
Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 1

Automatic Parallelization of C by Means of
Language Transcription

Richard L. Kennell Rudolf Eigenmann

Purdue University, School of Electrical and Computer Engineering

Abstract. The automatic parallelization of C has always been frustrated by pointer arithmetic,
irregular control flow and complicated data aggregation. Each of these problems is similar to
familiar challenges encountered in the parallelization of more rigidly-structured languages such
as FORTRAN. By creating a mapping from one language to the other, we can expose the capabil-
ities of existing automatically parallelizing compilers to the C language. In this paper, we describe
our approach to mapping applications written in C to a form suitable for the Polaris source-to-
source FORTRAN compiler. We also describe the improvements in the compiled applications
realized by this second level of transformation and show results for a small application in compar-
ison to commercial compilers.

1.0 Introduction

Polaris is a automatically parallelizing source-to-source FORTRAN compiler. It accepts
FORTRAN77 input and produces a FORTRAN output in a new dialect that supports explicit par-
allelism by means of embedded directives such as the OpenMP [Ope97] or Sun FORTRAN
Directives [Sun96]. The benefit that Polaris provides is in automating the analysis of the loops and
array accesses in the application to determine how they can best be expressed to exploit available
parallelism. Since FORTRAN naturally constrains the way in which parallelism exists, the analy-
sis is somewhat more straightforward than with other languages. This allows Polaris to perform
very complicated interprocedural and global analysis without risk of misinterpretation of pro-
grammer intent. Experimental results show that Polaris is able to markedly improve the run-time
of applications without additional programmer direction [PVE96, BDE+96].

The expressiveness and low-level memory access primitives of C make it ideally suited for trans-
lation into efficient machine language. However, these low-level operations interfere with further
optimizations such as parallelization, software pipelining and various types of loop transforma-
tions. Much research has been performed in the areas of pointer analysis [CWZ90, DMM98,
GH95] and control-flow analysis to attempt to overcome the overhead of the conservative compi-
lation techniques used to ensure correct semantics of execution in the presence of complicated
expressions. Beyond correctness, the manner in which data is arranged in memory has major
impacts on performance [BAM+96] due to architectural tendencies.

We can surmise that one potential way of realizing greater application performance would then be
to re-write our programs in FORTRAN to allow a more optimal compilation. Indeed this is often
the case with libraries and numerical kernels provided for specific computational purposes. How-
ever, this would be inconvenient for most programmers who are used to the conveniences of an
expressive language. Furthermore, it would be extraordinarily difficult to re-write programs where

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 2

the expressiveness of the more flexible language is used to facilitate a particular programming
convention. An example would be the heavy use of pointers to functions or arrays of pointers to
functions.

What is needed is a means of transcribing the major components of a program in a manner that
facilitates their exposure to an optimizing FORTRAN compiler while retaining the inexpressible
components such that they do not interfere with optimization. To do so requires recognizing the
following analogies:

• A pointer is simply an index into an array that spans the entire memory. In this sense, pointer
analysis can then be reduced to array region analysis. By creating overlapping arrays--one for
each basic type and one for each field of each structure type--we further subdivide the analysis.

• Control-flow analysis, in most cases, can be reduced to determining what kind of loop con-
struct is present in the arbitrary control flow described by the programmer.

• Aggregate (static) data declarations can be reduced to separate array declarations for ease of
manipulation instead of using low-level memory operations to traverse their structure.

If such simplifications could be made automatically for a C program, it would allow a FORTRAN
compiler to perform optimizations that were not observed to be available in the original C pro-
gram. Naturally, some constructs would not be subject to any further optimization but it is rare
that an entire program would be designed in such a non-traditional manner. e.g. few programs are
written where most control-flow consists of successive invocation of selected indexed function
pointers from an array. Again, we hope to be able to efficiently represent to bulk of the application
code to enable optimization; not necessarily all of it.

The remainder of this paper is organized as follows. In Section 2.0, we describe the construction
of our transcription system. Section 3.0 describes several important observations of working with
the transcriber. We examine related research in Section 4.0, describe performance benefits of the
system in Section 5.0 and conclude with Section 6.0.

