ECE-255 Final Exam December 13, 2013

Name: _______ (Please print clearly)

Student ID: _____

INSTRUCTIONS

- This is a closed book, closed notes exam.
- Clearly mark your multiple choice answers in the scantron.
- When the exam ends, all writing is to stop. This is not negotiable. No writing while turning in the exam/scantron or risk an F in the exam.
- All students are expected to abide by the customary ethical standards of the university, i.e., your answers must reflect only your own knowledge and reasoning ability. As a reminder, at the very minimum, cheating will result in a zero on the exam and possibly an F in the course.
- Communicating with any of your classmates, in any language, by any means, for any reason, at any time between the official start of the exam and the official end of the exam is grounds for immediate ejection from the exam site and loss of all credit for this exercise.

1) For the circuit shown below, if a sinusoidal wave with a peak voltage of 10 V is applied to the input, which one of the curves represent the output voltage? ($V_{on}=0.7V$, $V_Z=5V$)

2) The Zener diode in the circuit has an equivalent resistance $R_Z = 20 \Omega$. From the diode data sheet we find that if the voltage across the Zener diode is 6.4 V at $I_Z = 20 \text{ mA}$. Determine the output voltage V_{out} .

(1) $V_{out} = 6.4V$ (2) $V_{out} = 6.0V$

(3) $V_{out} = 6.67V$ (4) $V_{out} = 5.33V$

(5) $V_{out} = 10 V$ (6) None of the above

3) For the three bipolar transistors shown below, identify which one or two devices are operated at "Forward Active" region.

Which device or devices are operated at "Forward active regions"?

- (1)A
- (2)C
- (3)B
- (4) A and B
- (5)B and C
- (6) None of the above.

4) MOSFET circuit:

(a) Determine the MOSFET's DC drain-to-source voltage, V_{DS} . (b) What is the (W/L) ratio required for the MOSFET to satisfy the above biasing conditions?

(1) -4V;10.0	(2) 5V;2.5	(3) 3V;2.5
(4) 4V;2.0	(5) 5V;5.0	(6) None of the above

5) For the bipolar circuit shown below, I_C ?

```
\beta=80, V<sub>BE</sub>(on)=0.7, V<sub>T</sub>=25 mV
```


(1) 4.3mA	(2) 28.7µA	(3) 2.87mA	(4) 4.25mA
(5) 0.425mA	(6) None of the above		

6) Find the value of V_{CE} in the BJT circuit shown below for $v_I = 0V$.

7) The value of g_m in the BJT transistor shown below is? Assume β =50, $V_{BE}(on)$ =0.7, V_T =25 mV.

(1) 16 mA/V	(2) 8 mA/V	(3) 32 mA/V
(4) 25 mA/V	(5) 64 mA/V	(6) None of the above

8) The multistage amplifier shown below has which of the following configuration:

(1) CC-CE-CE	(2) CC-CE-CC	(3) CE-CE-CC
(4) CE-CE-CE	(5) CB-CE-CC	(6) None of the above

9) What is the input impedance of the two stage amplifier shown below? Assume β =100, V_{BE}(on)=0.7, V_T=25 mV.

$(1) \approx 500 \mathrm{k}\Omega$	(2) $\approx 75 \mathrm{k}\Omega$	(3) $\approx 250 \mathrm{k}\Omega$	(4) ≈ 65 kΩ
$(5) \approx 25 \text{ k}\Omega$	(6) None of the	above	

10) What is the gain (v_o/v_i) of the CE amplifier shown below, assume β =100 $V_{BE}(on)=0.7$, $V_T=25$ mV, and $V_A=100V$ for all transistors (Hint: R_L is the total load resistance seen at the output node)

(1) ≈ -2000	$(2) \approx -4000$	$(3) \approx 1$	(4) ≈ -1000
$(5) \approx -500$	(6) None of the abo	ove	

11) For the amplifier shown below known as double cascode, what is the gain |Av|? Q_2 and Q_3 both have twice the Early voltage as that of Q_1 . But they all have the same β . Note: $I_{c1}=I_{c2}=I_{c3}$, $g_m=g_{m1}=g_{m2}=g_{m3}$, $2r_{o1}=r_{o2}=r_{o3}$, $r_{\pi 1}=r_{\pi 2}=r_{\pi 3}$ Assume $r_o >> 1/g_m$ for all three

(1) $g_m r_{o1}$ (2) $g_m^3 r_{o1}^3$ (3) $2g_m r_{o1}$ (4) $g_m^2 r_{o1}^2$ (5) $4g_m r_{o1}$ (6) None of the above

12) <u>What is the common-mode gain ($|Av_{c}|$) for the circuit shown below?</u> Assuming $\beta_0 >>1$ and $r_o >>1$. (hint: use the half circuit model; draw small signal model of BJT to calculate v_{oc}/v_{ic} at $v_{id}=0$; 2 k Ω resistor can be regarded as part of transistor or it's much smaller than 50 k Ω .)

