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s digital video becomes ubiquitous
and more video sources become
available, applications will need to
deal with digital video as a new data
model. However, since video has both temporal
and spatial dimensions, it places different require-
ments on applications than existing data types
such as text. Moreover, the volume and unstruc-
tured format of digital video data make it difficult
to manage, access, and compose video segments
in video documents. When creating new video
presentations, it is essential to reuse existing video
segments and presentations because the sheer
volume of the data makes copying prohibitive.
Providing a new digital video data model with
content-based access will alleviate these problems
and motivate broader use of video resources.
Many existing digital video abstractions rely on
the traditional view of video as a linear, temporal
medium. They do not take full advantage of either
the logical structure of video or of hierarchical
relationships between video segments. Moreover,
they do not support flexible, associative access
based on the structure and hierarchy. For these
reasons, we developed the idea of algebraic video
to let users create video presentations that
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I model nested video structures such as shot,
scene, and sequence,

I express temporal compositions of video seg-
ments,

1 define output characteristics of video segments,
and

1 specify multistream viewing.

Algebraic video also integrates content-based
access to video, allowing the user to

B associate content information with logical
video segments,

1 provide multiple coexisting views and annota-
tions of the same data, and

I provide associative access based on the con-
tent, structure, and temporal information.

A new data model for algebraic video must inte-
grate both content attributes and semantic struc-
ture of the video. It may need to describe the
people in a scene, the associated verbal communi-
cation for each video segment, and the relation-
ships between segments. Automatic content
extraction, such as image and speech recognition,
should be used when possible. Because these
methods are not yet generally feasible, algebraic
video can employ other forms of information
extraction. Text captions or image features such as
color, texture, and shape may be associated with
the video footage. The user can also associate per-
sonalized descriptions with any component of the
video presentation. Finally, the data model allows
users to express temporal and structural relation-
ships between video segments and indexes these
semantic structure attributes, along with content
information, for content-based access.

The algebraic video abstraction provides an
efficient means of organizing and manipulating
video data by assigning logical representations to
the underlying video streams and their contents.
The model also defines operations for flexible,
associative access to the video information.
Algebraic video preserves the correspondence
between video segments so that all relevant seg-
ments and their neighbors can be found efficient-
ly. The output characteristics of video expressions
are media-independent, so the rendering can
adjust to the available resources.



Users can search algebraic video collections for
relevant presentations with queries that describe
the desired attributes of video expressions. The
invocation of a query results in a set of video
expressions that can be played back, reused, or
manipulated. In addition to content-based access,
the model allows users to browse and explore the
structure of the video expressions, which helps
them understand the surrounding organization
and context. For example, the user can find an
interesting expression and then examine the
neighboring video segments. Furthermore, users
can create individual interpretations of existing
video footage by composing new video expres-
sions from the existing video components.

Video projects

The algebraic video data model offers the fol-
lowing important advances over previous digital
video representations such as MHEG and HyTime
(see sidebar):

1 It provides the fundamental functions required
to deal with digital video: composition, reuse,
organization, searching, and browsing.

1 It models the complex, nested logical structure
of video using video algebra. Video algebra is a
useful metaphor for expressing temporal inter-
dependencies between video segments, as well
as associating descriptions and output charac-
teristics with video segments.

I It allows associative access based on the video’s
content, logical structure, and temporal com-
position.

We implemented our model as part of the
Algebraic Video System project. The system allows
users to compose algebraic video presentations. It
extracts video attribute information and offers a
query-based interface for searching, browsing, and
playing back relevant video segments (see Figure 1,
next page). The algebraic video browser uses the
logical representation of the video data to provide
viewing methods based on the ascribed temporal
characteristics of the video.

Projects related to ours include video authoring
and annotation tools, systems that provide con-
tent-based access to video, and tools for modeling
unstructured video for content-based retrieval.

Authoring and annotation systems
Various tools provide facilities for composing

Hypermedia standards

When constructing our system, we examined two standards: MHEG and
HyTime. The MHEG standard is intended for “coded representation of final
form multimedia and hypermedia objects that will be interchanged across
service and applications.”" At the core of the standard are MHEG objects
(represented in Figure A) that play a federated role between interacting appli-
cations. MHEG defines the formats used at the interchange point between

"applications that want to exchange multimedia data. The objects are syn-
chronized and composed to form complex presentations using four mecha-
nisms: script, conditional activation, spatiotemporal, and close system
synchronization.

