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Abstract

The ability to automatically parallelize standard pro-

gramming languages results in program portability

across a wide range of machine architectures. It is

the goal of the Polaris project to develop a new paral-

lelizing compiler that overcomes limitations of current

compilers. While current parallelizing compilers may

succeed on small kernels, they often fail to extract any

meaningful parallelism from whole applications. Af-

ter a study of application codes, it was concluded that

by adding a few new techniques to current compilers,

automatic parallelization becomes feasible for a range

of whole applications. The techniques needed are in-

terprocedural analysis, scalar and array privatization,

symbolic dependence analysis, and advanced induction

and reduction recognition and elimination, along with

run-time techniques to permit the parallelization of

loops with unknown dependence relations.

1 Introduction

Supporting standard programming languages on any
kind of computer system is and has been an important
issue in computer science. This issue becomes par-
ticularly important on parallel machines where pro-
gramming and language interfaces must address the
more complex issue of orchestrating the joint oper-
ation of multiple processors. As machine structures
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evolve, users of such machines must repeatedly learn
new machine-speci�c features and language elements.
These issues make the discipline of supporting stan-
dard languages, and thus automatic program trans-
formation, an interesting and important area of re-
search.

For many years our research group has been work-
ing toward the goal of making parallel computing
a practical technology. Parallelizing compilers have
played an important role in this quest. The present
project has its early roots in a compiler evaluation
e�ort of the late '80s in which we determined that,
despite their success on kernel benchmarks, available
compilers were not very e�ective on whole programs
[8, 5]. Based on these results we initiated an e�ort to
hand-parallelize complete programs in order to iden-
tify e�ective program transformations [8, 7]. The need
for a representative set of real programs for use in this
evaluation was satis�ed in part through the Perfect
Benchmarks R
 e�ort, a joint benchmarking initiative
of the University of Illinois and many other institu-
tions [2].

As a result of these e�orts we found that not only
could real applications be parallelized e�ectively, but
the transformations could also be automated in a par-
allelizing compiler. One task remained: we had not
actually implemented these transformations and thus
had not delivered the �nal proof that parallelizing
compilers could be considerably improved.

To address this issue we implemented the proto-
type Polaris compiler and evaluated its e�ective-
ness. Polaris is a source-to-source automatic restruc-
turer which uses advanced analysis techniques to de-
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tect parallelism and subsequently generates machine-
speci�c output for a given target architecture. Polaris
currently produces output for the Cray T3D and SGI
Challenge multiprocessors.
The Polaris implementation includes a sizable ba-

sic infrastructure for manipulating Fortran programs,
which we describe in Section 2. The analysis and
transformation techniques implemented in Polaris are
discussed in Section 3. Finally, in Section 4 we present
an evaluation of Polaris.

2 Internal Organization

The aim in the design of Polaris' internal organization
[9] was to create an internal representation (IR) that
enforced correctness, was robust and, through high-
level functionality, was easy to use.
Our view of the IR is that it is more than just the

structure of the data within the compiler. We also
view it as the operations associated with this data
structure. Intelligent functionality can frequently go
a long way toward replacing the need for complex data
structures and is usually a more extensible approach.
Thus, we chose to implement the data-portion of the
IR in the traditional, straightforward form of an ab-
stract syntax tree. On top of this simple structure,
however, we built layers of functionality which allow
the IR to emulate more complex forms and higher-
level operations.
We chose to implement Polaris in the object-

oriented language C++ as it both allowed us struc-
tural 
exibility and gave us desired data-abstraction
mechanisms. Operations built into the IR are de�ned
such that the programmer is prevented from violating
the structure or leaving it in an incorrect state at any
point during a transformation. Transformations are
never allowed to let the code enter a state that does
not correspond to proper Fortran syntax. The system
also guarantees that the control 
ow graph is consis-
tent through automatic updates of this information
as a transformation proceeds. The automatic consis-
tency maintenance has decreased the time required
to implement new optimizations in Polaris because
potentially time-consuming error determination pro-
cedures are avoided.
Features that have been implemented in order to

make the system robust and to maintain consistency
include:

� Extensive error checking throughout the system
through the liberal use of assertions. Within
Polaris, if any condition or system state is as-
sumed, that assumption is speci�ed explicitly in a

p assert() (short for \Polaris assertion") state-
ment which checks the assumed condition and
reports an error at runtime if the assumption is
incorrect.