2.0 The Cepheus Transcriber

To demonstrate the ability for the Polaris source-to-source FORTRAN77 compiler to deal effec-
tively with the challenges posed by the C language, the natural course to pursue would be to build
a new C front-end to work directly with the Polaris intermediate representation (IR). However,
since the IR is so similar to the structure of FORTRAN, such a new front-end would need several
levels of transformation in order to be reduced to the proper format. The reduction to this IR
would be essentially equivalent to reduction to FORTRAN. For the study described here, we
chose to build atranscriberto externally convert preprocessed C into a dialect of FORTRAN suit-
able for Polaris consisting of the FORTRAN77 standard plus a few extensions needed for full sup-
port of the C semantics. As Polaris’ optimization capabilities are improved and support for new
target platforms is expanded, transcribed applications are also able to take advantage of these fea-

tures. We call our transcriber Cepheus1 and, though it is separate now, we expect to more closely
integrate it with Polaris in the near future.

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 3

Cepheus is a Java application that consists of an ANSI-C parser sans the preprocessor grammar.
The parser system was built using the ANTLR toolkit [Par96] and actions were added to build an
IR that is structurally similar to the C language. The IR provides a transformation mechanism that
reduces it to a form suitable for expression in FORTRAN77. Phases of this transformation include
consolidation of nested storage declaration, simplification of compound statements and state-
ments with side-effects, creation of temporary variables and linearization of complex statements
that have no equivalent in FORTRAN77 (e.g. the switch statement). A final pass over the IR pro-
duces FORTRAN77 output.

2.1 Global variables

FORTRAN77 does not have the flexibility of lexical scoping that C does. The two primary means
of sharing data between two functions or subroutines is by either passing values through formal
parameters or by sharingcommon blocks. Since FORTRAN common blocks are the minimal
means by which variables are shared, they are allocated for each variable declared outside of any
function’s scope. Variables declared with anextern storage class are not declared in the
FORTRAN77 code. Likewise, variables declared with astatic storage class are placed in
uniquely named common blocks. FORTRAN allows the initialization of variables in both global
and function scope allowing similar semantics to C except for the cases where one variable is ini-
tialized with the initialized value of another variable. In this case the value must be propagated to
each variable to properly describe the initialization.

2.2 Arrays and pointers

Since the starting and ending indices of arrays are specifiable in FORTRAN77, they can be
declared in a way that matches the semantics of C. i.e. each array has a starting index of zero.
Within Cepheus’ symbol table, each pointer is maintained with the array that it corresponds to.
When a pointer is used to refer to elements in more than one array or when it refers to dynami-
cally-allocated storage, the corresponding array is forced to be atype-specific universal array.

For each C type and for each field of each structure, a type-specific universal array is allocated.
Each of these arrays starts at address zero and is used to alias the entire logical address space.
These arrays are not defined in the FORTRAN77 code but are, instead, created by special contract
with the linker. Presently, we assume a fixed name for each array’s common block. For instance,
the universal array corresponding to the Cfloat type is called _G_REAL. Note that an alternative
way of accessing arbitrary memory would have been to employ an external function to get values
from specified addresses. However, this would have had much more overhead than using an array.

Mapping from either static or dynamically-allocated arrays to the universal array is performed by
using an external function called ADDROF which accepts a variable (which is always passed by
address by FORTRAN77 convention) and returns its address to the caller. We can then obtain the
address of any item in the program and refer to it by accessing via the universal array correspond-

1. Cepheus is a five-star constellation that is near to but does not include the North Star (Polaris). Since stars are not
fixed in their position but migrate very slowly, we speculate that within several million years, the Cepheus constel-
lation may be joined with Polaris. However, we expect the integration of our transcriber to occur much sooner.

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 4

ing to its type. Figure 1 shows the in-memory layout of several universal arrays that exist for an
application containing the data structure shown. Each array starts at address zero. Thedecl array
occurs at some arbitrary location in memory and its position is shown by the shaded regions of
memory. The _G_XYZ_I and _G_XYZ_C entries are also considered to be disjoint despite their
contiguity in the structure definition. Furthermore, note that the alignment, padding and field off-
sets are similar to those in C.

FIGURE 1. Overlapping universal arrays.

2.3 Expression simplification

The C language supports several complex operators that, within expressions, have side-effects or
multiple effects. For instance the predecrement operator (++) increments a value and supplies its
value to the enclosing expression. Compound expressions cause a sequence of expressions to be
evaluated and only the value of the last one is returned to the enclosing expression. In each of
these cases, the complex expression must be separated into multiple statements without violating
the control flow constraints in order to be correctly expressed in FORTRAN77. Each expression
type in the Cepheus IR supports a transformation to split and rearrange itself in a manner that pre-
serves the original execution semantics. In some cases, this requires temporary variable creation,
code block duplication and control-flow induction by generation of if-then-else nests to simplify
the original expression.

