Portable Parallel Programming Languages

Introductory paper to the session of this title at the Workshop on Challenges for Parallel Processing,

International Conference on Parallel Processing, 1996

Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University
1285 EE Bldg.
West Lafayette, Indiana, 47907

eigenman@ecn.purdue.edu

Abstract

In this workshop session, three speakers
present their viewpoints and contributions to
the topic of portable parallel programming
languages. They are Dennis Gannon from In-
diana University, David Loveman from Digi-
tal Equipment Corporation, and David Padua
from the University of Illinois. Their presenta-
tions discuss extensions to C*t*, Fortran, and
compiler support for standard languages on
parallel architectures, respectively. This pa-
per introduces the topic performance portabil-
ity on parallel machines. We will then try to
draw a picture of where we are today in pro-
viding portable parallel languages to a grow-
ing user community, given that the three con-
tributions represent major milestones along
this path.

1 Introduction

What does “portable parallel programming lan-
guages” mean? Where do we stand today in pro-
viding such languages? How much more is there
to do before we can claim that portable parallel
programming is a reality?

These are questions that this article, with the
help of the accompanying papers, is trying to an-

swer. This section will provide motivation for the
topic. We will summarize the three accompany-
ing papers in the context of other approaches in
Section 2. These papers represent major devel-
opment efforts in portable parallel programming
languages, discussing the HPCTT language de-
sign effort [2], the High-Performance Fortran ef-
fort [6], and an effort to support standard, se-
quential languages through automatic paralleliza-
tion [3], respectively. They supply important ev-
idence for characterizing the current state of the
art in portable parallel software engineering. In
Section 3 we will discuss this state and try to un-
derstand the significance of the three contribu-
tions for the long-term goal of providing highly
portable parallel programming systems.

1.1 Is Portability Important?

There are many reasons to talk about portability:
Software developed on a small desktop computer
may eventually have to run on a large mainframe,
desktop programs may need to run on a vari-
ety of platforms, computational problems keep
changing so that existing software now has to run
on machines with more resources (faster, more
memory, better network connection), problems
that are irregular in their computational charac-
teristics may best run on heterogeneous machine
suites, or our software simply outlives that ma-

chine, on which it was developed. This makes
portability an essential, necessary attribute of all
software!

In some cases porting programs is easy for the
user. Machines can be “upward compatible” so
that, for example, object code can be ported from
an older to a newer machine. For the implemen-
tors, this compatibility is usually very costly.

In many other cases achieving portability is up
to the software developers. Doing so is difficult
even on sequential machines. It is not unusual
that a piece of software, written in a standard
programming language, tests correctly on the de-
velopment machine, but then fails on a new plat-
form. Possible reasons are that language stan-
dards cannot safeguard against certain program-
ming mistakes, the compiler is not sophisticated
enough to enforce language standards, and some
language rules are not even enforcible by compil-
ers.

An even bigger portability issue arises when we
go from uniprocessors to parallel computers. Cre-
ating a work plan for a task to be performed by
a group of workers simultaneously needs intrin-
sically more attention to details than creating a
sequential work plan. One way of looking at this
is that when doing work sequentially, we are used
to processing objects step by step. While we op-
erate on these objects, they can be temporarily
in an inconsistent state. This is not a problem
as long as we are the only ones working. We are
confident that our steps lead to a consistent ob-
ject. However, if there are other workers trying
to help, they may look at the object at a bad time
or modify it so we get confused. Therefore, coor-
dination is needed. Coordination usually results
in one worker having to wait until the object is in
a reasonably well-defined state. This introduces
delays, which we want to avoid if they are not ab-
solutely necessary. Hence we want different work
plans for sequential and parallel task forces. Con-
sequently, the work plan is no longer portable.