The HyTime? hypermedia standard provides a mechanism for specifying
hyperlinks and scheduling multimedia information in time and space. Based
on the Standard Generalized Markup Language (SGML), HyTime uses archi-
tectural forms to express rules for hypermedia structuring information. These
architectural forms and attributes of information objects are grouped into
six modules: base, measurement, location address, hyperlinks, scheduling,
and rendition. The scheduling module allows events, defined as occurrences
of information objects, to be scheduled in finite coordinate spaces (FCS). The
user expresses spatial and temporal positions of objects in FCS using coor-
dinate axes or relationships. The rendition module maps the FCS represen-
tation to its real-world counterpart to play back the multimedia information.

As stated in their descriptions, both MHEG and HyTime are intended for
final formatted documents and lack mechanisms for content-based access

. or editing and annotating the multimedia data.
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MH-Object Figure A. The MHEG
object inheritance
tree.
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Figure 1. The Algebraic
Video Query Interface
lets users search,
browse, and play back
video segments based on
various attributes.

Figure 2. Simple
stratification assigns
descriptions to video
footage, allowing easy
retrieval by keyword.
However, the strata lack
context, since
relationships are not
preserved.
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and annotating complex video presentations.
Smith and Davenport' implemented a video
annotation system that uses the concept of strati-
fication to assign descriptions to video footage,
where each stratum refers to a sequence of video
frames. The strata may overlap or totally encom-
pass each other. Figure 2 shows an example of
video footage annotated by strata. Strata are stored
in files accessible by a simple keyword search. A
user can find a sequence of interest, but cannot
easily determine the context in which it appears
because of the absence of relationships between
the strata. Unlike simple stratification, the alge-
braic video model preserves the nested relation-
ships between strata and allows users to explore
the context in which a stratum appears.

Commercially available tools such as Adobe
Premiere, Diva VideoShop, and MacroMind
Director allow the user to create movies using
audio and video tracks, and also to specify special
effects during video segment transitions. These
commercial systems are based on two distinct para-
digms: scripts and timelines. The script (or flow-
chart) approach requires the author to explicitly
program timing and placement information. In the
timeline approach, video and audio objects are
placed on a line representing time flow. Video
objects are normally a sequence of frames that may
have an associated audio stream. Prerecorded audio
streams can also be placed independently in the
timeline. Normally, a direct-manipulation graphi-
cal editor similar to the one illustrated in Figure 3
(artificially created for the purposes of this discus-
sion) presents the author with video and audio
tracks, plus a special effects track for combining the
two video tracks. Synchronization between any
two objects is achieved by carefully placing the
video and audio objects on tracks marked by time
indices that reflect the time elapsed since the begin-
ning of the video presentation.

Such toolkits allow the user to edit video data
in essentially the same manner as filmmakers edit
movies: They arrange shots on a temporal linear
axis by cutting, pasting, and making transitions.
The computer merely simplifies the previously
mundane task of searching for a sequence of
frames from a video source such as a videotape,
then copying the frames onto the video target.
Any presentation created on a timeline can be eas-
ily mapped into an algebraic video presentation.
However, some algebraic video presentations,
such as ones that include choices, cannot be mod-
eled using a simple timeline metaphor.

Multimedia authoring systems such as
CMIFed? have rich structuring primitives for
multimedia documents, but fail to address the
structure of the video data itself. The video is still
treated as an unstructured linear stream.
Hamakawa and Rekimoto? propose a multimedia
authoring system that supports editing and reuse
of multimedia data. Their system, based on a hier-
archical and compositional model of multimedia
objects, allows the user to mark objects with a title
at a certain point in time. However, it does not
support a fully functional free-form annotation
mechanism that enables subsequent content-
based access.

Media Streams is an iconic visual language that
enables users to create multilayered, iconic anno-
tations of video content.? Icons denoting objects



Construction Window

and actions are organized into cas- T
cading hierarchies of increasing lev-
els of specificity. Additionally, icons
are organized across multiple axes of
descriptions such as objects, charac-
ters, relative positions, time, or tran-
sitions. The icons are used to
annotate video streams represented
in a timeline. Currently, around
2,200 iconic primitives can be
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browsed. However, this user-friendly

visual approach to annotation is lim-
ited by a fixed vocabulary. Also, it

does not exploit textual data such as

closed-captioned text.
Digital video is unique because it

is not restricted by the linearity of traditional
media. It possesses a dynamic element, where the
video display may be determined during runtime
and not follow a strictly linear progression deter-
mined a priori. Commercial toolkits do not take
advantage of this distinctive feature. Moreover,
they lack methods for specifying the elaborate log-
ical structure of video data and do not address
content-based access. Our approach allows struc-
tured, multistream composition using video alge-
bra operations and content-based access.