<u>What is the differential mode gain ($|Av_d|$) for the circuit shown below?</u> [Answers: first common-mode gain; second differential mode gain]

(1) ≈ 0.1 ; ≈ 25 (2) ≈ 0.1 ; ≈ 50 (3) ≈ 0.2 ; ≈ 50 (4) ≈ 0.2 ; ≈ 25 (5) ≈ 25 ; ≈ 0.1 (6) None of the below

13) What is the differential mode input impedance of the amplifier shown below? assume β =100, V_{BE}(on)=0.7, V_T=25 mV, and V_A=100V.

(1) $50 \text{ k}\Omega$ (2) 250Ω (3) $25 \text{ k}\Omega$ (4) $25.25 \text{ k}\Omega$ (5) $12.625 \text{ k}\Omega$ (6) None of the above

14) For the common drain amplifier shown below, the transconductance of the MOSFET is $g_m = 10mS$. Due to the high impedance at the output, the low cut-off frequency, ω_L , is dominated by the output pole: $\omega_L \approx \omega_{out} \approx \frac{1}{R_{gas}C_{gas}}$

 R_{eqs} is the equivalent resistance "looking into" the output capacitor, $C_{eqS}.$ What is the value of $R_{eqs}?$

(1) $R_{eqs} = 395.2\Omega$	(2) $R_{eqs} = 300.0\Omega$	(3) $R_{eqs} = 260.9\Omega$
(4) $R_{eqs} = 75.0\Omega$	(5) $R_{eqs} = 360.9\Omega$	(6) None of the above

15) Find A_{mid} for this transfer function.

$$A_{v}(s) = \frac{10^{10} s^{2}(s+1)(s+200)}{(s+3)(s+5)(s+7)(s+100)^{2}(s+300)}$$

(1)1 (2) 10^{10} (3) $2x10^{12}$ (4) $3.33x10^{5}$ (5) $6.67x10^{5}$ (6) None of the above

Short circuit time constant method is an important technique to determine the low 16) 16) Short circuit time constant inclusion $\omega_L \cong \frac{3}{\sum_{i=1}^{\Sigma} \frac{1}{R_{iS}C_i}}$. For the circuit below, what is the

 R_{1S} for the BJT base related loop? Here r_{π} =1.51 k Ω and β_0 =99 and r_0 =46.8 k Ω .

(1)4.88 kΩ

(2) $3.044 \text{ k}\Omega$

 $(3)7.095 \text{ k}\Omega$

(4)8.095 kΩ

 $(5)2.26 \text{ k}\Omega$

(6)None of the above

17) Short circuit time constant method is an important technique to determine the low cut-off frequency using equation: $\omega_L \cong \sum_{i=1}^{3} \frac{1}{R_{iS}C_i}$. For the circuit below (the same

as in Problem 16), what is <u>the time constant</u> for the BJT collector related loop? Here $r_{\pi}=1.51 \text{ k}\Omega$, $\beta_0=99$, and $r_0=46.8 \text{ k}\Omega$.

- (1)96.1 rad/s
- $(2) \sim 0.01 \text{ s}$
- (3)0.96 rad/s
- $(4) \sim 1.0 \text{ s}$
- $(5) \sim 0.1 \text{ s}$
- (6)None of the above

18) Short circuit time constant method is an important technique to determine the low cut-off frequency using equation: $\omega_L \cong \sum_{i=1}^{3} \frac{1}{R_{iS}C_i}$. For the circuit below (the same

as in Problems 16 and 17), what is ω_{L} for the whole BJT related circuit if R_{28} in the emitter loop is known as 23.3 Ω ? Here r_{π} =1.51 k Ω , β_{0} =99, and r_{0} =46.8 k Ω .

- (1)2300 rad/s
- (2)222 rad/s
- (3)96.1 rad/s
- (4)4513 rad/s
- $(5)2.16 \times 10^{-4} \text{ rad/s}$
- (6) None of the above

19) The circuit below highlights the so-called "Miller Effect". Determine the equivalent capacitance at <u>the input</u> and <u>the output</u> of this operational amplifier! Assuming $C_{xy}=1\mu F$, $C_1=1\mu F$ and $A_{xy}=-50$.

- 3) C_{eq} (input)=50 µF and C_{eq} (output)=1 µF
- 4) C_{eq} (input)=51 µF and C_{eq} (output)=51 µF
- 5) C_{eq} (input)=52 µF and C_{eq} (output)=50 µF
- 6) None of the above

20) For the amplifier circuit shown below what is the high cutoff frequency $f_{\rm H}$?

(1) ~94MHz(2) ~5MHz(3) ~35MHz(4) ~15 MHz(5) ~10MHz(6) None of the above