2.4 Flow control statement manipulation

In addition to expression simplification, Cepheus performs control-flow statement modification to
support proper transcription to FORTRAN77. For instance, by using GOTOs and labels, FOR-
TRAN can naturally supportbreak andcontinue semantics available in C. A stack for the poten-
tial target of each of these control-flow modifiers is maintained for all points in the program. A
label is generated only when referenced by a GOTO.

The Cswitch construct is transcribed by creation of an IF-ELSIF-ELSE nest. Thebreak and
continue semantics are maintained here as in any other context.

struct xyz {
 int i[3];
 char c;
} decl[128];

4

_G_CHAR
_G_INT

_G_XYZ_C
_G_XYZ_I

0 8 decl

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 5

2.5 Miscellaneous conversion issues

We note several other matters are relevant to proper transcription of ANSI-C into FORTRAN77
that are not handled by Cepheus. First, the traditional matter of FORTRAN77 mandating variable
and function names that are case-insensitive and unique in the first six-characters is not addressed.
Instead, we take advantage of the ability of most modern FORTRAN77 compilers to handle sym-
bols of arbitrary length. We manually check that there are no symbol collisions due to case-insen-
sitivity.

Since local variables in FORTRAN77 are statically allocated by default, recursive functions are
not naturally supported. We recognize the possibility of using control-flow normalization of a
nature similar to CPS conversion [FWH92] to change the recursion into iteration. However, the
matter of recursion does not greatly impact our study of parallelization of the bulk of C applica-
tions. Furthermore, many FORTRAN compilers support a stack-based local variable allocation,
allowing us to avoid problems in representation of the resulting program where recursion is used.

ANSI-C supports several types that are not included in the FORTRAN77 specification: short inte-
gers, unsigned integers (of any size) and bitfields within structures. Each of these types can be
represented by the standard integer type albeit at the expense of storage waste and potentially
lower performance. Unsigned integers require the use of intrinsic functions to ensure that non-cir-
cular numeric operations such as right-shift work properly. We further note that by using integers
to represent specially packed structures, we cannot guarantee compatibility with an existing
library’s Application Binary Interface (ABI). Finally, although ANSI-C does not mandate a size
for short and allows it to be potentially as large as anint or as small as achar it would also be
necessary to match the size used by a particular implementation to support an ABI.

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 6

FIGURE 2. Transcription of various features of C into FORTRAN77.

3.0 Observations

Several things became apparent during the development and initial use of Cepheus that will be
useful knowledge when developing other similar transcribers.

float vector[100]; BLOCK DATA
 REAL VECTOR(0:99)
 COMMON /VECTOR/VECTOR
end

void dot(float *f1, SUBROUTINE DOT(F1,F2,RESULT)
 float *f2, REAL F1(0:0)
 float *result) REAL F2(0:0)
{ REAL RESULT(0:0)
 float *p1; INTEGER P1
 float *p2=f2; INTEGER P2
 float *p4=result; INTEGER P4

 REAL TEMP

 P2=0
 PR=0

 for(p1=f1; p1 != &f1[100]; p1++) { DO P1=0,100-1,1
 float temp = 0.0; TEMP=0.0
 (*p1>10.5 ? temp:*pr)=*p1++**p2++; IF (F1(P1).GT.10.5)

 TEMP=F1(P1)*F2(P2)
ELSE
 RESULT(PR)=F1(P1)*F2(P2)
END IF
P2=P2+1
PR=PR+1

 if (temp != 0.0) IF (TEMP.NE.0.0) GOTO 10
 break; END DO
 } 10 CONTINUE
 return; RETURN
} END

int main() INTEGER FUNCTION MAIN()
{ INTEGER F1
 float *f1; INTEGER F2
 float *f2; INTEGER I

 f1=(float*)malloc(100*sizeof(float)); F1=MALLOC(100*4)/4
 f2=(float*)malloc(100*sizeof(float)); F2=MALLOC(100*4)/4
 {
 int i;
 for(i=0; i>100; i++) DO I=0,100-1,1
 {
 f1[i]=i; _G_REAL(F1+I)=I
 f2[i]=i-50; _G_REAL(F2+I)=I-50
 dot(f1,f2,vector); CALL DOT(_G_REAL(F1),_G_REAL(F2),VECTOR)
 } END DO
 }
 return 0; MAIN=0
} RETURN