� Detection of object deletion when that object is
being referenced from another part of Polaris. If
a deleted object is referenced, Polaris will abort
with an internal consistency error. This, and as-
sociated problems, are avoided by the reference
counting of all objects stored in Polaris collec-
tions.

� The detection of aliased structures (structure
sharing is not allowed) causes a run-time error.
For example, it would be an error to create a new
expression and insert it into two di�erent state-
ments without �rst making a copy of it.

� A clear understanding of who is responsible for
the deallocation of an object. The creator of
an object is the initial \owner" of the object.
By convention, ownership is transferred when a
pointer to an object is passed as an argument to
a method or function call. On the other hand,
when a a C++ reference to an object is passed as
an argument, ownership is not being transferred.
The owner of an object is responsible for its de-
struction (deallocation). The use of this con-
vention simpli�es the programming interface be-
tween the basic Polaris infrastructure and passes
which are built upon the infrastructure.

We followed the usual object-oriented approach in
our implementation in that classes are used to rep-
resent the various program structures. These include
programs, program units, statements, statement lists,
expressions, symbols and symbol tables as well as a
complete set of support structures which include pa-
rameterized container and iterator classes. Each class
provides extensive high-level functionality in the form
of member functions used to manipulate the class in-
stances.
Much of the implementation is intuitive and

straightforward. The Program class, for instance, is
a collection of ProgramUnits. Among the included
member functions are routines for reading and dis-
playing complete Fortran codes. There are also mem-
ber functions for adding additional ProgramUnits
to a Program as well as merging Programs.
The ProgramUnit class is, similarly, a container

for the various data structure elements that make up a
Fortran program unit including statements, a symbol
table, common blocks, and equivalences.
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Statements are simple, non-recursive structures
kept in a StmtList object. Many high-level mem-
ber functions are implemented within the StmtList
class in order to provide the programmer with a pow-
erful and easy-to-use environment. Examples include
routines that return an iterator over selected parts
of the statement list (such as the body of a do loop
or all statements of a speci�c type), as well as mem-
ber functions which copy, insert, delete, or move any
well-formed sublist of statements or speci�c multi-
block statement groups (such as a block-if statement
framework or a do-enddo group).
To maintain complete control of consistency inside

the StmtList class, the manipulation of statements
or lists of statements is restricted by checks during
the execution of Polaris. For example, the block to
be processed must be entirely well-formed with regard
to multi-block statements such as do loops and block-
if statements. Another example is the restriction
that deleting a block containing a statement which
is referenced from outside the block being deleted is

agged as a run-time error during Polaris' execution.
The programmer can defer this consistency man-

agement by using a List<Statement> for the modi-
�cation. In this way, a section of code can be manipu-
lated that is inconsistent during its creation and mod-
i�cation but is checked for consistency when it is in-
corporated into the program. These safeguards create
an environment where traditionally time-consuming
errors are automatically recognized and can be more
quickly identi�ed.
The data �elds declared in the base Statement

class (and which, as a result, exist in all statements)
include sets of successor and predecessor 
ow links,
sets of memory references, and an outer link that
points to the innermost enclosing do loop. Whenever
practical we implemented the member functions such
that any modi�cation to a statement results in the
updating of a�ected data in order to retain consis-
tency.