The coordination necessary in a parallel pro-
gram and its sources of inefficiencies are one rea-
son for the lack of software portability. Addi-
tional reasons come from the fact that high-speed
computers support parallelism in many different

forms, such as instruction-level parallelism, vec-
tor parallelism, loop-level parallelism, and task
parallelism. Furthermore, data can be placed
in many different types of storage, such as reg-
isters, caches, local memories, or shared mem-
ories. Today’s computer architectures are very
diverse in the levels of parallelism and data stor-
age they provide. If the programmer has to find
the best mix of these resources for every ma-
chine, the resulting lack of program portability is
unavoidable. However, even if the management
of these resources is provided by sophisticated
hardware mechanisms, compilers, or operating
systems, the programmer often has to take spe-
cial care in writing the programs such that these
mechanisms can be effective. This means, for ex-
ample, that the programmer must make sure that
data placed in longer-latency storage by the com-
piler get accessed infrequently. Or, that the levels
of parallelism supported “automatically” by the
given machine will be apparent to the optimiza-
tion tool.

1.2 Isn’t there an easy solution to the
portability problem?

Many products announced on todays market
claim that they achieve portable software. They
are not really wrong. But they are using the
term portability differently from how it is under-
stood here. In our context we are concerned with
performance portability. A program that runs
at high speed on one computer system should
run with reasonable efficiency on another system.
In many current computer applications, perfor-
mance portability may not be an issue. If the
machine speeds are satisfactory, correctness may
be the primary concern when retargeting a pro-
gram at this new computer. For those situations
our discussion is irrelevant. Instead we address
the reader who deals with the other important
class of applications, where high computer per-
formance is an essential and costly resource.
Even for performance portability one could ar-
gue that we could just “buy portability with
some performance.” After all, computers keep
getting increasingly powerful. Can’t we use a

fraction of this power to make up for the in-
efficiencies introduced by tools that map stan-
dard, portable languages onto high-speed ma-
chines? After all, this very same argument proved
to be correct in the past, when we went from
architecture-specific, un-portable assembly lan-
guages to portable, standardized high-level lan-
guages (HLLs)! Why is it not true any more?

The reality is that the inefficiency introduced
by HLLs on sequential machines could be kept at
a percentage of the overall performance. How-
ever, the inefficiency introduced through parallel
processing increases with the number of proces-
sors. This means that the higher the “peak per-
formance” — implemented through amassing par-
allel processors — the less efficiently a program
runs. After a certain point, the application per-
formance may even deteriorate with the increas-
ing peak performance of a machine. Today, we
are at a point where this reality is present in many
programs.

2 Approaches to Portable Lan-
guages and Three Milestones

Portable programming languages can be realized
in several ways:

2.1 Supporting sequential languages

Referred to above as the “easy solution” for the
user, pursuing this approach is very demanding
on the implementor’s side. The paper by Padua
and his research group at the University of Illi-
nois shows what we have achieved so far and
where we might be heading [3]. Entitled “Re-
structuring Programs for High-Speed Computers
with Polaris”, the paper describes new powerful
techniques to translate programs written in stan-
dard sequential Fortran into parallel programs.
The Polaris compiler is able to generate output
for several parallel machines, hence they port se-
quential programs to these parallel computers au-
tomatically. The machine class includes parallel
architectures that provide a shared address space.
The papers shows, that on a SGI Challenge ma-

chine, Polaris is able to take advantage of the
parallel processing capability across a range of
programs.

2.2 Converging on the “best” machine
architecture

Portability becomes a non-issue if the machines,
to which it is difficult to port programs, are not
being used. Although this is an important point
to keep in mind, we will not discuss it further.
It leads to questions of whether the variety of
parallel machines offered by today’s vendors will
continue to be there, whether companies that
have over-promised their machine performance
will cease to exist, and — of course — what sys-
tems will prevail. In part, discussions of such
issues can be found in other workshop sessions,
where we ask for the right interconnection net-
work [1] for creating the right architectures, and
where we ask for evaluating their performance [8].