END

PROGRAM STRANGEDOT
INTEGER MAIN_RESULT=MAIN()
STOP
END

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 7

3.1 The need for semantic interpretation

We initially thought that a simplistic conversion from C to FORTRAN77 could be accomplished
by using C macros or a simple statement converter. In other words, a purely syntactic converter.
This is, perhaps, useful for trivial codes, but several factors prevent it from being generally useful.
First, the widespread use of pre- and post-increment and decrement operators creates a dilemma
for a translator that does not take into account the context of the operation. A simple example,
such as that in Figure 3a, shows how a syntactic converter could simply defer the placement of the
post increment operators until after the primary statement. However (b) and (c) show errors that
result from the misplacement of the operator.

FIGURE 3. Conversion examples.

The proper solution to pre/post-increment/decrement side-effects is to automatically introduce a
temporary variable as in the examples shown in Figure 4. This is dependent on knowing both the
context of the expression and type of the variables in question.

Other cases where purely syntactic transcription would be difficult are:

• When global variables are referenced within a function, they must be declared as being part of
a common block and, therefore, defined within the function before any statement.

• Label generation.

• Temporary variable generation.

x = a[i++]; X=A(I)
I=I+1

(a) Correct, simple conversion of post-increment.

if (y==x++) { IF (Y.EQ.X) THEN
 z=x; Z=5
} END IF

X=X+1

(b) Incorrect placement of post-increment.

x = (n==5 ? y : z++); IF (N.EQ.5) THEN
 X=Y
ELSE
 X=Z
END IF
Z=Z+1

(c) Incorrect placement of post-increment.

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 8

FIGURE 4. Corrected examples of conversion.

Note that when a temporary variable is needed for a correct transcription of the statements in
Figure 3(b) and (c) it is necessary to be able to derive the types of such variables. The fact that
semantic analysis was necessary for even simple cases motivated the use of a symbol table and
intermediate representation within Cepheus.

3.2 The need for control-flow normalization.

Polaris changes control-flow of an application using only high-level transformations such as inlin-
ing, loop reordering, merging, splitting and unrolling. Here, the potential for parallelism is clearly
defined by FORTRAN77 and the burden on Polaris is to express the optimal usage of this parallel-
ism using a specified directive language. Any other parallelism present in the application but not
expressed in canonical DO loop syntax is not considered. For instance, the bounds of the first loop
in Figure 5 are clearly identifiable but would not be subject to parallelization by Polaris.

FIGURE 5. A GOTO loop and an equivalent DO loop.

if (y==x++) { TEMP=Y.EQ.X
 z=x; X=X+1
} IF (TEMP) THEN

 Z=X
END IF

(b) Corrected placement of post-increment inside the if-predicate.

x = (n==5 ? y : z++); IF (N.EQ.5) THEN
 TEMP=Y
ELSE
 TEMP=Z
 Z=Z+1
END IF

(c) Corrected placement of post-increment inside the ternary operator.

 P=0
 Q=0
10 ARR(P)=TEMP(Q)+TEMP(Q+Y)
 P=P+1
 Q=Q+1
 IF (P.LE.100) GOTO 10

 DO P=0,100,1
 ARR(P)=TEMP(P)+TEMP(P+Y)
 END DO

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 9

Typically, when programmers write FORTRAN code, their loops are expressed in the canonical
format; there is no need for further analysis to find them. However, C allows more variety in its
means of expression of loop constructs. The first loop of Figure 5 might easily be a transcription
of the C code in Figure 6 which is a contrived way of summing two array regions into another
array using pointer syntax.

FIGURE 6. C code for a simple pointer-walking loop.

Further examples where clearly bounded iteration takes place as a result of jumps to labels, recur-
sive invocation of subroutines, or other irregular control-flow can easily be constructed. Since
such an example would represents a parallelizable entity, some means of control-flow normaliza-
tion is certainly merited. Ammarguellat [Amm92] describes a general method for normalization
of irregular control-flow. We are presently in the process of implementing a similar method in
Cepheus.

