe University, Nada, Kobe 657, Japan.

IEEE Log Number 9209928,

* inheritance of attribute structures and methods based on
a class hierarchy.

These features are considered to be very suitable for data
modeling and data management in CAD systems, office infor-
mation systems, and so on. Our basic question is as follows: Is
the modeling power offered by conventional OODB features
enough for the multimedia data, especially for the video data?
We believe that it is necessary to provide new modeling
constructs for video database management because of the
following reasons.

1) Video data itself is raw data, and it is created indepen-
dently from how its contents and its database structure
is described later.

2) Meaningful scenes in video data are identified and
associated with their descriptional data incrementally
and dynamically after the video data is stored as a
database. Therefore, it is not easy to identify mean-
ingful scene objects and define necessary attributes for
describing them when the video database schema is
defined. It is desirable that each scene object can have
an arbitrary attribute structure suitable for describing the
contents when it is identified as a meaningful scene.
But most current OODB’s require predefinition of those
attribute structures, and they do not support enough
schema evolution facilities such as adding and dropping
attributes.

3) Meaningful scenes are sometimes overlapped or in-
cluded by other meaningful scenes. It becomes important
to provide a mechanism to share some descriptional data
among meaningful scenes with the inclusion relation-
ships. In order to realize such an inheritance mecha-
nism, the inclusion relationships among instance objects
should be considered. But many OODBMS’s support
only class-based inheritance.

This paper describes a data model called Video Object
Data Model for modeling and retrieving video data, and the
design and implementation of a video database prototype
system, named OVID: Object-oriented Video Information
Database. The notable features of our video object data model
follow.

* We introduce the notion of video object. We can identify

an arbitrary video frame sequence (a meaningful scene)
as an independent object and describe its contents in a
dynamic and incremental way. That is, each video object
has its own attributes and attribute values to describe the
contents.

1041-4347/93$03.00 © 1993 IEEE

630 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

* Our video object data model is schemaless. That is,
a traditional class hierarchy of OODB systems is not
assumed as a database schema.

¢ The inheritance based on interval inclusion relationship
is introduced to share descriptional data among video
objects. Intuitively, this means that, if a video frame
sequence o; includes another video frame sequence o,
then some of the 0y’s attributes and attribute values are
automatically inherited by o,.

* A collection of composition operations for video objects
is introduced in order to support editing, authoring and
abstraction of video objects.

In Section II, we address several related works. In Section
III, we describe several motivating problems and our basic
ideas. In Section IV, we describe our video object data
model together with illustrative examples. The features of the
OVID system are described in Section V. Section VI includes
concluding remarks.

II. RELATED WORK

Parkes [14] introduced a mechanism for handling descrip-
tive data for video information in his video-based CAI system.
He introduced the notions of events and settings. An “event”
is a hierarchical description of a video scene based on PART-
OF relationships. Suppose a video scene A shows how to use
a micro meter. The event “USING THE MICRO METER” is
assigned to A. This is the root of the description. The event
“USING THE MICRO METER?” consists of 4 sub-events, that
is, “REMOVE MICRO FROM CASE,” “CLEAN MICRO,”
“MEASURE METAL,” and “RECORD MEASURE.” Each
event corresponds to some portion of video A. The event
“CLEAN MICRO” consists of 4 events, “HOLD MICRO,”
“LIFT CLOTH,” “WIPE ROD,” and “REPLACE CLOTH”
and so on. The other notion, “settings,” corresponds to differ-
ent representations of the same object in the real world. The
binary relations, for instance, zoom in or zoom out, etc.,
are defined between these settings. In summary, his model
consists of PART-OF relationships among descriptional data
and the binary relationships between settings. This model
offers an interesting way for organizing a lot of descriptional
data of video information, but they did not address the issue
of inheritance of descriptional data.

Adiba and Quang [1] have developed the several notions to
define, store and manipulate the historical multimedia data. For
a given object X in a database, a history is a sequence of the
successive values that X took across time. Their main subjects
are concerned with historical data (containing version) man-
agement of general database systems or multimedia database
systems, especially for multimedia documents including text,
images and graphics. They do not focus on the mechanism for
handling descriptional data of video information.

The composition of multimedia data is addressed by Little
and Ghafoor [9]. The methods to compose multimedia data
are classified into two categories: spatial composition is the
notion of spatial arrangement of data; temporal composition
is concerned with how to keep the synchronization of data in
a process of data presentation. They introduced a timed Petri

net model to synchronize the data presentation. Their model
focuses on the description of synchronization! and they did not
discuss about the mechanism for handling descriptional data
of video information.

Woelk, Kim, and Luther [19], [20] discussed the manage-
ment of multimedia data, especially, a collection of objects for
capturing and controlling multimedia data in a conventional
object-oriented framework.

MINOS [6] is a multimedia system using an optical disk.
It manages text, voices and images. One of the characteristics
of MINOS is that voice and text are managed symmetrically
because they are both one-dimensional in nature.

Intermedia [16] is one of the most famous hypermedia
systems. Although Intermedia has many features to retrieve,
manage and present various multimedia document as a hyper-
text system, the facility for controlling, sharing, and composing
video data description is relatively weak.

Hodges, Sasnett, and Ackerman [7], [8], [10] developed the
Athena Muse system which is a multimedia environment for
education. In these papers, they introduced the notion of multi-
dimensional information. For an example of one dimensional
data, they referred to the video data which is annotated by
several text segments that switches with video image syn-
chronously. Muse is an useful system to compose multimedia
applications. But they addressed neither the data model issues
nor its associated mechanism for handling descriptional data
of video information.

EVA [10], [11] is a video annotator system developed by
MIT. It provides software researchers with the annotation
facility for video. Although EVA is a useful tool to analyze
video data, the capability to share descriptional information
among annotated video scene is relatively weak. It is not fully
addressed what operations are needed to compose/decompose
the annotated video scenes.

Allen [2] introduced the interval-based temporal logic as
the framework to represent the knowledge and inference
concerned with time. He addressed the notion of the constraint
propagation. Intuitively, if a condition P holds during a time
interval T, then P holds during any subinterval ¢ of 7. In
our video object model, a similar but different propagation
mechanism is introduced, called inheritance based on interval
inclusion relationships. Some of the pairs of attribute/value
attatched on a video-object are inherited by sub-video-objects,
and the inheritable attributes specified by users.

PATRICIA tree [12] is an algorithm for retrieving arbitrary
portions of a symbolic sequence with a given keyword. Users
can specify any portions of a symbolic sequence as keywords,
but PATRICIA does not provide the facility to describe the
semantic contents of those portions as objects.

III. MOTIVATING PROBLEMS AND BASIC IDEAS

In this section, we first discuss motivating problems to de-
scribe the contents of a video data (for example, a video disc)

1'We recognize the importance of the synchronization issues of multimedia
data, but, in this paper, we focus only on the treatment of descriptional data
of video information.

OOMOTO AND TANAKA: OVID

when using conventional OODBMS’s. Next, we intuitively
describe our approach.

3.1. Problems

3.1.1. Difficulties in Defining Attributes: If we wish to de-
scribe the contents of a video disc, and also wish to define
a database schema by using conventional OODBMS’s, first,
we should decide what the basic objects are. A video disc
consists of a sequence of video frames, and so, each video
frame (a still image) can be regarded as a single object.
However, usually, a (semantically) meaningful scene is a
sequence of (not always continuous) video frames. So, it seems
natural to define an object corresponding to each semantically
meaningful sequence of video frames. This is possible in
the case of using conventional OODBMS’s. That is, the
description for a semantically meaningful scene is represented
as a tuple:

(starting frame#, ending frame#, other attributes to describe
the scene).