Each derived statement class may declare addi-
tional �elds. The DoStmt, for example, declares a
follow �eld which points to its corresponding End-
DoStmt as well as �elds for the index of the loop
and the init, limit, and step expressions. Each state-
ment class also declares a number of member func-
tions which include, for example, a routine that re-
turns an iterator which traverses all of the expressions
contained in the statement. Along with similar mem-
ber functions in the Expression class, this makes it
easy, for instance, to traverse all the expressions in a
loop body during dependence analysis.
Expressions and symbols are implemented in much

the same way as statements in that an abstract
base class declares structures common to all elements
and speci�c classes are derived from the base. The
base Expression class includes, for instance, mem-
ber functions for such operations as retrieving type
and rank information, simpli�cation and structural-
equality comparison. Polaris has very powerful rou-
tines to test the structural-equality of expressions,
as well as pattern-matching and replacement rou-
tines. These are based on an abstract Wildcard

class, which is derived from Expression. To per-
form pattern matching, one simply creates a pattern
expression (an expression that may contain wildcards
anywhere in the tree) and compares this pattern to an
expression using the equality matching member func-
tion. These functions have proven to be powerful and
general and form the basis for a higher-level tool for
pattern matching and replacement named \Forbol"
[19].

3 Analysis Techniques

In the following sections we will discuss many of the
techniques that have been built into the current ver-
sion of Polaris.

The �rst is the method of interprocedural analysis
used for this stage of Polaris' development. We have
chosen to implement inline expansion for several rea-
sons: (1) it provides us with the most informationpos-
sible, (2) it allows existing intraprocedural techniques
to be used, (3) it allows the calling overhead of small
routines to be eliminated. However, it is well known
that compile-times grow inordinately large for fully-
inlined programs, and we are currently implementing
a comprehensive interprocedural analysis framework
as well.

The second technique is the recognition and re-
moval of inductions and reductions. Generalized
forms of these recurrences have been found to have
an impact on the performance of the Perfect Bench-
marks.
The third technique is symbolic dependence anal-

ysis for the recognition of parallelism. Traditionally,
dependence analysis has been numerical in nature. By
exploiting the ability to reason about symbolic expres-
sions we have shown that many previously intractable
cases can now be automatically analyzed.
The fourth technique is scalar and array privatiza-

tion. This is one of the fundamental enabling tech-
niques. Through advanced 
ow-sensitive analysis we
can determine when arrays and even array sections
can be replicated to reduce the storage that must be
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shared among the processors.
The �nal technique discussed in this paper is a run-

time method for �nding and exploiting parallelism.
Even with the advanced symbolic analysis techniques
and transformations that we have implemented, we
�nd that sometimes the control 
ow of a region or the
data dependence patterns are a function of the pro-
gram input data. For these cases we are developing
run-time methods for the recognition and implemen-
tation of parallelism. These techniques are based on
speculative execution, and are currently being imple-
mented in Polaris [16].

3.1 Inline Expansion

The Polaris inliner is designed to provide three types
of services: automatic inline expansion of certain sub-
programs for analysis, selective inline expansion of
subprograms for code generation, and selective mod-
i�cation of subprograms.
Interprocedural analysis is a requirement for e�ec-

tive automatic parallelization. In Polaris, we chose
to use automatic inline expansion of certain subpro-
grams to aid full 
ow-sensitive interprocedural anal-
ysis, which is especially important for privatization.
Driver routines are provided by Polaris to automati-
cally mark certain call sites for inline expansion, and
to either expand at all call sites at which inline ex-
pansion has been requested, or to expand at all call
sites at which inline expansion was not forbidden.
For complete inline expansion, the inliner driver is

passed a collection of compilation units: one is des-
ignated as the top-level program unit. The driver
repeatedly expands subroutine and function calls in
the top-level program unit. This allows the inliner to
handle complex argument redimensioning and retyp-
ing by generating equivalences.
To minimize the cost of complete inline expansion,

the transformations to inline a given subprogram into
a \top-level" routine (one which will remain after all
inline expansions have been performed) are split into
site-independent and site-speci�c sets.
The �rst time each subprogram is to be expanded

into a \top-level" routine the inliner creates a cor-
responding \template" object and performs all site-
independent transformations (e.g., variable renam-
ing) on it. Then, when an individual \top-level" call
site is to be expanded, the inliner copies the corre-
sponding \template" object into a \work" object, per-
forms site-speci�c transformations (e.g., formal to ac-
tual remapping) on its source, then moves that trans-
formed source into the \top-level" routine at the call
site.