2.3 Creating a new portable language
that will be used by everyone

Attempts to provide new programming languages
for exploiting parallel machines abound. At least
implicitly, most of them claim to be portable, al-
though sometimes it is not taken to mean perfor-
mance portability. Among the many interesting
approaches are those who allow the programmer
to specify parallelism implicitly, hence providing
portability across a wide spectrum, from sequen-
tial to parallel machines. Dataflow and functional
languages (e.g., SISAL [4], Id [7]) are just two of
many paradigms that have intrigued us by the
idea of being easy for the compiler to derive paral-
lelism and easy for the architecture to exploit this
parallelism. Another example is APL [5], which
has pioneered concepts of data parallel program-
ming. Some of its features can now be found in
Fortran 90.

Although the many proposed languages have
contributed to the discussion of new language
standards, very few of them have become used
more widely than in a laboratory environment or

in a specific area. It almost seems to be true

that “the good languages are never the used lan-
guages”. Because of this, in this workshop session
we are also asking for extensions to commonly-
used languages with features that enhance their
performance portability.

2.4 Enhance current languages with
performance-portability features

This topic is the focus of two accompanying pa-
pers:

Loveman at Digital Equipment Corporation [6]
describes High-Performance Fortran and other
enhancements to the Fortran language. His paper
is entitled “Fortran: A Modern Standard Pro-
gramming Language for Parallel Scalable High-
Performance Computing”. It describes how For-
tran has evolved from its first definition to the
youngest draft standard of Fortran 95.

In 1966 Fortran was designed as an “easy-to-
learn language for which a compiler could gen-
erate very efficient code for a variety of com-
puter architectures”; hence, a portable language.
Among the revisions, FORTRAN 77 and For-
tran 90 have become ANSI standards whereas the
High-Performance Fortran Forum is developing a
de-facto standard. Most important for our ques-
tion of portability across parallel machines is the
youngest of these efforts: HPF. Loveman’s pa-
per briefly reviews the features added by FOR-
TRAN77 and Fortran 90 and then introduces
HPF with its directives for data layout and place-
ment (align and distribute) and parallel language
elements (forall construct and independent di-
rective). Examples illustrate the usefulness of the
HPF features for porting programs between dif-
ferent architectures and maintaining them over
time.

The paper “Portable Parallel Programming in
HPC*+” by Gannon and his research group at
Indiana University [2] describes a similar effort
involving industry and academia nationally and
internationally. The team is exploring versions of
CTT, enhanced with features to express parallel
programs in a portable manner.

HPC*H+ addresses both computer architectures
that provide a single, shared address space (con-
text in HPCHT terminology) and distributed ad-
dress spaces (multiple contexts). Parallelism can
be expressed explicitly in the form of parallel
loops or by spawning parallel threads. Of fur-
ther importance are the standard library func-
tions (STL), parallel versions of which are be-
ing designed in the HPC*t effort. They support
an implicit parallel programming style that com-
poses programs from library functions that are
already optimized for the machine at hand. Mul-
tiple contexts are supported through constructs
such as distributing data structures (objects in
C*1) and identifying the subrange of an object
that belongs to the context of the current pro-
cessor. For multiple-context situations, HPC*+
supports an SPMD programming style where all
participating processors execute the same pro-
gram, each operating on the assigned data sub-
range. Data mapped to other contexts can be
accessed via global pointers. Such accesses may
be implemented in the underlying runtime sys-
tem by communicating messages.

3 Discussion: How Portable can
Parallel Programs be Today?

Perhaps the most challenging task of our porta-
bility discussion is to analyze the evidence that
we have today and to compose a picture of the
current state of the art in parallel programming
languages. The reader shall be warned that this
is by nature somewhat biased. However, the ar-
guments presented here are not intended as a crit-
icism of the presented projects. In the contrary,
the accompanying papers are among the prime
efforts underway to provide portable parallel lan-
guages. From them we can learn how far we have
come, and how far we still need to go in order to
achieve our ultimate goal of highly-portable soft-
ware.