However, we should note the following problems concerned

with the difficulties in defining attributes in advance.

* Depending on the describer’s viewpoints, the same scene
(the same sequence of video frames) may be given
different descriptions. That is, they may have different
sets of attribute definitions.

* Since it is difficult to describe the whole contents of a
video disc at a time, the descriptions for semantically
meaningful scenes should be incrementally added. This
also causes a difficulty in defining all attributes in ad-
vance.

* A semantically meaningful scene s; may contain an-
other semantically meaningful scene s2 as its subinterval.
Suppose that the description of s, contains the same
information as the one which is described for s;. It is
a very tedious task because a user must describe the
same information on two different objects. If there is
some mechanism, by which the common descriptional
information is shared among scenes, based on time-
interval inclusion relationship, then it would be useful for
decreasing the effort of describing video scenes. But, con-
ventional OODBMS’s do not provide such an inheritance
mechanism because they provide a mechanism only for
the inheritance of attribute structures and methods among
classes.

3.1.2. Difficulties in Querying: In conventional database
systems, in general, a query is formulated by knowing a
database schema such as table definitions or a class hierarchy.
Users must know the attribute structures or class structures
in order to retrieve desired objects. If we allow each object to
have a different attribute structure then the following problems
should be considered.

* Since each data object has its own structure, users must
inspect the attribute definition of each object in order to
know what attributes are defined for objects. It is very
inconvenient, and so, some kind of a mechanism to cope
with this problem is necessary.

631

* All the complete definitions of attributes and their values
for objects must be described by users if there is no
database schema. It may be a very hard task for users
to describe many attribute definitions for objects. A
mechanism to decrease the amount of descriptions of
attribute definition for objects will be required.

3.1.3. Treatment of Composed Objects: Video data stored
in video databases may be used for several editorial works.
That is, video data are often cut and/or concatenated for
preparing multimedia presentation. In order to do this by video
database systems, those systems should provide a facility to
retrieve video data and compose the resulting data into a new
video object as well as a facility for several editiing operations.
Also, these newly-composed video objects may need to be
stored into the database. Conventional OODBMS’s, however,
do not provide enough capability to store the retrieved and/or
composed objects into their object databases. This is because it
needs a class for storing the retrieved and/or composed objects,
but conventional OODBMS’s are not good at generating a
new class dynamically. Also, after composing a new video
object from retrieved objects, it is desirable for the new video
object to inherit some attribute information from the orginal
objects. But, conventional OODBMS’s does not support t
he inheritance of attributes and their values among instance
objects.

3.2. Basic Ideas

We consider that any portion of a video frame sequence is
an independent entity, and so, we wish to make it possible
to define an object, which has its own attributes and their
values for arbitrary video frame sequences. We call that a
video object. More generally, a video object corresponds to
a certain set of video frame sequences, and it has its own
attributes and their values to represent the content (meanings)
of the corresponding video scene. Following are the features
of our video object model:

* schemaless description of database;

* interval inclusion inheritance;

* composition of video objects based on is-a hierarchy.

The schemaless description is that we do not take an
approach of assuming a specific database schema such as
classes and a class hierarchy, so users can define any attribute
structure for each video object. For example, broadcast stations
such as the ABC Network have many varieties of video tape
libraries. These may be news reports such as an airplane
accident, movies or documentaries, and so on. We believe
that it is very difficult to offer a common attribute structure
for them. Also, users have different viewpoints to describe
and/or retrieve video scenes, and many various requirements
for retrieving from their various standpoints. Therefore, it is
difficult to decide rigidly the attribute structures which denote
the meanings of those video scenes. Also, they should be
extensible freely and incrementally by users.

As new objects are defined in a database, new attributes to
represent the contents of video objects may become needed. In
our model, arbitrary attributes can be attached to each video
object whenever it is necessary. For instance, when a user

632 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

defines a video object over the video scene concerned with
John, the user may want to describe his name, “John,” as the
attribute value of the name attribute. If the name attribute does
not exist in the database, we can add it to this video object
at any time.

We also introduce the notion of inheritance based on the
interval inclusion relationship. By means of this notion, some
descriptional data of video objects can be inherited to other
video objects. For instance, consider that a night scene is
defined as a video object A and another object B is defined over
some portion of object A. The object B is also a night scene.
If object A has attribute “Situation” and its value “night,” then
object B has the same attribute and its value by the interval
inclusion relationship.

We will also define several operations, interval projection,
merge and overlap, for video objects to compose new video
objects. For example, in broadcast stations, video scenes are
edited from source video. They are chopped in order to remove
redundant scenes and/or concatenated with each other to make
TV programs. Our operations for video objects correspond
to this kind of video editing. They do not only synthesize a
new video object, but also derive, based on the is-a hierarchy,
the attributes and their values of the synthsized one from the
original video objects.

IV. VIDEO OBJECT DATA MODEL

In this section, we describe our video object data model,
by which we have designed and implemented our prototype
video-object database system.

4.1. Video-Objects

Intuitively, our notion of video-object is a descriptional
data of a meaningful scene (motion picture), and it consists
of 1) its object identifier (oid) 2) an interval, and 3) a
collection of attribute/value pairs. Each video-object has a
unique object identifier. Each video-object corresponds to a
video-frame sequence, and the contents of the video-frame
sequence is described by a collection of attribute/value pairs.
An interval is represented by a pair of a starting frame# and an
ending frame#, and denotes a continuous sequence of video-
frames. In this paper, since we define a video-object which
corresponds to more than one video-frame sequence, a set of
intervals is associated with the corresponding video-object. So,
note that a video-object does not necessarily correspond to a
single continuous sequence of video frames. This is because
a meaningful scene does not always correspond to a single
continuous sequence of video frames.

In this paper, we assume the following mutually disjoint
(countably infinite) sets: A set D of atomic values (numbers,
strings and special symbols T and 1), a set ZD of object
identifiers, a set 7 of intervals, and a set A of attribute names.

Definition 4.1: Video-Object An video-object is a triple
(oid, I,v) where

1) oid is an object identifier which is an element of ZD;

2) I is a finite subset of Z;

3) v is an n-tuple [a1 : vi,....an : vy, where each a;
(1 <14 < n) is an attribute name in .4, and v; is a value
defined recursively in the following manner:

each element © € D is a value
each interval 7 € T is a value

for values v1,...,v,(0 < n), {v,...,v,} is a
value called a set value

d. each video-object is also a value.

For a given video-object, o = (oid,I,v) with its value
v =[a1:V1,...,8, : Un], attr(o) or attr(v) denotes the
set of all the attributes in v, and value(o) denotes the value v,
that is, v = value(o). The value v; is denoted by o.a; and/or
v.a;.

Hereafter, as a realistic example, we will use a documentary
video disc[17] about Prime Ministers of Japan. Fig.
1 summarizes the whole example database.