Content-based access systems

Content-based access systems provide facilities
to discover video segments of interest. Little et al.®
implemented a system that supports content-
based retrieval of video footage. They define a spe-
cific data scheme composed of Movie, Scene, and
Actor relations with a fixed set of attributes. The
system requires manual feature extraction, then
fits these features into the data scheme. It permits
queries on the attributes of movie, scene, and
actor. Having selected a movie or a scene, a user
can scan from scene to scene. The data model and
the virtual video browser are limited because
descriptions cannot be assigned to overlapping or
nested video sequences as in the stratification
model. Moreover, the system is focused on retriev-
ing previously stored information and is not suit-
able for users who need to create, edit, and
annotate a customized view of the video footage.

Electronic Scrapbook is a system for home-
video video annotation and editing,® where the
annotations can later be used for content-based
access. Users can attach descriptions to video clips
and use a modified form of case-based reasoning
to edit and create personalized video stories. They
can query a database of video clips and filter, sort,

or remove overlapping segments from the results.
The system uses a small, special-purpose taxono-
my usable in descriptions, but does not exploit
the logical structure of video. For example, users
cannot describe hierarchical relationships where
video segments are nested.

Gibbs et al.” proposed an object-oriented
approach to video databases. An audio-video data-
base can be viewed as a collection of values (audio
and video data) and activities (interconnectable
components used to process values). Two abstrac-
tion mechanisms, temporal composition and flow
composition, allow aggregation of values and
activities. Because the database values (audio or
video) are linear sequences of data elements, the
logical structure is not represented. Also, the tem-
poral composition mechanism is essentially
equivalent to the timeline paradigm.

Unstructured video extraction systems

Video captured into digital format from an ana-
log source initially exists as an unstructured
sequence of video frames and audio segments.
Several proposed systems extract information from
these unstructured streams and provide a data
model for content-based access. Swanberg et al.*
defined such an architecture for parsing data
semantics from the video stream. The system man-
ages a fixed data scheme for representing informa-
tion about the video stream, where a shot is defined
as a sequence of frames without a scene change,
and an episode is a related sequence of shots. The
system provides tools and models to aid in the
analysis of a video stream, including support for
identification of shots and episodes. A knowledge
module maintains information about the segmen-
tation of the video footage and the objects and fea-
tures in the video, facilitating query optimization.

Figure 3. A timeline
editor such as this
artificially created

example often provides

tracks for drag-and-
drop arrangement of

video and audio clips,

plus transitions with
special effects.
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Figure 4. Algebraic video
abstraction provides an

efficient way to organize
and manipulate video.
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The rather inflexible data scheme used for this sys-
tem is not suitable for free-form modeling of the
complex relations between video segments.

Nagasaka® implemented a system that auto-
matically indexes video by detecting cuts and
associating a small icon of a representative frame
with each subpart. The list of icons acts as an
index of the video. Additionally, the system sup-
ports full-video searches for frames in which a
specified object appears. Queries are accomplished
using an image of the reference objects.

Algebraic video model

The algebraic video data model consists of hier-
archical compositions of video expressions with
high-level semantic descriptions. The video expres-
sions are constructed using video algebra opera-
tions. We introduce video algebra as a means of
combining and expressing temporal relations,
defining the output characteristics of video expres-
sions, and associating descriptive information with
these expressions.

In general, video is composed of different story
units such as shots, scenes, and sequences
arranged according to some logical structure.
Frames recorded sequentially form a shot, one or
several related shots are combined in a scene, and
a series of related scenes forms a sequence. The log-
ical structure is defined by a screenplay that orga-
nizes story units and provides detailed descriptions
of scenes and sequences. Video also contains com-
plex content information that can be extracted
and associated with the video story units, such as
closed-captioned text and key frames that charac-
terize a shot. Also, descriptive information from
screenplays can be added to video descriptions.
The design goal of algebraic video is to provide a
high-level abstraction that models complex infor-
mation associated with digital video data and sup-
ports content-based access.