3.3 Pointer analysis.

Cepheus transfers C pointer access and arithmetic into FORTRAN77 array operations. For each
pointer that solely references a stack-allocated array, the operations can be expressed as integer
offset into the array. Pointers that refer to either heap-allocated data or to multiple stack- or heap-
allocated data, are again represented as integers but must be set by means of an Address-Of intrin-
sic routine. They then refer to elements in universal arrays corresponding to their specific types.

As an illustration, consider the program in Figure 7 which adds the elements of two arrays of dou-
ble precision floating point numbers and stores each result into an integer array. Since the pointers
in theadd() routine do not refer to local arrays, they are treated as pointers into universal arrays
that correspond to typesint anddouble. Elements of structure types are also individually repre-
sented by universal arrays. These arrays are created by the linker and both have a base addresses
of zero. Themain() routine allocates the arrays from the heap. Cepheus understands the seman-
tics ofmalloc() and translates the address returned into the appropriate index into the universal
array of that type. Effectively, this creates a mechanism in FORTRAN77 to access a typed ele-
ment in memory.

Even though the allocation of the universal arrays overlaps, it is intuitively clear that only one type
at a time will exist in a given location. We can therefore allow the FORTRAN compiler to treat
accesses to these heap-allocated items as being independent as would normally happen with dis-
joint arrays. In the example, accesses to the _G_INT_ array are known not to be aliased to the
_G_DOUBLE_ array. Furthermore, the elements pointed to by DP1 and DP2 can be determined
not to be aliased to each other by range analysis and interprocedural analysis. Therefore, an opti-
mizing FORTRAN compiler can optimally parallelize theadd() routine.

p=&arr[0];
q=&temp[0];
do {
 *p = *q + q[y];
} while (p <= &arr[100]);

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 10

FIGURE 7. C program to add two arrays and its Cepheus-FORTRAN77 equivalent.

It is worth pointing out that Cepheus can perform its analysis onwell-behavedC applications that
do not arbitrarily cast between incompatible pointer types. A cast from one pointer type to another
effectively unifies the two types. If the types have different sizes, the unification is defined to be
incompatible. However, if the cast is from avoid* to another pointer type, no unification is consid-
ered and the pointer is simply re-typed. The cases where multiple possible alternative types exist
in the same context is beyond the scope of our current consideration.

3.4 Semantic interpretation and emulation

We assume that Cepheus and Polaris will be operating under a closed-world model implying that
subroutines do not have pointer-influencing side-effects whose semantics are not known. There-
fore, the more that is known about any C support functions that are called, the more complete the
program analysis can be. The ANSI-C standard includes the specification of several well-known

void add(double *dp1, double *dp2, int *ip) {
 int *temp, *last;
 last=&ip[1000];
 for(temp=last; temp<last; temp++) {
 *temp = *dp1 + *dp2;
 dp1++; dp2++;
 }
}
void callit() {
 int *ip;
 double *dp1, *dp2;

 ip = (int*) malloc(1000*sizeof(int));
 dp = (double*)malloc(2000*sizeof(double));

 add(dp, &dp[1000], ip);
}

SUBROUTINE ADD(DP1_ARR,DP2_ARR,IP_ARR)
 DOUBLE PRECICION DP1_ARR(0:0)
 DOUBLE PRECISION DP2_ARR(0:0)
 INTEGER IP_ARR(0:0)
 INTEGER DP1/0/
 INTEGER DP2/0/
 INTEGER IP/0/
 INTEGER TEMP
 INTEGER LAST

 LAST=IP+1000
 DO TEMP=IP,LAST-1,1
 IP_ARR(IP)=DP1_ARR(DP1)+DP2_ARR(DP2)
 DP1_ARR(DP1)=DP1_ARR(DP1)+1
 DP2_ARR(DP2)=DP2_ARR(DP2)+1
 END DO
END
SUBROUTINE CALLIT
 INTEGER IP
 INTEGER DP1
 INTEGER DP2

 IP = MALLOC(1000*4)/4
 DP = MALLOC(1000*8)/8
 CALL ADD(_G_REAL(DP),_G_REAL(DP+1000),_G_INT(IP))
STOP
END

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 11

library functions to perform, among other things, string manipulation, mathematical operations
and format conversion operations. The semantics of many these functions can be matched by the
FORTRAN77 intrinsic functions, allowing the compiler to consider their actions in its closed-
world model.

4.0 Related Work

Although there has been a great deal of research in the direct parallelization of C and translation
of other languages into C, we know of no prior research in translating C into a more restrictive
language. The most distinguishing aspect of our work is that it takes advantage of an existing par-
allelizer for a language other than C.