In most cases, the inliner can map formal arrays di-
rectly into the corresponding actual array in the top-
level program. Occasionally, a formal array must be
mapped into an equivalent, linearized version of the
actual array. In practice, the range test (Section 3.3)
has been able to overcome the potential loss of depen-
dence accuracy caused by linearization in most cases.
After the analysis of a program using automatic

inline expansion, the template objects created during
analysis can be used as a base for performing selective
inline expansion of subprograms for code generation.
The information derived from performing this analy-
sis can also be used to guide selective modi�cation of
subprograms using such techniques as cloning, loop
embedding, and loop extraction [10].
All of the programs that we have tested were in-

lined successfully by Polaris. Some constructs are not
easily expressible in Fortran after inline expansion.
The constructs which are not fully supported involve
the need for expressing an equivalence between non-
conforming formal and actual parameters. A typical
case (passing a REAL actual array to a COMPLEX
formal array, an example that occurs in the Perfect
Benchmarks) is handled automatically, but requires
the favorable assumption that the actual array refer-
ences are on double-word boundaries.

3.2 Induction Variable Substitution
and Reduction Recognition

Induction and reduction variables form recurrences,
which inhibit the parallel execution of the enclosing
loop. Each loop iteration computes the value of the
variable based on the value assigned in the previous it-
eration. In data dependence terms, this forms a cycle
in the dependence graph, which serializes the loop.
Reduction variables most often accumulate values

computed in each loop iteration, typically of the form
sum = sum + <expression>. Because the \+" oper-
ation is associative, partial sums can be accumulated
on parallel processors and summed at the end of the
loop. Due to the limited precision of Fortran vari-
ables, this transformation may introduce numerically
di�erent results, and therefore in Polaris, as in most
compilers, the user has the option of disabling this
transformation. However, we have not found this to
be a problem in our benchmark suite.
Polaris uses a directive to 
ag potential reductions

of the form:

A(�1,�2,. . . ,�n) = A(�1,�2,. . . ,�n) + �

where �i and � are expressions that do not contain
references to A, A is not referenced elsewhere in the
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loop (outside of other reduction statements), and n
may be zero (i.e., A is a scalar variable). Polaris
initially recognizes candidate reductions of this form
using the Wildcard class discussed in Section 2. Af-
ter 
agging candidate reduction statements, the data-
dependence pass later analyzes and removes the 
ags
for those statements which it can prove have no loop-
carried dependences.
More than one reduction statement can occur in a

loop and they may sum into di�erent array elements
in di�erent loop iterations. Reductions which sum
into a single array element or into a scalar are termed
single address reductions. Those which sum into
di�erent array elements are termed histogram re-

ductions. The Polaris compiler recognizes reductions
of both types and solves them in one of three forms:
blocked, private, or expanded [14].
Induction variables form arithmetic and geometric

progressions which can be expressed as functions of
the indices of enclosing loops. A simple case is the
statement K=K+1, which can be deleted after replacing
all occurrences of K with the initial value of K plus the
trip count as a function of the loop index.
Current compilers are able to handle induction

statements with loop invariant right-hand-sides in
multiply nested \rectangular" loops. In our manual
analysis of programs we have found two additional
important cases: one, when induction variables are a
function of other induction variables (we term these
cascaded induction variables), and two, when induc-
tion variables occur within triangular loop nests.
The following example shows a triangular loop nest