Interaction with algebraic video is accom-
plished through four activities: Edit and Compose,
Play and Browse, Navigate, and Query. The oper-
ations that support playback, navigation, and
content-based queries are grouped together as the
interface operations.

In the algebraic video data model, the funda-
mental entity is a presentation, a multiwindow spa-
tial, temporal, and content combination of video
segments. Presentations are described by video
expressions. The most primitive video expression
creates a single-window presentation from a raw
video segment. These segments are specified using
the name of the raw video and a range within it
(see Figure 4). Compound video expressions are
constructed from simpler ones using video alge-
bra operations. Video expressions can be named
by variables, can be composed to reflect the com-
plex logical structure of the presentations, and can
share the same video data. A video expression
may contain composition information, descrip-
tive information about the contents, and output
characteristics that describe the playback behav-
ior of the presentation.

An algebraic video node provides a means of
abstraction by which video expressions can be
named, stored, and manipulated as units. It con-
tains a single video expression that may refer to
children nodes or raw video segments.

We call our approach algebraic video because the
operators used to construct video expressions have
associated axioms. For example, many of our bina-
ry operations such as Union are associative. These
axioms provide an algebraic video implementation
flexibility on expression evaluation order and com-
mon subexpression processing.

Video algebra
The video algebra operations fall into four
categories:



Table 1. Video algebra operations.

Usage Function
Creation
Create create name begin end Creates a presentation from the range within the identified raw video segment
Delay delay time Creates a presentation with empty footage for duration time
Composition )
Concatenation £, o F, Defines the presentation where E, follows £,
Union EUE Defines the presentation where £, follows £, and common footage is not repeated
Intersection EnNE Defines the presentation where only common footage of £, and £, is played B
Difference E-E Defines the presentation where only footage of £, that is not in £, is played
Parallel EILE, Defines the presentation where £, and £, are played concurrently and start
simultaneously
Parallel-end EuE, Defines the presentation where £, and £, are played concurrently and terminate
simultaneously
Conditional (test)?E ... E Defines the presentation where £ is played if test evaluates to i
Loop loop E, time Defines a repetition of video expression £, for a duration of time (can be forever)
Stretch stretch £ factor Sets the duration of the presentation equal to factor times duration of £, by changing
the playback speed of the video expression
Limit limit & time Sets the duration of the presentation equal to the minimum of time and the duration
of £, but the playback speed is not changed
Transition transition £, E, type time Defines type transition effect between expressions £, and E,; time defines the duration of
the transition effect
Contains contains £, query Defines the presentation that contains component expressions of £, that match query
Output
Window window E, (x,, y3) = (X, y;) priority Specifies that £, will be displayed with priority in the window defined by the bottom-left
corner (x,, y1) and the right-top corner (x,, y,) such that x e [0, 1]and y, € [0, 1]
Audio audio E, channel force priority Specifies that the audio of £, will be output to channel with priority; if force is true,
command overrides audio specifications of the component expressions
Description
Description description £ content Specifies that £, is described by content

Hide-content

hide-content g

Defines a presentation that hides the content of £,

1. Creation defines the construction of video
expressions from raw video.

2. Composition defines temporal relationships
between component video expressions.

3. Output defines spatial layout and audio output
for component video expressions.

4. Description associates content attributes with a
video expression.

Table 1 presents the video algebra operations. The
arguments denoted by E,, E,, ..., E, are video
expressions. The result of a video expression is a
presentation. A video expression defines the tem-
poral and spatial composition of its presentation
arguments using the operators defined in the
table. For the examples given here, expressions of

the form (E, ® E, ® E, ® ... E,), where @ is any spe-
cific binary operation, denote an expression of the
form (... ((E, ® E,) ® E;) ® ... E,). Also note that
the binary video algebra operations are inherent-
ly not commutative because they include a tem-
poral component.

Compeosition. The composition operations
can be combined to produce complex scheduling
definitions and constraints. The Union operation
allows the user to easily construct a nonrepetitive
video stream from overlapping segments while
preserving the temporal ordering of the compo-
nent expressions. If these expressions do not con-
tain overlapping segments, then Union is
equivalent to Concatenation. The following
pseudocode is an example of an algebraic video
node that uses the Union operation to compose a
video expression:

s661 bunds



Figure 5. This example
of the Union operation
creates a nonredundant
video stream from three
overlapping segments.
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Anchor speaking
Professor Smith
I Economic reform

C, = create Cnn.HeadlineNews.rv 10 30
G, = create Cnn.HeadlineNews.rv 20 40
G = create Cnn.HeadlineNews.rv 32 65

D, =(description C; “Anchor speaking”)
D, =(description G, “Professor Smith”)
D, =(description G “Economic reform”)

(Dyv DL D)

In this example, one raw video file is annotated
by three overlapping nodes. The union of the
three overlapping nodes yields one video stream
with no redundancy in the playback, as Figure 5
shows.