We will try to find answers to the following
questions:

e How can portable parallel programming be
accomplished for platforms with great archi-

tectural diversity in a way that still exploits
machine-dependent features?

e What is the minimum set of new language
features that the user who is knowledge-
able of well-established languages will have
to learn?

e Can we quantify the tradeoff between ease-
of-use and achievable performance?

3.1 Ways of accomplishing perfor-
mance portability

The three contributions give us insight into two
different ways of exploiting machine-dependent
features while retaining a certain level of pro-
gram portability. The approach of automati-
cally transforming standard sequential languages
puts most emphasis on the portable user inter-
face. Put somewhat extremely, we could argue
that retaining the fully portable standard lan-
guage is of such paramount importance to the
large, non-computer-knowledgeable user commu-
nity, that we cannot afford to change this inter-
face. Machine-specific features have to be ex-
ploited by intelligent translators and we may have
to accept lower performance where these transla-
tors fail to perform their optimizations. Padua’s
group is helping us to explore this dimension of
the portability space. They have shown that sig-
nificant progress has been made over the past few
years, but also that much space remains to be ex-
plored in the future.

The alternative approach is being studied by
the HPF and HPCTT communities.
efforts chose to extend the existing standards of
Fortran and CT1, respectively. An extreme view
of this approach would be that taking advantage
of machine-specific features is so important that
we must retrain our programmers to learn new
essential language features that enable portable
performance. The big question is: What are these
features? HPF explores the answer of providing
programmers with a shared-address-space view of
a parallel machine in which, however, one has to
be aware of the fact that data is distributed across

These two

many processors’ memories. The programmer de-
fines in what way this distribution will happen,
but the system (i.e., the compiler) does the ac-
tual tedious bookkeeping of array and loop in-
dices and the orchestration of send/receive-type
communication between processors. HPCTT ex-
plores the space even a step further. It allows the
programmer to define multiple contexts, clearly
reflecting the specific feature of the distributed-
address-space machine class. Library functions
are provided that facilitate the distribution and
bookkeeping of objects across such multiple con-
texts. However, the programmer is aware of the
SPMD execution of the program, which has mul-
tiple threads of control, each operating in its own
context.

3.2 What i1s the minimum set of new
language features that the user will
have to learn?

The two approaches directly reflect the amount
of language features that the user has to learn. If
we manage to provide tools that optimize stan-
dard languages for parallel computers effectively,
we relieve the user from having to learn any new
language elements. In contrast, HPF requires the
user to learn about parallel activities and data
distribution; in addition, HPCT¥ requires the
user to learn about multiple contexts and how
to communicate between them.

Loveman has argued that, as languages and
standards evolve, HPF-like features may be found
in future standard Fortran. Perhaps, such a next
generation language will unify the two seemingly
different approaches. Perhaps users of some fu-
ture Fortran or C dialect will write their first pro-
gram version using a sequential language subset
and will rely on automatic optimization technol-
ogy. As the user community becomes increas-
ingly aware and knowledgeable of parallel pro-
gramming constructs, second generations of pro-
grams may be written or rewritten, expressing
parallelism where sequential algorithms are not
inherent to the problem. In all cases, optimiza-
tion technology as described by Padua is an es-
sential and probably increasingly important ba-

sic capability of all compilers. Both Gannon and
Loveman have made important contributions to
this field as well. Hence, expertise on how far
compilers can go and where the user has to be-
come involved, can be found in all teams that
participate in the search for the most portable
parallel language.

3.3 Can we quantify the tradeoff be-
tween ease of use and achievable
performance?

One of the most important questions when com-
paring different approaches is how they perform.
We would like to have evidence of how much per-
formance and software development cost we gain
or lose if we follow the one or the other approach.