that contains a cascaded induction variable. Po-
laris transforms this code into the parallelizable form
shown (in Section 3.3 we will show how our depen-
dence test investigates these non-linear subscript ex-
pressions). Notice that the use of cascaded induction
variables (K1 and K2with initial values 0) cause an un-
usually large code expansion. In order to address the
need for strength reduction in cases like this we are
implementing a scheme which assigns initial closed-
form values to private copies of induction variables at
each parallel loop header, leaving uses in the remain-
der of the loop body in their original (i.e., unsubsti-
tuted) form.
The Polaris induction variable substitution algo-

rithm performs three steps in order to recognize and
substitute induction variables (the following considers
only additive induction variables; however multiplica-
tive inductions are solved as well [13]):

1. Locate candidate induction statements by rec-
ognizing recurrence patterns of scalar variables

do I = 1,N do I = 1, N

do J = 1,I do J = 1, I

K1 = K1 + 1 X((I4 � 2I3 + 3I2�
K2 = K2 + K1 ) 2I+ (4I2 � 4I)J+
X(K2) =... 4J2 + 4J)=8) = : : :

end do end do

end do end do

Figure 1: Substitution of cascaded inductions

which are incremented by either an enclosing loop
index, an expression containing other candidate
induction variables, or any loop-invariant expres-
sion.

2. Compute the closed form of the induction vari-
able at the beginning of each loop iteration (and
the last value at the end of the loop) as functions
of the enclosing loop indices. The total increment
incurred by the induction variable in a loop body
is �rst determined, and then this expression is
summed across the iteration space of the enclos-
ing loop. If an inner loop is encountered while
computing this increment, the algorithm recur-
sively descends into the inner loop and �rst com-
putes the closed form of the induction variable
for the inner loop.

3. Substitute all occurrences of the induction vari-
ables. The substituted value is the closed form
expression for the induction variable at the loop
header plus any increments encountered up to the
point of use in the loop body.

3.3 Symbolic Dependence Analysis

Data dependence analysis is crucial to determine what
statements or loops can be safely executed in parallel.
Two statement instances are data dependent if they
both access the same memory location and at least
one of these accesses is a write. If two statements do
not have a chain of dependence relations connecting
them, then they can be executed in parallel. Also,
a loop can be executed in parallel, without the need
for synchronization between iterations if there are no
dependences between statement instances in di�erent
iterations.
There has been much research in the area of data

dependence analysis. Because of this, modern day
data dependence tests have become very accurate and
e�cient [12]. However, most of these tests require the
loop bounds and array subscripts to be represented as
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a linear (a�ne) function of loop index variables; that
is, the expressions must be in the form c0+

Pn

j=1 cjij
where cj are integer constants and ij are loop index
variables. Expressions not of this form are called non-
linear (e.g., they have a term of the form n � i where
n is unknown). Techniques have been developed to
transform nonlinear expressions into linear ones (e.g.,
constant propagation and induction variable substi-
tution), but they are not always successful.
In our experience with the Perfect Benchmarks,

such nonlinear expressions do occur in practice.
In fact, four of the twelve codes (i.e., DYFESM,
QCD, OCEAN, and TRFD) that we hand-parallelized
would exhibit a speedup of at most two if we could
not parallelize loops with nonlinear array subscripts
[4]. For some of these loops, nonlinear expressions oc-
curred in the original program text. For other loops,
nonlinear expressions were introduced by the com-
piler. The two most common compiler passes that can
introduce nonlinearities into array subscript expres-
sions are induction variable substitution and array
linearization. An example of how induction variable
substitution can introduce nonlinear array subscripts
is shown in Figure 2. This loop nest, a simpli�ed ver-
sion of the nest OLDA/100 in TRFD, accounts for
about 70% of the code's sequential execution time.