The Intersection operation enables the user to
construct from two arguments a new video pre-
sentation that includes only footage contained in
both. The Parallel operation allows the user to
compose multiwindow, concurrent video presen-
tations. The Stretch operation changes the play-
back speed of the video presentation, but does not
alter the playback speed of other presentations.

The Conditional operation can be used for per-
sonalized viewing or other viewings that external
sources can affect. The test expression in the con-
ditional operation must evaluate to an integer.
However, it is easy to map noninteger test expres-
sions, such as a user’s environment variable, time
of day, weather patterns, and input, to valid inte-
gers. The Conditional operation can be used in the
domain of interactive movies, where a user creates
her own story by choosing to explore different
possible plot threads, by logically structuring the
video and allowing the user to choose segments
based on interaction or prior specification.

The Transition operation combines two video

expressions using a transition effect of duration
time. The transition fype is one of a set of transi-
tion effects, such as dissolve, fade, and wipe. Note
that Concatenation is a simple transition with
time set to 0.

The Contains operation permits the user to
include the results of a query in a video expression
argument. The operation combines the subex-
pressions that match the query into one video
expression, while preserving the hierarchical rela-
tions of the video expression argument. The syn-
tax and semantics of the query argument in a
Contains operation are explained in “Content-
based access,” below.

We are investigating other algebraic video
composition operations, including those that will
achieve overlay of video streams, synchronization
on events, a general synchronization operator
(similar to operators defined by Fiume et al.!°), and
nondeterminism.

Output characteristics. Because multiple
video streams can be scheduled to play at any spe-
cific time within one video expression, playback
may require multiple screen displays and audio
outputs. Therefore, video expressions include out-
put characteristics that specify the screen layout
and audio output for playing back children
streams.

All video expressions are associated with some
rectangular screen region in which they are dis-
played. A video expression constrains the spatial
layout of its components. Since expressions can
be nested, the spatial layout of any particular
video expression is defined relative to the parent
rectangle, the screen region associated with the
encompassing expression. The Window operator



defines a rectangular region within the parent rec-
tangle where the given video expression is dis-
played. The rectangular region is specified by two
points in a relative coordinate system, the top left
(x,, ¥,) and bottom right (x,, y,) corners, such that
x;€ [0, 1] and y, € [0, 1]. By default, a video expres-
sion is associated with a square that fits in the par-
ent rectangle. The following command sequence

C, = create hoffa.rv 30:0 50:0

P, = window C, (0,0) - (0.5,0.5) 10
P, = window G, (0,0.5) — (0.5,1) 20
P, =window G (0.5,0.5)-(1,1) 30
P,=window C, (0.5,0) - (1,0.5) 40
Py =(P, 1P, II P)

Ps=(P, 1 P, 1L Py I P

(Pl
(window
(Ps Il (window P4 (0.5,0.5) - (1,1) 60))
(0.5,0.5) - (1,1) 50))

gives an example of an
algebraic video node
with nested window
specifications. Figure 6
shows a snapshot of
this example, captured
during playback.

Window priorities
(see Table 1) are used to
resolve overlap con-
flicts of screen display.
The Window operation
establishes the video
priority of the associat-
ed window region with
the Priority parameter.
The window with the
higher priority overlaps
the window with the
lower priority. For
example, assume that
the two windows W,, and W, are children of the
same parent window region. If the priority of W,,
is greater than the priority of W,,, then W, and all
its video subexpressions will overlap W, and all its
video subexpressions.

The Audio operation directs the audio output
of the video expression to Channel, which can be
any logical audio device. If the Force argument is
true, then the Audio operation overrides any
channel specifications of the component video

expressions. The Priority parameter of Audio is
defined in a manner analogous to the Priority
parameter of the Window operation.

Descriptions. The model permits the associa-
tion of arbitrary descriptions with a given video
algebra expression. It allows textual descriptions,
nontextual descriptions like key frames, icons, and
salient stills, and image features like color, texture,
and shape. The Description operation associates
content information with a video expression.