4.2. Generalization Hierarchy for Values and Objects

A generalization (is-a) hierarchy for atomic values is as-
sumed to be a lattice G = (A,>=,T,L), where A is a
set of atomic values, > is an is-a relationship (a reflexive,
transitive and anti-symmetric binary relation) among atomic
values, T denotes unknown, and L denotes undefined. The
binary relation > denotes more informative. That is, if a; > as
means that a; is-a a5 and that the atomic value a; is more
informative than the atomic value a;. Fig. 1 shows an example
generalization hierarchy of atomic values of our example
database. In this figure, the symbol T is denoted by nil,
and the symbol L is omitted. In this example, the following
holds:

¢ Japanese statesman > statesman,

* Eisaku Sato > Japanese statesman,

* Eisaku Sato > statesman.

We assume that a generalization (is-a) [15] hierarchy for
atomic values is given in advance by users.

The above is-a relationship can be extended to general
values (including atomic values) and also to video-objects
in the following manner: Suppose that we have two video-
ObjCCtS 0y = (Oidl,ll,vl) and oo = (Oidz,Iz,’Uz). First,
given these two values vy, vz, two video-objects 01, 02 and a
generalization hierarchy G, we extend the is-a relationship? in
the following recursive manner.

¢ If both of v; and v, are set-type values, then v; is-a v

if for each element y in vy, there exists an element z in
v1 such that z is-a y.

* Let v; and vy be two tuple-type values. Then vy is-a vg

if vy.a is-a vy.a for each attribute a of vs.

* For video-objects’ o1 = (oidi,I1,v1) and 0 =

(Oidg,fg,vg), if v; is-a v9, then o is-a 0s.

2This extension follows the work by Khoshafian et al. [5]

3In this paper, we assume that the is-a relationship between video-objects
has nothing to do with their object identifiers and intervals.

OOMOTO AND TANAKA: OVID

633

%

Prime_Minister: Eisaku Sato
Successor:

03
(Locanon Okanma) @~ hon:

Prime_Minister: Kakuei Tanaka
Successor:
Private_Life:

010.
@

Prime_Minister: Takeo Miki
Private_Life:

Event_Type: summu conference
Thematic_Person: { Richard Nixon }

Event_Type: statement declaration
Subjects: { relationship between Japan and U.S.,
peace of the World }

President: Richard Nixon
Thematic_Person: { Eisaku Sato }

Fig. 1.

Definition 4.2 Least Upper Bound of Values: For two values
v1 and va, v = vy V vy is the least upper bound of v, and v,,
if the following conditions hold.

1) v; is-a v,

2) vy is-a v, and

3) There does not exist any v’ such that v # ¢/, v’ is-a v,

v, is-a v/, and vy is-a v'.

For example, suppose that we have the following values:

vy = [Prime_Minister: Kakuei Tanaka, Location: Tokyo,
Action: relaxation],

ve = [Year: 1974, Location: Tokyo, Action: walk].

vz = [Year: 1974, Location: Tokyo, Action: walk].

Also, assume the following is-a relationships:

relaxation is-a daily life and walk is-a daily life.

The least upper bound of v; and v, is shown as follows:

v1 V vz = [Location: Tokyo, Action: daily life).

Intuitively, the obtained value v; V v represents a maximum
information that is common to both of the values v; and v,.
This notion will be used to define our composition operations
for video-objects later.

Definition 4.3.:Greatest Lower Bound of Values: For two
values v; and v, v = v; A vy is the greatest lower bound
of v; and v,, if the following conditions hold:

1) v is-a vy,

2) v is-a vg, and

3) there does not exist any v’ such that v # v/, v is-a v/,

v’ is-a v; and v’ is-a v,.

Suppose that

v1 = [Location: Tokyo, Year: 1972, Subjects: { national
land development, financial problem }],

Event_Type: reception

%13
- Event_Type: domestic press conference
Thematic_Person: { En-Lai Zhou} _4 T pd
+ > ~

Direction of Time (Video Frame)

Location: Diet Building
Subjects: { national land development ,

«economical policy }
Event_Type: speech on policy

Example video object database.

= [Year: 1972, Subjects: { financial problem, social
welfare }].

The greatest lower bound of v; and v is:

v1 A v = [Location: Tokyo, Year: 1972, Subjects: {
national land development, financial problem, social welfare
31

Intuitively, the obtained value v; A vy represents a minimum
information that contains both of the values v; and v. This
notion will be also used to define our composition operations
for video-objects later.

Example 4.1: In Fig. 1, we assume that the interval ig
of a video-object og corresponds to the scene of the Prime
Minister Kakuei Tanaka, and that the interval set I;4
of 014 corresponds to the scene concerned with Mr. Takeo
Miki, who was the next prime minister, that is, successor, of
Kakuei Tanaka. Also, suppose that the scene i;5 shows
that Mr. Takeo Miki is taking a walk around his house in
his private time. We can define the following video-objects:

o0g = (dg{%s},vs)
where

vg = [PrimeMinisfer : Kakuei Tanaka,
Successor : 014, Private_Life : o)
[Action :

014 = (d14, I14 = {i14a, %14}, v14), Where

09 = (dyg, {is}, ve) where vg = relaxation)
V4 =
[Prime_Minister : Takeo Miki, Private Life :

o015 = (dis, {115}, 715, where v15 = [Action : walk].

015]

634

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

nil
person event political issue life region
domestic diplomatic social domestic foreign
event event financial a region region
welfare g egio
problem
|
speech peace of economical
domesti
press © the World policy Okinawa
conference P°|'CY national Tokyo
land
statement Leelatwtlonshlp development Diet
declaration een Building
statesman c""' Japan and U.S.
reception welcome
ceremony Ameri
summit daily life merica
American Chinese conference working life China
statesman statesman J ase
statesman di .
walk iscussion work
relaxation
En-lai Tse-tung
Zhou Mao .
: Eisaku Sato Takeo Miki
Richard Kakuei T
Nixon James uei Tanaka
Carter
Fig. 2. Example generalization hierarchy of atomic values.
TABLE 1

When describing the contents of a video scene, it is some-
times difficult to determine the value of an attribute in a
textual form, for instance, the private life can be better
described by a video image itself rather than textual sentences.
Note that in our model, a video-object is allowed to be used
as an attribute value (for example, the Private_Life value of
og is another video-object o0g).

4.3. Inheritance Based on Interval Inclusion Relationship

In this subsection, we will introduce a new inheritance
mechanism, by which some attribute/value pairs of a video-
object are inherited by another video-object if the former
video-object’s interval contains the latter video-object’s inter-
val. It should be noted that this type of inheritance is between
instances, not between traditional classes and subclasses in
OODB systems.

Since our video-object may contain more than one intervals
as its component, first, we define the inclusion relationship
between two sets of intervals. For given two interval sets, I;
and I, the inclusion relationship between them is defined as:

* For each i € I, if there exists ¢/ € I such that 7 C 4/,

then I is said to be included by the interval set Io,
denoted by I, C I.

Suppose that we have video-objects oy = (oidy, I, v1) and
0y = (0idy, Iz, v2) such that I; C I, holds. Then, some of the
attribute/value pairs of v, are inherited by the video-object o1.
As will be discussed later, not all attribute/value pairs should
be inherited. The inheritable attributes should be defined in
advance by users.