X0 = 0

do I = 0, M-1 do I = 0, M-1

X = X0

do J = 0, N-1 do J = 0, N-1

do K = 0, J-1 do K = 0, J-1

X = X+1

A(X) = � � � ) A(K+ 1+ (I(N2 + N)
end do +J2 � J)=2) = � � �
end do end do

X0 = X0+ (N2 + N)=2 end do

end do end do

Figure 2: Induction substitution in TRFD

3.3.1 Range Test

To handle such nonlinear expressions, we have devel-
oped a symbolic dependence test called the range test
[6]. The range test can be viewed as an extension of
a symbolic version of Triangular Banerjee's Inequal-
ities test with direction vectors [1, 20]. In the range
test, we mark a loop as parallel if we can prove that
the range of elements accessed by an iteration of that
loop does not overlap with the range of elements ac-
cessed by other iterations. We determine whether
these ranges overlap by comparing the minimum and

maximum values of these ranges. To maximize the
number of loops found parallel using the range test,
we symbolically permute the visitation order of the
loops in a loop nest when computing their ranges.

The computation of the minimum and maximum
values of a symbolic array access expression can be
quite involved. For example, the maximum value of
the expression f(i) = n � i for any value of i, where
a � i � b, can be either n�a or n� b, depending upon
the sign of the value of n. So, to compute the min-
imum or maximum of an expression for a variable i,
the range test �rst attempts to prove that the expres-
sion is either monotonically non-decreasing or mono-
tonically non-increasing for i. The monotonicity of an
expression f is determined by computing the forward
di�erence of the expression (f(i+1)�f (i)), then test-
ing whether this expression is greater than or equal to
zero, or less than or equal to zero. If a � i � b, then
the maximum of expression f(i) for any legal value
of i is f(b) if it is monotonically non-decreasing for
i, f(a) if it is monotonically non-increasing for i, and
unde�ned otherwise. The computation of the mini-
mum is similar.

As an example, we will show how to compute the
minimum and maximum values of the subscript ex-
pression of array A for a �xed iteration of the out-
ermost loop of the loop nest shown in Figure 2. Let
f(i; j; k) = (i� (n2+n)+ j2� j)=2+k+1 be the sub-
script expression for array A. To compute the min-
imum and maximum values of f for any legal value
of the inner pair of loops, we will �rst determine the
minimum and maximum values of f for the inner-
most loop, which has index k, then determine the
minimum and maximum values that the middle loop,
which has index j, can take for these minimum and
maximum values. Since the forward di�erence for in-
dex k is positive (i.e., f(i; j; k + 1) � f(i; j; k) = 1),
f is monotonically non-decreasing for k. Thus, the
maximum value (a1) that f can take for any value of
k is a1(i; j) = f(i; j; j�1) = (i�(n2+n)+j2�j)=2+j.
Similarly, the minimum value (b1) of f for index k is
b1(i; j) = f(i; j; 0) = (i�(n2+n)+j2�j)=2+1. For the
next loop, the index j is monotonicallynon-decreasing
for both a1 and b1, since a1(i; j + 1) � a1(i; j) =
j + 1 > 0 and b1(i; j + 1) � b1(i; j) = j � 0. So
the maximum value (a2) that f can take for any le-
gal value of indices j and k is a2(i) = a1(i; n � 1) =
(i � (n2+ n) + n2 � n)=2 and the minimum value (b2)
is b2(i) = b1(i; 0) = (i � (n2 + n))=2 + 1.

By comparing these minimum and maximum val-
ues of array accesses, we can prove that there are no
loop-carried dependences between these accesses. For
example, there cannot be a loop-carried dependence
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from A(f) to A(g) for a loop with index i if the max-
imum value accessed by the jth iteration of index i
for f is less than the minimum value accessed by the
(j+1)th iteration of i for g, and if this minimumvalue
of g is monotonically non-decreasing for i. See [6] for
other tests that use these minimum and maximum
values of f and g.