The success rate with which automatic paral-
lelization can be achieved is approximately one in
two programs. This was measured with the Po-
laris compiler, given test suites such as the Per-
fect and the SPECfp95 benchmarks. Hence we
have a few initial points on our tradeoff curve.
However, more data on automatic parallelization
will be needed to complement these points for
new application areas (e.g., irregular and non-
numerical programs), machines that do not sup-
port a shared address space, and non-Fortran lan-
guages.

For HPF and HPC** we don’t have evidence
yet that would let us fill in the tradeoff diagram.
However, several HPF compilers have recently be-
come available and we can expect that perfor-
mance numbers, across a wide range of applica-
tions written in this language, will become avail-
able soon. HPCT™ is an even younger effort and
we cannot yet expect hard proof of its concept.
Thus, we will have to ask the same question in
the future again.

Assessing ease of use is even more difficult than
quantifying performance in terms of program exe-
cution speed. Many questions are important and
most of them are difficult to answer: What lan-
guages and machine concepts do we teach our
young software engineers? What are the sup-
porting tools that help us learn new languages

on-demand and help us find programming errors
quickly? How willing are companies to invest in
retraining their programmers if there is indica-
tion of long-term benefits? Therefore, assessing
the ease of use ultimately remains with the reader
and he or she will have to complete the tradeoff
curve subjectively.

4 Conclusions

Performance portability is a very important
property of a “good” parallel computer lan-
guage. Providing such a language takes ef-
forts at two fronts: Defining the language ele-
ments that are adequate for expressing a par-
allel computation and implementing the nec-
essary compiler technology that can do the
“uninteresting” programming tasks automat-
ically.

Significant progress has been made at both
fronts, as evidenced by the three accompany-
ing papers in this workshop session. How-
ever, much more work is needed before the
user community of parallel machines can see
programs written in truly portable languages.
Most importantly, we will need to provide
more data that lets us compare different ap-
proaches for portable parallel languages. New
language extensions for Fortran and C** are
being defined with broad support of industrial
and academic groups. Compilers that support
these extensions are now becoming available.
We are ready to use these tools and to evaluate
the obtainable performance of real application
programs and how it compares to those ob-
tained through compiler-optimized standard
sequential languages.

References

[1]

Seth Abraham. Interconnection networks: Di-
mensions in design. In 1996 ICPP Workshop
on Challenges for Parallel Processing, pages
45-51, August 1996.

Peter Beckman, Dennis Gannon, and Eliza-
beth Johnson. Portable parallel programming
in Ct+. In 1996 ICPP Workshop on Chal-
lenges for Parallel Processing, pages 132—139,
August 1996.

W. Blume, R. Figenmann, K. Faigin,
J. Grout, J. Lee, T. Lawrence, J. Hoeflinger,
D. Padua, Y. Paek, P. Petersen, B. Pot-
tenger L. Rauchwerger, P. Tu, and S. Weath-
erford. Restructuring programs for high-speed
computers with Polaris. In 1996 ICPP Work-
shop on Challenges for Parallel Processing,
pages 149-162, August 1996.

[4]

J.T. Feo, D. C. Cann, and R. R. Oldenhoeft.
A report on the SISAL language project.
Journal of Parallel and Distributed Comput-
ing, 10(4):349-366, December 1990.

Kenneth E. Iverson. A Programming Lan-
guage. Wiley, New York, 1962.

David Loveman. Fortran: A modern stan-
dard programming language for parallel scal-
able high performance technical computing.
In 1996 ICPP Workshop on Challenges for
Parallel Processing, pages 140-148, August

1996.

R.S. Nikhil. Id-Nouveau (version 88.0) ref-
erence manual. Technical report, MIT Lab-

oratory for Computer Science, Cambridge,
Mass., 1988.

John Rice. Measuring the performance of par-
allel computations. In 1996 ICPP Workshop
on Challenges for Parallel Processing, pages
89, August 1996.