INHERITABLE ATTRIBUTES IN THE EXAMPLE VIDEO DATABASE

Inheritable Attributes Event_Type, Location, President,
Prime_Minister, Thematic_Person,

Year

Non-inheritable attributes Action, Private_Life, Subjects

Definition 4.4 Evaluation of Interval Inclusion Inheritance
by a Single Object. Suppose that we have video-objects 01 =
(Oidl,ll,vl) and 09 = (Oidg,lg,’ug), such that I, T I,
and a set A of inheritable attributes. The result of applying
the interval inclusion inheritance is called an evaluation. The
evaluation of 0, by 0o and A, denoted by eval(01, 02, 4), is
a video-object 0f = (oidy, I1,v}) such that

e attr(v)) = attr(vy) U (attr(ve) N A),

* vi.a = vy.a if a is in attr(vy), and

* vi.a = vz.a if a is in attr(vz) N A, but not in attr(vy).

It should be noted that the object identifiers and the interval
sets of 0y and o} are the same. This means that the evaluation
is not physically stored in the database and is dynamically
calculated.

Definition 4.5 Evaluation of Interval Inclusion Inheritance
by Multiple Objects: Suppose that we have a video-object
01 = (Oidl,ll,vl). Let O = {021,...,02m} be the set of
all video-objects in the database such that I; C I; for each
09; = (0ida;, Io;,vai). The evaluation of 01 by O — {01} and
a set A of inheritable attributes, denoted by eval(01, 0, A), is
a video-object o} = (oidy. I, v}) such that

OOMOTO AND TANAKA: OVID

* attr(v)) = attr(vi)U(attr(ve)NA)U. . .U(attr(vam)N

* vj.a = vy.a if a is in attr(v;), and

* Foreach a in A, let V, = {vy,.a | a € attr(ve;),a ¢

attr(v1), and 1 < ¢ < m}. For each nonempty set V,,
v1.a = gIb(V,), where glb(V,) denotes the greatest lower
bound of all the elements in V.4

Example 4.2: Let’s consider another example. Suppose that
we have the following video-object:

012 = (O’id){ilg},‘vlz such that

v12 =[Event_Type]: speech on policy,

Location: Diet Building,
Subjects: {national land development, economical
policy}].

We do not consider that the attribute Subjects is an inker-
itable attribute because of the following reason. The attribute
Event_Type denotes the kind of an event which occurred
in the interval i;5, Location denotes the place where the
event occured, and Subjects denotes the contents of a prime
minister’s speech: for example, { national land development,
economical policy }. Assume that another object, namely o,
is defined over the interval i’ which is a subinterval of i;5,
and that o’ does not have any attributes in attr(v;2). The set-
type value { national land development, economical policy }
represents the whole contents of the speech. Since 7’ is a sub-
portion of 713, he might not refer to some of these subjects,
for instance, national land development. Therefore,
it is not suitable, we believe, that the attribute Subjects and its
value of 012 are inherited by o’. On the other hand, it seems
to be reasonable that the Event_Type and Location attributes
and their values of 0,4 should be inherited by o’ since #’ is also
a video scene of the speech in the Diet Building. Therefore,
the attributes Event_Type and Location can be declared as
inheritable attributes.

Intuitively, the inheritable attribute of a video-object o; is
the attribute such that its value is valid at an arbitrary time
point in the interval (set) of o;. We assume the inheritable
attributes shown in Table 1 in our example video database.

4.4. Composition Operations for Video-Objects

In this subsection, we introduce basic operations to compose
new video-objects from existing video-objects.

First, we define the interval projection operation.

Definition 4.6 Interval Projection Operation: let o =
(oid,I,v) and I’ be a given video-object and an interval set,
respectively such that I’ C I holds. Also, let A be a set of
inheritable attributes. The interval projection of o onto I’ is a
video-object o/ = (oid’, I’,v') such that oid’ is a new object
identifier, and the value ' satisfies the following:

* attr(v') = attr(v) N A, and

* v'.a = v.a for each attribute a in attr(v’).

‘Intuitively, Va denotes a set of candidate values of attribute a, one of
which is actually inherited by of. In our definition, the greatest lower bound
among Vj, that is, the most informative value is inherited by o}. In OVID
system described in Section V, the evaluation is done according to this
definition.

635

The interval projection operation is useful when defining a
new video-object for a certain portion of a scene corresponding
to an already existing video-object since the descriptional data
of the existing video-object is automatically inherited and the
amount of description can be decreased.

Next, we will define two important composition operations
called merge and overlap. In order to describe these definitions,
we need the notion of merge and overlap of two interval sets,
which are defined as follows.

Definition 4.7 Merge and Overlap of Interval Sets: For two
interval sets, I; and I, the merge and the overlap of I, and
I, denoted by I LU I, and I; NI, respectively, are defined as:

* I, U I, is the minimal set of intervals such that

1. For each interval i in I;, there exists an interval
1+’ in I} U I, such that ¢/ D 3.5

2. For each interval 7 in I, there exists an interval
i in I U I such that i’ D i.

3. For every interval ¢; and i5 in I; U I such that
i1 # ig, 6y D ip and 43 D 4;.

* I, NI, is the maximal subset of {i; N iy | iy € I; and
ip € I} such that 3} 2 ¢ and 14 2 i} for arbitrary
intervals #) and 45 in [; N L.

Intuitively, the merge operation creates a new video-object

o from existing video-objects oy and o2 such that some
descriptional data common to both of 0, and o, is inherited by
0, and that o’s interval (set) is the union (merge) of the intervals
(interval sets) of 0, and o,. In other term, the merge operation
abstracts two existing video-objects into a new video-object.
The overlap extracts the scene described by both of two
existing video-objects as a new video-object.

Definition 4.8 Merge of Video-Objects: The merge of two
video-objects 03 = (O‘idl,Il,vl) and 0 = (O‘idz,Ig,’Uz),
denoted by 0, U oz, is the video-object 0 = (oid, I; U I5,v)
such that v = [a1 : v1,...,8i : Vi,...,an : v,] where each
a; (1 <7< n)is in attr(vy) Nattr(vy), and for each a;,

¢ If both of 0;.a; and 02.a; are values, then v; = 0;.a; V
02.G4.

* If both of 0;.a; and 02.a; are video-objects then v; =
01.a; U 02.a;.

Example 4.3: In our example database, we have:

og = (0id)s, {is}, [Prime_Minister: Kakuei Tanaka,

Successor: 014,
Private_Life: og))

09 = (0idg, {i9}, [Action: relaxation]),
014 = (O’id14, {i14¢,,‘i14b} [Prime_Minister: Takeo Miki,
Private_Life: 0,5])
015 = (Oidls,, [Action: walk])
Furthermore, assume the following is-a‘relationships:
relaxation i3 — a daily life and

walk s — a daily life.

541 C ig for given two intervals i; and iz denotes that the interval i; is
completely included by or equal to the interval is.

Action: rel

636 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

Prime_Minister: Takeo Miki
NPrivate_Life:

Oy _
laxation

Fig. 3. An example of video objects.

The merge of og and o014 is shown as:

08 Uo14 = (0id’, {is, %144+ 14 }, [Prime_Minister :
Japanese statesman Private_Life og U 0;5))

where o9 Ul 015 = (0id, {ig,%15}, [Action: daily life])(See
Fig. 2).

It should be noted that the merge operation is recursively ap-
plied to Private Life attributes since they have video-objects
as their values. Intuitively, this example’s merge operation
extracts the common information of two video-objects og and
014, and assigns it to a newly created, resulting video-object.
This operation corresponds to an editting of films together
with their descriptional data in movie companies or broadcast
stations.