Returning to the example for Figure 2, we will now
apply the dependence test described above to prove
that A(f) does not carry any dependences for the out-
ermost loop. From the previous example, we know
that the maximum value that f can take for any le-
gal value of indices j and k is a2(i) = (i � (n2 +
n) + n2 � n)=2 and the minimum value is b2(i) =
(i�(n2+n))=2+1. By the de�nition of the dependence
test given above, if we can prove that a2(i) < b2(i+1)
and b2 is monotonically non-decreasing for i, A(f)
cannot carry any dependences for the outermost loop.
Since b2(i + 1) � a2(i) = n + 1 > 0, a2(i) must be
less than b2(i + 1). Also, b2 is monotonically non-
decreasing because a2(i + 1) � a2(i) = n2 + n > 0.
Therefore, there are no carried dependences for the
outermost loop and it can be executed in parallel.
The same dependence test can be used to prove that
the other loops from Figure 2 also do not carry de-
pendences.

As the previous examples have shown, the range
test requires the capability to compare symbolic ex-
pressions. For example, we needed to test whether
j > 0 or n2 + n > 0 in the previous examples. To
provide such a capability, we have developed an al-
gorithm called range propagation. Range propaga-
tion consists of the determination of symbolic lower
and upper bounds, called ranges, for each variable
at each point of the program. The next subsection
will describe an e�cient way in which these variable
ranges may be computed from the program's control

ow. Expression comparison using ranges is done by
computing the sign of the minimum and maximumof
the di�erence of the two expressions, using techniques
similar to those described earlier.

A more complicated example is shown in Figure 3.
This loop nest accounts for 44% of OCEAN's sequen-
tial execution time. (Interprocedural constant propa-
gation and loop normalization were needed to trans-
form the loop nest into the form shown.) Current data
dependence tests would not be able to parallelize any
of the loops in the nest because of the nonlinear term
258 � x � j. The range test can prove all three loops
as parallel. However, for it to do so, it must apply its
tests on a temporary permutation of the loop nest,
so that the outermost loop is swapped with the mid-
dle loop. This is necessary since the middle loop has a

larger stride (258�x) than the stride of the outermost
loop (129). This causes an interleaving of the range
of accesses performed by two distinct iterations of the
outermost loop. By swapping the middle and outer-
most loops, the interleaving is eliminated, allowing all
three loops to be identi�ed as parallel.

do K = 0, X-1

do J = 0, Z(K)

do I = 0, 128

A(258XJ+ 129K+ I+ 1) = � � �
A(258XJ+ 129K+ I+ 1+ 129X) = � � �

end do

end do

end do

Figure 3: Simpli�ed loop nest FTRVMT/109

The symbolic capabilities of the range test permit
it to handle many of the symbolic expressions we
have seen in the Perfect Benchmarks. Most current
data dependence tests cannot handle symbolic sub-
scripts [4]. The only drawback of our test (compared
to the Triangular Banerjee's test with directions), is
that it cannot test arbitrary direction vectors, par-
ticularly those containing more than one `<' or `>'
(e.g., (<;<)). The permutation of loop indices par-
tially overcomes this drawback. (These permutations
can be thought of as permutations of the dependence
direction vectors tested.) We have found that this
limited set of direction vectors, along with the per-
mutation of loop indices, was su�cient to parallelize
all of the relevant loop nests in our test suite. An
advantage of the range test is that the worst case of
the number of direction vectors tested is better than
Banerjee's Inequalities with directions, since we test
at most O(n2) direction vectors while Banerjee's In-
equalities with directions may test as many as O(3n)
direction vectors.