Our model of pointer analysis is similar in many respects to the Type-Based Alias Analysis
described by Diwan, McKinley and Moss [DMM98] for use with Modula-3. Their analysis is
more general since it accommodates inherited types. However, instead of combining this work
with parallelization, they demonstrate the capacity for redundant load elimination and the result-
ing improvement in instruction level parallelism.

Ghiya and Hendren [GH95] noted the efficiency realized in treating (named) local variable point-
ers and (unnamed) heap-allocated pointers differently for purposes of alias analysis in the McCAT
optimizing/parallelizing compiler. This is similar to our treatment of pointers that reference either
local/global arrays or are hoisted by the ADDROF operator to reference a universal array. How-
ever, McCAT’s connection analysis does not use type analysis to further subdivide the potential
alias space as Cepheus does.

We note the implementation of therestrict keyword in recent optimizing C compilers as a means
of explicitly specifying the absence of aliases between pointers in a subroutine [ANS93]. Experi-
mental evidence [Coo97] shows that it can make a great difference in the runtime of array-based
scientific code. However, the programmer must take care to correctly specify which formal argu-
ments of a function are immune from aliasing and then make sure that the function is never called
with aliased pointers. In the case of more random pointer-chasing codes, therestrict keyword
may not make a difference since it is difficult to express such irregular parallelism. For these rea-
sons we suspect that Cepheus may offer nearly as much benefit on those cases that allow use of
therestrict keyword by being able to determine most of the cases automatically and also remov-
ing the burden from the programmer to ensure that arestrict was not specified too eagerly.

5.0 Performance Results

To illustrate the potential performance improvements that can be realized by using Cepheus, we
have constructed an example of a C program that is not easily optimized. The code in Figure 8 is a
contrived way of implementing the following formula:

Note that several transformations are possible in this code:

result evec1 vec2+=

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 12

• Thepow() function can be transcribed as the native FORTRAN77 ** operator.

• The declaration for variablesfact andf can be moved out of the inner loop.

• The outer loop ofcalc can be parallelized.

FIGURE 8. Computation on vectors of numbers.

We first compiled this program with the Sun WorkShop Pro C compiler (v4.2) with the best
generic and architecture-specific optimization flags and ran the executables on a five processor
Sun UltraEnterprise server. The results are shown in Figure 9. Neither of these compilers support
automatic parallelization of pointer codes so their performance results only demonstrate scalar
optimization. Next, we used Cepheus to transcribe the program to F77 and compiled the resulting
program with the Sun FORTRAN compiler (v4.2) with the best generic and architecture-specific
flags and ran the executables. Finally, we compiled the FORTRAN code with Polaris in order to
generate explicit Sun FORTRAN directives and then compiled the resulting code with the Sun
FORTRAN compiler. The results for Polaris show the use of between 1 and 5 processors.

#include <math.h>

void calc(double *vec1, double *vec2, double *result)
{
 double *p1, *p2, *pr;
 int i;

 p2=vec2;
 pr=result;

 for(p1=vec1; p1<&vec1[10000]; p1++) {
 for(i=0; i<1000; i++) {
 double fact=1.0;
 int f;
 for(f=1; f<i; f++)
 fact=fact*f;
 *pr += (pow(*p1,0.0+i) + pow(*p2,0.0+i))/fact;
 p2++; pr++;
 }
 }
}

int main()
{
 double vec1[10000], vec2[10000], result[10000];
 double *p1, *p2, *pr;
 int i;

 i=1;
 for(p1=vec1; p1<&vec1[10000]; p1++) {
 *p1=i/20.0;
 i++;
 }

 i=1;
 for(p2=vec2; p2<&vec2[10000]; p2++) {
 *p2=i/5.0;
 i++;
 }

 calc(vec1, vec2, result);
 return 0;
}

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 13

FIGURE 9. Performance results using different forms of compilation.

Even without using the Polaris parallelizer, the FORTRAN compiler does better than the C com-
piler at scalar optimization. Polaris recognizes the available parallelism and is able to describe it
explicitly, allowing the Sun FORTRAN compiler to further optimize the application. The five-pro-
cessor trial represents an almost seven-fold improvement in runtime over the best possible C-com-
piled trial.