The final composition operation is overlap, which is intu-
itively to take an intersection of two video-objects. From two
existing video-objects 01 and o2, this operation creates a new
video-object o such that o’s interval (set) is the intersection
(overlap) of intervals (interval sets) of o; and o3, and that o’s
descriptional data is roughly equal to the greatest lower bound
of the descriptional data of 0, and o3.

Definition 4.9 Overlap of Video-Objects: For two video-
objects 0; = (otdy, I1,v1) and 02 = (oidy, I5,vs) such that
1, M I is nonempty, the overlap of o; and o,, denoted by
01 M o2, is a new video-object o = (oid, I M I, v) such that
oid is a new object identifier and v = [a; : v1,...,an : v,
where

* each attribute a; is in attr(vi) U attr(vsy),

e If both of vi.a; and vy.a; are values®, then v.a; =

vy.a; A Vo.Q;.

* If both vy.a; and vp.a; are video-objects, then v; =

v1.0; M va.a,.

Example 4.4: As shown in Fig. 2, suppose that we have:

os = (oids, {i5}, [Event-Type: summit conference,

Thematic_Person: {Richard Nixon}])
o7 = (0idy, {i74,97}, [President: Richard Nixon,
Thematic_Person: {Eisaku Sato}])

The overlap of o5 and oy is:
o5 Moz = (oid’, {i5 Niz.}, [Event_Type:

summit conference,

President: Richard Nixon,

Thematic_Person:

SIf either of v;.a; or vo.a; is not given in vy or vg, then T is automatically
assigned to vy.a; or vy.a;.

Prime Minister: Takeo Miki
\ Private_Life:

Prime Minister: Kakuei Tanaka
Successor:
Private_Life:

Action: refaxation

7 Prime_Minister Japanese statesman
rivate_Life:

Lig } U4

pm— A R RN AT

09LJ 01 5
Action: daily life

Fig. 4. Merging video-objects.

05

Event_Type: summit conference
Thematic_Person: { Rechard Nixon

President: Richard Nixon
\Thematic_Person: { Eisaku Sato }

05107

Event_Type: summit conference
President: Richard Nixon

Thematic_Person: { Rechard Nixon,
Eisaku Sato }

Fig. 5.

Overlaping video objects.

{ Richard Nixon,
Eisaku Sato }])
Note that in this example, the greatest lower bound of
Thematic_Person values of 05 and o7 corresponds to the
set union of Thematic_Person values of o5 and oy.

V. OVID: A VIDEO-OBJECT DATABASE SYSTEM

In this section, we will describe the overall configuration
and the functionalities of our video-object database system

OOMOTO AND TANAKA: OVID

Det. Tool | ideosaL | Copy] Redrew |

Fig. 6. VideoChart.

Mac licx:oomoto Folder:VideoDB

Manipulate Jdisaggragete] Def.Tool | __Copy | Redraw |

Fig. 7. Play operation for a video object.

called OVID, which was developed based on our video object
data model and is currently running.

5.1. Features of OVID

The following is a list of notable features of our OVID
system.

* Video Objects as Central Units The video-objects de-
scribed in Section IV are the central units of the OVID
system. Each video-object intuitively consists of (1) the
oid of the video-object, (2) a set of pairs of starting
video frame number and an ending video frame number
of the video scene, (3) a set of attribute/value pairs
which describe the contents of the corresponding video
frame sequence, and (4) basic methods such as play,
inspect, and disaggregate operations.” Note that
users can define two different video-objects for the same
sequence of video frames since their oid’s can be dif-
ferent. Each video-object is represented as a bar chart in
our OVID user interface called VideoChart. Through the

7In Section IV, we did not refer to methods of video-objects. In the OVID,
the methods are encapsulated into each video-object.

637

_ Mac |Icx:oomoto Folder:lideoDB

It
tor,Eisaku Sato K] [55 29704

Locetion,America
Event_Type,statement declaration] []
| L » |

KA

et 100] gsochar Jneeust | o sece Jcopy woccfor nspec

@)

Mac |licx:oomoto Folder:Prime Minister DB

Event_Tgpe, statement deoloration 29669

B ccion o L aeachar [naessn oo tooneccony oo 8

®)

Fig. 8. (a) Inspection of a video object. (b) The original definition of the

object id: 4423.

VideoChart interface, users can play/inspect/decompose a
video-object, and define/compose new video-objects.
Dynamic and Incremental Object Identification and
Definition Since our video object data model does not
assume the existence of a database schema, users should
be able to identify a meaningful scene at any time and
define the meaningful scene with its descriptional data
as a video-object. So, the system should facilitate users
to add necessary attributes as well as to use attributes
of predefined video-objects.

Currently, the attributes and their values are given to each
objects interactively in manual.

Video Object Composition A meaningful scene does not
always correspond to a single consecutive sequence of
video frames. So, the system should facilitate definition
of a video-object which corresponds to more than one
consecutive sequence of video frames. This operation
corresponds to the merge operation described in Section
IV. In the case of merging two video-objects into another
new video-object, some descriptional data of these two
video-objects may also be able to be used as descriptional
data of the newly merged object. This kind of inheritance

638 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

28690,303 nm
]

Location, America

ac |lck:oomoto Folder:Prime Minister DB iy
CaARD TThs

26839,511 m{ﬂ
(]

26978

Prime_Minister Eisaku Sato
Successor ,video(6762)

- videosat | o to object|copy object]f™ §

(@

Fig. 8 (cont’d.) (c) The definition of the object with id: 2529. (d) The definition
of the object with id:3319.

of descriptional data is achieved in our video object data
model. Furthermore, OVID supports creation of a video-
object by applying the overlap operation to predefined
video-objects. Some descriptional data of the predefined
video obejcts is also inherited by the overlapped video-
object.

* Browsing by Video Object Disaggregation In order
to browse a large® video-object, OVID provides a de-
composition of a video-object into smaller video-objects.
This decomposition corresponds to the interval projection
operation described in Section 4. In OVID, the operation
is called disaggregation, and the result of the disaggre-
gation operation is a collection of smaller video-objects,
each of which inherits some descriptional data from the
original video-object. The disaggregation operation can
be repeatedly applied, and so, this operation is useful to
find a necessary scene contained by a large video-object
in a navigational manner.

* Generalization Hierarchy for Atomic Values OVID
supports the usage of a generalization (is-a) hierarchy,

8Here, the term large means a video-object corresponding to a long
sequence of video frames.

which consists of atomic values that are used as attribute
values of video-objects, in both of the phases of video-
object creation and retrieval of video-objects.

* Video Objects as Attribute Values As described in the
video object model in Section IV, our model allows a
video-object itself to be an attribute value of an other
video-object. This is very useful when it is difficult to
describe a meaningful scene by text.

* Ad hoc Query Facility for Video Objects OVID has
an adhoc query facility, called VideoSQL. It facilitates
retrieval of a collection of video-objects that satisfy a
given condition. The inheritance based on the interval
inclusion relationships is supported, and so, users can
formulate their queries as if the stored video-objects
had already inherited necessary descriptional data from
larger video-objects. Also, VideoSQL supports queries to
retrieve video-objects that contain a specified video-object
as their attribute value.

The OVID system consists of the following components:

* VideoChart: A bar-chart type, visual interface for manip-
ulating video-objects.