The Content description of an expression is
not fixed by our model. However, for the purpos-
es of this article and our prototype, a Content is a
Boolean combination of attributes that consists of
a field name and a value. An example of an
attribute is title = “CNN Headline News”.Some
field names have predefined semantics—for exam-
ple, title—while other fields are user-definable.
Values can assume a variety of types, including
strings and video node names. Field names or val-
ues do not have to be unique within a description.

Therefore, a description can have multiple titles,
text summaries, and actor names associated with
a video expression. For example, a description
may initially contain closed-captioned text. The
user may add other attributes, such as actor, char-
acters, and scene summary. The components of a
video expression inherit descriptions by context,
which implies that all the content attributes asso-
ciated with some parent video node are also asso-
ciated with all its descendant nodes.

Figure 6. Output
characteristics
determine how video
expressions will appear
during playback, as this
snapshot of the node
with nested windows
shows.
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Usage

Definition

Content-based access

Search search query Searches a collection of nodes for video expressions that
match query
Browsing )
Playback playback video-expression Plays back the video expression
Display display video-expression Displays the video expression
Navigation

Get-parents get-parents video-expression

Returns the set of nodes that directly point to
video-expression

Get-children  get-children video-expression

Returns the set of nodes that video-expression directly

. points to

The Hide-content operation defines a video
expression E that does not contain any descrip-
tions. The Contains and Search operations (see
“Content-based access,” below) on E do not recur-
sively examine the components of E. The Hide-
content operation provides a method for creating
abstraction barriers for content-based access.

Interface operations

The interface operations for video expressions
fall into three main categories: content-based
access, browsing, and navigation. They are
defined in Table 2 and discussed in the following
subsections.

Content-based access. Associative access to
video expressions is accomplished with the Search
operation, in which the user specifies desired prop-
erties of the expressions. A search is performed
within a collection of persistent algebraic video
nodes. For querying within the collection, we
chose a simple predicate query language. A query
is a Boolean combination of attributes. When the
Search operation applies a query to the collection,
it searches the hierarchy of every node in the col-
lection and returns the result set of nodes that sat-
isfy the query. Note that the recursive Search does
not examine subhierarchies of the components of
expressions constructed by the Hide-content oper-
ation. Also, a node that can be revealed in more
than one way is not searched more than once.

The description of a video expression is implic-
itly inherited by its subexpressions, which can be
descendant nodes. The scope of a given algebraic
video node description is the subgraph that origi-
nates from the node. Matching a query to the
attributes of an expression must take into account
all of the attributes of that expression, including

the attributes of its encompassing expressions. In
the case where the expression is an algebraic video
node, this also includes the attributes of the ances-
tors. However, if a node’s ancestor is in the result
set, the descendant node is removed from the
result set to ensure that complete subhierarchies
of algebraic nodes are not returned in the result
set of a query that matches some ancestor node.
For example, consider the query text :smith and
text :question applied to a collection that con-
tains the node described in Figure 7. The result of
the query is the node with the description
text:”question from audience”, because this
node implicitly contains the description
text:smith. The node with the description
text:question is not returned because it is a
descendant of a node already in the result set.
Once a query result set is generated, the user can
then play back any of the expressions in the set or
explore the video context and composition using
the operations described in the previous section.
For example, the user can inspect the encompass-
ing video segment by examining the parent nodes.

Browsing and navigation. Browsing oper-
ations enable the user to inspect the video expres-
sion and to view the presentation defined by the
expression. The user can play back any expression
or browse and traverse the organizational hierar-
chy with the Get-parents and Get-children oper-
ations. (Notice that Get-parents of a video
expression that is not a node will yield an empty
result set.) Finally, the user can display the expres-
sion associated with a video expression. As dis-
cussed above, the expression includes description,
composition, and output characteristics. If the
argument is not a node, the operation is simply
the identity function.
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Strata associated with raw video

Nested stratification

Hierarchical relations between the algebraic
video nodes allow nested stratification. Smith and
Davenport!' defined a stratification mechanism
where textual descriptions called strata are associ-
ated with possibly overlapping portions of a linear
video stream. In the algebraic video data model,
linear strata are just algebraic video nodes. To cre-
ate a simple strata as in the Davenport model, a
user specifies the raw video file and the sequence
of relevant frames with the Create operation.