6.0 Conclusion

By being able to reduce ANSI-C code to FORTRAN77 with Cepheus, we have demonstrated that
existing parallelizing compiler technology can be applied to new or disparate languages by means
of transcription. In many ways, we can even obtain greater optimization by isolating transforma-
tions to the transcriber. Control-flow normalization and pointer analysis are examples where the
transcriber can express constructs that are difficult to optimize in a manner that facilitates their

cc
 −

O
5

a
cc

 −
fa

st

f7
7

 −
O

5

f7
7

 −
fa

st

p
o

la
ri
s/

f7
7

 1

p
o

la
ri
s/

f7
7

 2

p
o

la
ri
s/

f7
7

 3

p
o

la
ri
s/

f7
7

 4

p
o

la
ri
s/

f7
7

 5

Compiler

0

30

60

90

120

150

180

210

240

270

300

R
u

n
tim

e
 (

se
co

n
d

s)

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 14

parallelization. Furthermore, the task of creating the transcriber was accomplished with consider-
ably less complexity than building a new front-end for an existing compiler; giving us tangible
evidence that it is not always necessary to re-invent the compiler to achieve new types of optimi-
zation.

The Polaris parallelizer is central to the effort of improving the parallelizability of the transcribed
C code for several reasons. Primarily, pointer alias analysis is only facilitated by Cepheus; we still
need a second compiler with the ability to perform interprocedural array region analysis to make
it work. Similarly, Polaris is used to identify and explicitly express the available loop parallelism
made available by Cepheus’ control-flow normalization.

We are presently working on improving Cepheus to the point where it is able to analyze and tran-
scribe large applications and also investigating the possibility of transcription of other languages
into FORTRAN. Furthermore, while language transcription at the source level is an adequate
means for our studies, the ultimate goal is to express C programs in the Polaris intermediate repre-
sentation directly. In doing so, we will keep modifications to the IR as small as possible. Exten-
sions will only be made where the Cepheus transcription is unable to generate a program that can
be successfully parallelized by Polaris. The current paper has presented an initial study to address
this question. Extensive experimentation to give more quantitative answers is the next step.

References

[ANS93] Restricted Pointers in C. Numerical C Extensions Group / ANSI X3J11/94-019,
Aliasing Subcommittee, June 1993.

[Amm92] A Control-Flow Normalization Algorithm and Its Complexity.IEEE Transactions
on Software Engineering, Volume 18(3), pages 237-251, 1992.

[BAM+96] Compiler-Directed Page Coloring for Multiprocessors. E. Bugnion, J. M.
Anderson, T. C. Mowry, M. Rosenblum and M. S. Lam. InProceedings of the
Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[BDE+96] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Advanced program restructuring for high-
performance computers with Polaris.IEEE Computer, December 1996.

[Coo97] Doug Cook. Performance Implications of Pointer Aliasing (Whitepaper).
Silicon Graphics, Inc. http://reality.sgi.com/cook/audio.apps/dev/aliasing.html
August, 1997.

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. InProceedings of the ACM SIGPLAN ‘90 Conference on
Programming Language Design and Implementation, pages 296-310, 1990.

Automatic Parallelization of C by Means of Language TranscriptionApril 28, 1998 15

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-Based Alias
Analysis. InProceedings of the ACM SIGPLAN ‘98 Conference on Programming
Language Design and Implementation, 1998.

[FWH92] Friedman, Wand, and Haynes.Essentials of Programming Languages. McGraw-
Hill, 1992.

[GH95] Rakesh Ghiya and Laurie J. Hendren. Connection Analysis: A Practical
Interprocedural Heap Analysis for C. InProceedings of the 8th Workshop on
Languages and Compilers for Parallel Computing, August 1995.

[Ope97] OpenMP. OpenMP: A Proposed Industry Standard API for Shared Memory
Programming (Whitepaper). http://www.openmp.org/openmp/mp-documents/
paper/paper.html. November 1997.

[Par96] Terence Parr, ANTLR 2.00 Specification, http://www.magelang.com/antlr/
October 1996.

[PVE96] Insung Park, Michael J. Voss, and Rudolf Eigenmann. On the Machine-
Independent Target Language for Parallelizing Compilers.Proceedings of the
Sixth Workshop on Compilers for Parallel Computers (CPC ‘96), Aachen,
Germany, December 1996.

[Sun96] Sun Microsystems, Inc.,FORTRAN 4.0 User’s Guide, 1996.