* VideoSQL: An adhoc query facility to retrieve video-
objects.

* Video Object Definition Tool: A facility for object def-
inition.

Each of these components will be described in the following
subsections.

5.2. VideoChart

VideoChart has the following facilities:

1) Browsing video-objects in a bar-chart form.

2) Playing video-objects as live video.

3) Inspecting and updating video-objects.

4) Composing (merge and overlap) video-objects.

5) Decomposing (disaggregating) video-objects.

6) Moving to the video object definition

VideoSQL.

5.2.1. Browsing of a Video Database By VideoChart, we
can view the contents of a video database® in a visual form.

The abscissa denotes the sequence of video frame ID’s
(time-axis), and the numerics placed at the top left and right
corners denote the current range of the frame ID#. A collection
of video-objects appearing in the specified range are displayed
in bar-chart form. Each line denotes a single video-object. Fig.
2 denotes that the currently displayed range is from frame# 26
830 to frame#31 140. The frame range can be scrolled with
the arrow button, and its scale can be changed to an arbitrary
range.

The number located in the center of each bar denotes the
object identifier of the video-object. If a video-object consists
of more than one frame sequence (for instance the object id
4671), then those component video sequences are drawn in
the same line.

tool and

°Currently, OVID can handle one video database at a time. The name of
a video database for the current session should be specified at system startup
time.

OOMOTO AND TANAKA: OVID

Mac IicH:0omoto Folder:Prime Minister DB

%

D cetion oo deocher | aens Joo o onjccopy oo 8

©

Fig. 9. (a) Definition of the object with id:6762. (b) Definition of the object
with id:6501. (c) Definition of the merge of two objects.

Users can select an arbitrary video-object among these
objects by clicking with the pointing device. After a video-
object is selected, several operations can be applied by clicking
the buttons below the chart. If a user clicks the Copy button,
then the selected video-object is copied into a buffer in order to
form VideoSQL queries later or to define another video-object.

639

Mac licx:oomoto Folder:lVideoDB

g
aggregate

Copy Intervat

Inspect

Fig. 10. Disaggregation of a video-object.

Mac lick:oomoto Folder:bideoDB

| Reset Al |

N T TR T

[>T % videscnart Bl vefinition Tool

Fig. 11. Video SQL.

As the applicable operations (methods) for video-objects,
VideoChart offers the play, inspect, and disaggre-
gate operations.

Fig. 7 shows the example of the play operation for a certain
video-object. The play operation just replays the selected
video-object on the monitor screen as live video.

The inspect operation first evaluates the specified video-
object based on interval inclusion inheritance, and displays the
attributes and the attribute values (including the inherited ones)
of the video-object. For example, as shown in Fig. 8(a), the
video-object with id:4423 is defined for the range from frame#
29 635 to frame# 30 110. The window entitled Evaluated
Value shows a list of attribute/value pairs. Each line in this
window denotes an attribute name followed by its value. In
this example, the evaluation of this video-object has three at-
tributes, Prime_Minister, Location and Event_Type.
Fig. 8(b) shows the original attribute/value pair which was
defined for this video-object. Originally, this video-object
has one attribute Event_Type and its value statement
declaration. The interval of this video-object is included
by video-objects with id:2529 and id:3319. The contents of
the video-objects with id:2529 and with id:3319 are shown in
Fig. 8(c), and Fig. 8(d), respectively. The object with id:2529

640 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

= Mac |llcxu:oomoto Folder:lideoDB

VideoSQL

“ S

video(2300)

0
oid 5868
oid 6033
oid 6762

FROM
~ WHE RE Bz s ___[Kakuei
Minister Tanaka

M 35237

L) T % [l viecocner

Fig. 12. The selection of one of the retrievals.

= Mac llck:oomoto Folder:VideoDB Sl

[31140]

: 26839 |
26839,31140
Kakuei Tanaka

&

E

A
6oto 0B stack [Define abject] videosa. | videochart I 15-AToal

Fig. 13. Video object definition tool.

has the attribute Locat ion, which is defined as inheritable'®.
The object with id: 3319 has the attributes Prime Minister
and Successor, where Successor is noninheritable, and
Prime_Minister is inkeritable. So, the attribute/value pairs
of Location and Prime Minister are inherited to the
video-object with id:4423. This example is the actual example
of interval inclusion inheritance referred to in Section IV.

5.2.2. Merge and Overlap Operations in VideoChart: After
a user selects two arbitrary video-objects, the user can apply
the operations merge and overlap to those video-objects.
Suppose that a user select the two video-objects with id:6501
and id:6762, and apply the merge operation to them. Then,
as the result of merging these two video-objects, a new video-
object, in this case, with id:7757, is created. This example
corresponds to Example 4.3 in Section IV.

The video-objects with id:6762 (concerned with Mr. Kakuei
Tanaka) and with id:6501 (concerned with Mr. Takeo Miki)
are shown in Fig. 9(a) and Fig. 9(b), respectively. The former
video-object(id:6762) has three attributes Prime_Minister,
Successor and Private_Life. Its Successor value is

10A collection of inheritable attributes are declared by our object definition
tool, which will be described later.

another video-object(id:6501), and it is denoted by a string ex-
pression: video(6501). Also, its Private_Life value is
the video-object with id:5042. The latter video-object (id:6501)
has attributes Prime_Minister and Private_Life. Its
Private_Life value is also the video-object with id:6240.
The resulting video-object (with id:7757) of merging the ob-
jects with id:6762 and with id:6501 is shown in Fig. 9(c). Note
that the Prime Minister value of this video-object be-
comes Japanese statesman based on the generalization
hierarchy shown in Section 4 since the Prime_Minister
values of the original video-objects are Kakuei Tanaka
and Takeo Miki. Since the {merge} operation is applied to
attribute values recursively, the objects with id:5042 and with
id:6240 are also merged and a new video-object, in this case,
with id: 7653, is automatically created. Intuitively speaking, the
video-object with id:7757 is a video scene concerned with two
Japanese prime ministers, and the video-object with id:7653
is the private life of these two Japanese prime ministers.

Users can also apply the overlap operation to objects in a
similar manner.

5.2.3. Disaggregation of a Video-Object: In OVID, an ar-
bitrary video-object is automatically divided into ten sub-
video-objects when the operation disaggregate is applied
to it. Fig. 10 shows that Video Disaggregation System as
just launched. In this example, a video-object defined over
the frame interval from frame#:28 690 to frame#:30 343 is
disaggregated into ten sub-video-objects. The system displays
the ten sub-video-object icons, each of which denotes a
resultant of interval projection of the original video-object
onto ten overlapping intervals. (Here, the frame interval of
the original video-object) is simply (mechanically) divided.)
Since these sub-video-objects can be treated as ordinary video-
objects, user can apply several operations to them further.
When a user selects an arbitrary icon and applies the play
method to it with the menu selection, the corresponding
live video is replayed on the region of the icon. If the
disaggregate operation is applied to the sub-video-object
further, it is divided into the smaller sub-sub-objects on the
lower part of the screen. Further operations can be applied to
these sub-sub-video-objects in a similar manner.

These sub-video-objects are treated as ordinary video-
objects. That is, these sub-video-objects have no at-
tribute/value pairs, but they are evaluated based on the interval
inclusion inheritance.