Nodes that refer to the same video data provide
multiple coexisting views and annotations and
allow the user to assign multiple meanings to the
same footage. Moreover, algebraic video nodes
can be organized hierarchically so that their rela-
tionships are preserved and can be exploited by
the user. In addition to simple stratification (see
“Video authoring and annotation,” above), the
algebraic video model preserves nested relation-
ships between strata and allows the user to
explore the context in which a stratum appears.
The nested algebraic video nodes preserve the
structural composition of the presentation while
allowing various content and structural interpre-
tations for overlapping footage to coexist (see
Figure 7).

Nested stratification is used primarily for anno-
tation and editing purposes; however, it can also
be used when browsing, searching, or playing
back video. The Union operator, which combines
overlapping nodes, guarantees that there will be
no repetition of video footage during playback.

Algebraic Video System prototype

The Algebraic Video System is a prototype
implementation of the algebraic video data model
and its associated operations. The system provides
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Nested stratification in algebraic video

support for algebraic video composition and con-
tent-based access. The creation of video expres-
sions involves the specification and combination
of raw video segments. Video expressions also
serve as repositories for attribute information
extracted from the segments. In the prototype, the
units of storage and indexing are the algebraic
video nodes. These nodes are textually represent-
ed by human-readable, semistructured algebraic
video files. The system has a graphical user inter-
face for managing a collection of raw video seg-
ments and algebraic video nodes; it includes query
and browsing tools. The storage subsystem
includes raw, unstructured video, a representation
of algebraic video, and indexes to support con-
tent-based access. Figure 8 (next page) presents
the architecture of the implementation.

The algebraic video system provides the fol-
lowing functions:

1 acquiring video data from external sources such
as TV broadcasts or other video collections,

1 parsing the raw, unstructured video to algebra-
ic video files,

1 indexing algebraic video nodes,
1 providing content-based access to the data,

1 playing back and browsing the video expres-
sions, and

1 composing, reusing, and editing complex
video expressions.

The implementation is built on top of three
existing subsystems: the VuSystem,'! the Seman-

Figure 7. Nested
stratification preserves
the context of video
expressions. It is
integrated into the video
algebra in a manner
that prevents
redundancy in playing
back video
presentations.
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Figure 8. Our
implementation
incorporates the
VuSystem, Semantic
File System (SFS), and
World-Wide Web
(WWW) modules into
the Algebraic Video
System prototype.

Figure 9. Mosaic and
the WWW provide a
graphical interface and
access tools for the
Algebraic Video System.
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tic File System (SFS),'> and the World-Wide Web
(WWW).® The VuSystem provides an environ-
ment for recording, processing, and playing video.
A set of C++ classes manages basic functions such
as synchronizing video streams, displaying in a
window, and processing video streams. Tool com-
mand language (Tcl) scripts' control C++ classes
and offer a programmable, customizable user

Unstructured
video

interface. The VuSystem is used for managing raw
video data and for its support of Tcl program-
ming. The Semantic File System is used as a stor-
age subsystem with content-based access to data
for indexing and retrieving files that represent
algebraic video nodes. The WWW server provides
a graphical interface to the system that includes
facilities for querying, navigating, video editing
and compositing, and invoking the video player.
The WWW access module includes static hyper-
text markup language (HTML) documents and a
set of Tcl scripts that dynamically create HTML
documents in response to user interaction.

Figure 9 illustrates how a user examines an alge-
braic video node using Mosaic and the WWW
interface. The HTML document shown includes a
snapshot of the playback of the node, the associat-
ed video expression, and links to other nodes with
ancestral relationships. Currently, the parsing of
raw video to algebraic video nodes is carried out
manually.

All video algebra operations in Tables 1 and 2
except Delay, Limit, Parallel-end, Transition, and
Hide-content have been implemented. The acqui-
sition of video data and associated closed-cap-
tioned text, shot segmentation, and parsing use
VuSystem support. Figure 10 shows two different
snapshots of the browser playing the same alge-
braic video file. The first snapshot contains the
main window with a segment from CNN Headline
News overlaid with a preview of a basketball game.
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Below the main windows are previews of two pop-
ular films. In the second snapshot, taken some time
later, the original main window has disappeared
and the configuration of some of the windows has
changed. However, the basketball preview and an
excerpt from the movie Hoffa are still present.