VideoChart can also select and manipulate an arbitrary
portion of the video frame sequence as an video-object. In
such cases, the specified portion is considered to have no
attribute/value pairs. Users can manipulate it as if it were
an ordinary video-object. Therefore, the play, inspect
and disaggregate operations can be applied to it. If
disaggregate is applied, then the disaggregation system
divides it into sub-video sequence in a similar manner.

We consider that the proposed disaggregation facility is
suitable for the following case: Suppose that we are going to
define a new video-object over some portion of a large video
sequence or to take out some appropriate video sequence for
another purpose, for example, editing multimedia documents
or desktop presentations. It may be complicated to search the

OOMOTO AND TANAKA: OVID

whole sequence of the source video in order to pick up a
desirable scene, especially, in the case when the source is
very large, such as a two-hour movie. Even if users have an
opportunity to see all the contents of the source video, it is
not easy to remember the exact position of the target scene
by means of the frame ID or the absolute time. It is usual
only to remember the approximate order of several scenes.
Disaggregation enables us to browse the whole video sequence
from the abstract level view, and approach to the detail scene
gradually and, finally, to select the desirable sequence by this
disaggregation facility.

5.3. VideoSQL

VideoSQL is a query language of OVID for retrieving
video-objects. Fig. 11 shows an example query formulated
by VideoSQL. Users can formulate VideoSQL queries in the
fill-in-the-blank manner. The result of a VideoSQL query
is a collection of video-objects that satisfy the specified
condition. Before evaluating queries, the target video-objects
are first evaluated based on the mechanism of the interval
inclusion inheritance. Then, for each evaluated video-object,
the specified condition of the query is examined. A VideoSQL
query consists of the following clauses:

* SELECT clause: This clause is quite diffrent from ordi-
nary SQL. It specifies only the category of the resulting
video-objects, that is, Continuous, Incontinuous,
or anyObject.

- Continuous denotes that only the video-objects,
consisting of a single continuous video frame
sequence, are retrieved.

- Incontinuous denotes that video-objects, con-
sisting of more than one continuous video frame
sequence, are retrieved.

- anyObject denotes that the system retrieves all
types of video objects independently from whether
they are continuous or not.

For instance, assume that a video-object o; consists of
more than one video frame sequence, {i1,12,43}, and
o0z consists of {i4}. If Continuous is specified in the
SELECT clause, then 02 may be retrieved, but o; is not
contained in the retrieval result. On the other hand, o, is
not retrieved if Incontinuous is specified.

* FROM clause: This clause is used to specify the name
of the video database.

* WHERE clause: This clause is used to specify the con-
dition, consisiting of attribute/value pairs and comparison
operators. The video frame# also can be used in the
qualification condition. The user can select the necessary
attribute names by means of a pop-up menu. Currently,
the user can specify the following condition:

1. [attribute] is [value | video ob-
ject)
This condition denotes to return video-objects
which have the specified attribute value or video-
object. For instance, Fig. 11 is an example for
retrieving video-objects, each of which has a

certain video-object as the value of the Suc-
cessor attribute. Users can paste the video-
object into the WHERE clause,!! which was already
copied by the VideoChart Copy command. The
pasted object is expressed in the string expression
video(object id). The atomic values used
in OVID form a generalization hierarchy as a
rooted tree (see Fig. 2). A user can specify an
arbitrary node in the WHERE clause of his query.
By means of this facility, we can formulate an
query at a more abstract level. For instance, the
following is the usage example of an abstract
value. The is-a relationships, “walk is-a daily life”
and “relaxation is-a daily life,” are predefined.
The query,
Action is daily life

retrieves the video-objects such that the attribute
value of Action in the evaluation is any of
walk, relaxation or daily life.
2. [attribute]) contains [value |
video object]
This condition is concerned with set-type at-
tributes. It denotes to return video-objects which
contain the specified value or the specified video-
object in the set value of the specified attribute.
3. definedOover [video sequence |
video frame]
This condition denotes to return video-objects
that are defined over the specified video frame
sequence or frame. For example,
definedOver frame(15000)

denotes to retrieve the video-objects which in-
cludes the video frame with frame#:15 000 in their
defined video sequence.

VideoSQL can formulate more than one query and save
their retrieval results at the same time. The retrieved video-
objects are able not only to be replayed, but also to become
operands of the Merge operation. The display for each query
is switched when a SQL~X button is clicked, where X denotes
a query number. The oid’s of retrieved video-objects for each
query is listed under the corresponding SQL-X button, and
users can select the desired video-object from the list (see
Fig. 12) . The selected video-object for each query is entered
into the Retrieval field. Clicking the arrow button on the
lower left comner, the highlighted video-object is replayed in
the window.

VideoSQL offers the facility to Merge the retrieved video-
objects for multiple queries. After executing several queries
and selecting one video-object from the answer list for each
query, they can be merged into a new video-object by means
of clicking the Merge button.

5.4. Video Object Definition Tool

The video object definition tool, shown in Fig. 13, is to
define or to update video-objects. There are several functions

In order to make sure of the scene, the pasted object can be replayed in
the query field by clicking the “Replay” button.

642 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 4, AUGUST 1993

to control the video disc device and the facilities to search an
arbitrary video frame with the frame ID in the left part. In
the right part of the definition tool, the facilities for video
object definition are arranged, and the object definition is
accomplished by filling in the blanks with attribute values
by a pointing device. Attribute names are selected by a pull-
down menu. Atomic values can be specified by selecting an
appropriate value from the scroll window of the General-
ization Browser in the lower right part. Fig. 13 denotes
that “Richard Nixon is-a American statesman” and “James
Carter is-a American statesman” and the current selected node
in the hierarchy is “American Statesman.”

To maintain the dictionary of the generalization hierarchy,
a visual tool is provided. With this tool, users can browse
and navigate in the generalization hierarchy and add arbitrary
nodes. The maintenance of attribute names is also supported by
this tool. The inheritability of attributes is globally effective
over the whole database.

5.5. Implementation

Our current OVID system was implemented on Macintosh
with HyperCard[3]. We choose the platform of prototyping for
the OVID because of the following reason: HyperCard provide
the rich facilities to construct the interactive and graphical
user interface, and decrease the amount of the effort for
implementation of the user interface. It also have the capability
to build simple databases in its native facilities.

Each video-object is represented by a “card” of HyperCard,
and a database, which is the set of video-objects, is represented
by a set of cards, namely, a “stack.” Currently, a single
database can be specified in each session. The card id of
each card is used as the object identifier because it is unique
in one stack. The process procedures to derive the attribute
value on the merge and overlap operations are provided in
the system as the program codes of HyperTalk which is the
programming language for HyperCard. The video images are
stored on a video disc, which is controlled through an RS232C
serial interface. A video image are input into the video overlay
board, and displayed on the monitor screen. Therefore, the
video images are physically stored in a separate place from
the place storing video-objects.

VI. CONCLUDING REMARKS

In this paper, we introduced a video object data model for
video data, and define several operations for video-objects.
The major characteristics of our video object data model are
the following:

1) The notion of video-object is introduced to provide
a descriptional data for an arbitrary portion of time-
sequential data, especially of video data.

2) Interval inclusion inheritance, which enables us to
share information among video-objects in the database
in order to decrease the effort of providing descriptional
data for video information.

3) A collection of operations interval projection, merge,
overlap are introduced in order to compose video-objects
from predefined video-objects, which are, we believe,

important to edit video data. It should be noted that these
composition operations contain the abstraction operation
based on generalization hierarchy or the above interval
inclusion inheritance operation.