Content-based access

To support content-based access, the Algebraic
Video System prototype extracts any closed-cap-
tioned text associated with the video stream and
enters it into segment descriptions as the text
attribute. The user can add more attributes such
as title, author, and actor, and organize nodes
into a hierarchy using video algebra operators.
Since the algebraic video files are stored in a
human-readable, semistructured file format, the
user can edit and create algebraic video files using
any available text editor. We are working on sup-
porting the segmentation of raw footage using the
VuSystem shot detection module and a priori
knowledge of the video stream structure.

The system indexes the video files to create cor-
respondence between the attributes and the alge-
braic video nodes. We implemented an algebraic
video transducer in the Semantic File System to
extract attributes from the descriptions stored in

algebraic video files. The transducer associates
attributes and values with the algebraic video files
during the indexing process. Indexing this infor-
mation allows efficient querying and retrieval of
relevant video segments. Individual video nodes
that overlap are indexed separately.

The AV Query (shown in Figure 1) and WWW
modules, as well as the user, communicate with
Semantic File System directly via the pathname
interface. Semantic File System interprets a file path-
name as an attribute query. It then returns the
result in a dynamically created virtual directory that
contains the set of matching algebraic video nodes.

Playback

Once the user selects a nested hierarchy of alge-
braic video nodes for playback, the system recur-
sively parses the nodes and compiles a schedule file
for each. A schedule file is a Tcl script consisting of
window and audio output declarations and a seg-
ment activation script. The system implements
Playback by dynamically interpreting the schedule
files to produce streams of digital video. The streams
are transmitted to the VuSystem, which then dis-
plays the digital video on the client workstation.
Some of the playback information can be deter-
mined off-line. For example, the Concatenation

Figure 10. The Algebraic
Video System browser
displays two snapshots

multiwindowed
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and Parallel operations on raw video segments will
always result in the same video stream. However,
other composition alternatives, such as Conditional
or a live video feed coupled with the Union opera-
tion, require the system to dynamically modify the
playback characteristics.

Experience

We created our prototype system to gain
insight into the algebraic video data model and its
support for content-based access. We acquired
and indexed a collection of video segments: TV
broadcast news, commercials, and movie trailers.
The indexing process also included closed-
captioned text when available. Our Algebraic
Video System provides rapid attribute-based access
to the video collection and allows browsing of a
video result set. Once users select an algebraic
video node, they can examine the encompassing
video context by following links to the node’s
parents and children. New video presentations
can be created from the existing video collection
with query-based discovery and algebraic combi-
nation of video segments of interest. The user can
edit an existing video node or interactively enter a
video expression and preview its presentation.

The prototype delivers reasonable performance
for query access and video playback. For a result
set of 25 video segments, the elapsed time
between query invocation by the user and system
response is less than five seconds. The system
response includes enumerating and displaying the
first frame of the matching video segments. Once
the user selects a video node to play, typically
three seconds elapse until the browser begins to
play the video stream.

We ran the query client and the video player on
a Sun SparcStation 10, the query and file server on
a Silicon Graphics PowerSeries 4D/320S, and the
hypertext transfer protocol (HTTP) server on a dif-
ferent SparcStation 10. The three machines com-
municated over an Ethernet local area network.

We also provided the prototype WWW inter-
face to the Internet community. Users with
WWW clients that support HTML forms can now
edit and compose algebraic video nodes and
immediately view the resulting presentations.
Note that in the current implementation, the
HTTP server executes the algebraic video player
locally, using X Windows to display the video
stream at the client screen. Future versions of the
prototype will support local execution of the
video player that uses client-side caching of the
video presentation.

Conclusions

Our experience with the Algebraic Video
System prototype suggests that algebraic video
enables efficient access and management of video
collections in interesting and diverse ways. From
our experience so far, we believe that the algebra-
ic video data model is an adequate abstraction for
representing digital video and supporting content-
based access.

The algebraic model can be extended to multi-
media documents that temporally and spatially
combine text, pictures, audio, and video. The
muitimedia document algebra must also model
asynchronous user actions that can affect the
playback of the user presentation. These docu-
ments may also include hypermedia links that can
be instantiated in video expressions. A user may
traverse these links to related video nodes that
exist in different collections. We are extending the
algebraic video system to provide an Internet
Video Server with content-based access. We also
plan to examine object-oriented database support
for algebraic video storage. Another area of future
research is the exploration of interactive movies
and home video editing. MM
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