Also, we described our prototype video database system,
named OVID, based on our video object model. It was
developed on Macintosh with HyperCard. Major features of
our prototype system are the following.

* VideoChart: a visual interface to browse a video data-
base and to inspect/manipulate video-objects. Each video-
object is represented as (a sequence of) a bar, and the
following operations are prepared to manipulate video-
objects: play, inspect, disaggregate, merge, and overlap
video-objects.

* VideoSQL: a query language to retrieve video-objects,
which facilitates a video-object to be specified in the
qualification clause.

The following problems need further research.

* Formalization and Generalization of Model: Expres-

sive power and several mathematical properties of our
model should be further inverstigated.
Furthermore, our video object data model can be gener-
alized into the one which treats not only video, but also
general spatial or temporal objects. Indeed, the notion
of inheritance based on inclusion relationships can be
applied not only to one dimensional data such as video
frame sequences, but also to two dimensional data such
as maps or three dimensional data such as solid modeller
objects. That is, in general, the descriptional information
for some “region” object may be inherited by “sub-
region” objects. Suppose that there is an area object in
a geographical database, it has an attribute and its value,
zip_code:65 121, and there exists a town object
inside of the area. Then, generally, the town object should
have the same zip code as the area’s. We consider that
the inheritance based on inclusion relationships is useful
to share the zip_code attribute and its value between
the area and the town object.

 Efficient implementation of inclusion-based inheri-
tance: Our current OVID system was implemented
throughly by using HyperCard, which is not suitable for
managing a lot of objects efficiently. Also, our inclusion-
based inheritance needs a faster implementation. For
example, some physical storage structure to support the
inclusion-based inheritance needs to be developed.

¢ Automatic Support Facility for Object Description: In
current OVID, all attributes and attribute values are man-
ually given to each video-object. Several researches[13]
have challenged for characterizing and indexing video
data automatically. Since the methods developed by such
researches are not incompatible with our OVID system,
the descriptive power for video-objects will be enriched
by introducing those contributions.

« Extension to a Hypermedia Database System: Our
video object model should be extended to more general
data modeling framework for sound, still images, text, etc.
The inheritance based on inclusion relationship will be

OOMOTO AND TANAKA: OVID

useful in such applications. As the future step, we intend
to extend the OVID to a hypermedia system including a
hypertext system and a geographical database system. We
are also planning to apply our system to more practical
applications.

ACKNOWLEDGMENT

We would like to thank anonymous referees for many
valuable comments and suggestions.

(1]
[2]
31

[4]

8]

[6]

7

L]
1

[20]
(1]

[12]

[13]

REFERENCES

M. Adiba and N. B. Quang, “Historical multi-media databases,” inProc.
12th Int. Conf. on Very Large Data Bases Aug. pp. 63-70, 1986.

J. F. Allen, “Maintaining knowledge about temporal intervals,” Com-
mun. ACM, vol. 26, pp. 832-843, Nov. 1983.

Apple Computer Inc., “HyperCard Script Language Guide: The Hyper-
Talk Language,” Addison-Wesley Publishing Company, Inc., Cupertino,
1988.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S.
Zdonic, “The object-oriented database system manifesto,” in Proc. First
Int. Conf. Deductive and Object-Oriented Databases, pp. 40-57, Dec.
1989.

F. Bancilohon and S. Khoshafian, “A calculus for complex objects,” in
Proc. ACM PODS, pp. 53-59, Mar. 1986.

S. Christodoulakis, F. Ho, and M. Theodoridou, “The multimedia object
presentation manager of MINOS: A systematic approach,” in Proc. ACM
SIGMOD Int. Conf., pp. 295-310, May 1986 .

M. E. Hodges, R. M. Sasnettand, and M. S. Ackerman, “A construction
set for multimedia applications,” JEEE Software, vol. 6, pp. 37-43, Jan.
1989.

M. E. Hodges and R. M. Sasnett, “Plastic editors for multimedia
documents,” in Proc. USENIX Summer *91 pp. 463471, June 1991.
T. D. C. Little and A. Ghafoor, “Multimedia object models for syn-
chronization and databases,” in Proc. Sixth Int. Conf. Data Engineering,
Feb. 1990, pp. 20-27.

W. E. Mackay, “EVA: An experimental video annotator for symbolic
analysis of video data,” SIGCHI Bulletin, vol. 21, pp. 68-71, Oct. 1989.
W. E. Mackay and G. Davenport “Virtual video editing in interactive
multimedia applications,” Commun. ACM, vol. 32, pp. 802-810, July
1989.

D. R. Morrison, “PATRICIA—Practical algorithm to retrieve infor-
mation coded in alphanumeric,” J. ACM, vol. 15, pp. 514-534, Oct.
1968.

A. Nagasaka and Y. Tanaka, “Automatic video indexing and full-video
search for object appearances,” Visual Database Systems, II, E. Knuth
and L.M. Wegner, Eds. Amsterdam: North-Holland, 1992, pp. 113-127.

(14]

[15)
(16]

[17]
{18]

[19]

[20]

643

A. P. Parkes, “CLORIS: A prototype video-based intelligent computer-
assisted instruction system,” in Proc. RI.A.O. '88 Conf.,, pp. 24-50,
Oct. 1987.

J. Smith and D. C. P Smith, “Database abstractions: Aggregation and
generalization,” ACM Trans.Database Syst., vol. 2, pp. 105-133, 1977.
K. E. Smith and S. B. Zdonic, “Intermedia: A case study of difference
between relational and object-oriented database systems,” in Proc.
OOFSLA ’87, pp. 452465, Oct. 1987.

NHK Service Center, Showashi 9 Saisho Retsuden, PIONEER LDC
Corp., Japan, 1987.

K. Tanaka and M. Yoshikawa, “Toward abstracting complex database
objects: Generalization, reduction and unification of set-type objects
(Extended Abstract),” in Proc. 2nd Int. Conf. Database Theory, Aug.
1988, Lecture Notes in Computer Science 326, Springer-Verlag, pp.
252-266.

D. Woelk, W. Kim, and W. Luther, “An object-oriented approach to
multimedia databases,” in Proc. ACM SIGMOD ’86, pp. 311-325, May
1986.

D. Woelk and W. Kim, “Multimedia information management in an
object-oriented database system,” in Proc. 13th Int. Conf. Very Large
Data Bases, Sept. 1987, pp. 319-329.

Eitetsu Oomoto reccived the B.E. degree in 1988
and the M.E. degree in 1990 in instrumentation
engineering from Kobe University, Japan.

In 1993, he joined the Department of Information
and Communication Sciences, Faculty of Engineer-
ing, Kyoto Sangyo University, where he is now
a lecturer. His i include database systems,
multimedia systems, user interfaces, and artificial
intelligence.

Mr. Oomoto is a member of the Information
Processing Society of Japan.

Katsumi Tanaka received the B.S., M.S., and Ph.D
degrees in information science from Kyoto Univer-
sity, in 1974, 1976, and 1981 respectively.

In 1986, he joined the Department of Instrumen-
tation Engineering at Kobe University, where he is
now an Associate Professor. His interests include
object-oriented databases, historical database mod-
els, and hypermedia systems.

Dr. Tanaka is a member of the ACMand the
Information Processing Society of Japan.