3.4 Scalar and Array Privatization

Although symbolic dependence analysis will allow us
to prove that more references in a loop nest are in-
dependent from each other, it will not allow a signif-
icantly greater number of important loops to be par-
allelized without additional transformations. In our
experience, the most important of these transforma-
tions is array privatization [17].
Array privatization is used to eliminate memory-

related dependences. It identi�es scalars and arrays
that are used as temporary work spaces by a loop
iteration, and allocates a local copy of those scalars
and arrays for that iteration.
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To prove that a variable is privatizable, every use of
that variable must be dominated by a de�nition of the
variable in the same loop iteration. Determining the
dominating de�nition for a scalar variable is straight-
forward, since a scalar is an atomic object that can
only be read and written as a whole. However, since
an array variable is a composite object that can be
partially read and written, determining whether an
array assignment dominates an array use requires an
elaborate analysis of the array ranges. More speci�-
cally, the array privatizer must prove that the region
of array elements referenced by the use is a subset
of the region of array elements de�ned by the domi-
nating assignment. Symbolic analysis techniques are
often required for these region comparisons, since the
regions often contain symbolic expressions.
In many cases, determining whether a region in a

de�nition dominates a region in a use can be done us-
ing local information. However, in many other cases,
it requires more elaborate symbolic analysis using
global information.

S1 : M = ...

...

S2 : MP = M * P

...

do I = 1, N

do J = 1, MP

A(J) = ...

end do

...

do K = 1, M

do L = 1, P

...= A(M*(L-1)+K) ...

end do

end do

end do

Figure 4: Example of Array Privatization

A simple example where such analysis is necessary
for array privatization is shown in Figure 4. To par-
allelize the I loop, array A must be privatized. Loop
J de�nes the region A(1:MP), while loop K uses region
A(1:M*P). Thus, to prove that A is privatizable, we
only need to prove that MP � M � P. To prove this,
we need to �nd out how the symbolic variables are
related from their global def-use relations.
In Polaris, we use a demand-driven algorithm based

on a Gated Static Single Assignment (GSA) represen-
tation to obtain global information [18]. In GSA form,

the value of a symbolic variable is represented by
a symbolic expression involving other symbolic vari-
ables, constants, and gating functions.
In the SSA representation, �-functions of a single

type are placed at the join nodes of a program 
ow
graph to represent di�erent de�nitions of a variable
coming from di�erent incoming edges. The condition
under which a de�nition reachs a join node is not
represented in the �-function. In the GSA represen-
tation, several types of gating functions are de�ned to
represent the di�erent types of conditions at di�erent
join nodes.
To obtain the GSA form used in Polaris, program

variables are renamed such that each time the vari-
able is de�ned (e.g., reaches a join node) it is given a
new name. Then, each time a variable is used, it is
named according to which de�nition reaches it. In the
program shown in Figure 4, each variable is assigned
only once, so no renaming is necessary to obtain the
GSA form. Our algorithm proceeds backwards from
use to de�nition. To prove that MP � M � P, the al-
gorithm starts at loop J and backward-substitutes MP
with M � P as de�ned in statement S2. Because the
goal is satis�ed, the algorithm stops at this point and
no further replacements are performed.

do I = 2,N

do J = 1, I - 1

IND(J) = 0

A(J) = X(I,J) - Y(I,J)

R = A(J) + W

if (R .LT. RCUTS) IND(J) = 1

end do

P = 0

do K = 1,I - 1

if (IND(K) .NE. 0) then

P = P + 1

IND(P) = K

end if

end do

do L = 1,P

M = IND(L)

X(I,L) = A(M) + Z

end do

end do

Figure 5: Example from BDNA

A more complicated example of the need for global
information is shown in Figure 5, taken from the most
time-consuming loop in BDNA. Several intermediate
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variables need to be privatized to parallelize the out-
ermost loop in Figure 5. They are the scalar variables
R, P, and M, and the arrays IND and A. Except for ar-
ray A, it is easy to determine that these intermediate
variables are privatizable.
To determine whether A is privatizable in loop I,

it is necessary to determine the range of the use
of A in loop L. By analyzing the subscript and the
range of the loop L, it is easy to determine that
the range is fA(IND(1)); A(IND(2)); : : : ; A(IND(P))g.
The possible dominating de�nition for A is in loop
J, where A is de�ned for the range A(1:I-1).
To prove that the de�nition in loop J domi-
nates all the uses in loop L, we need to prove
that fA(IND(1)); A(IND(2)); : : : ; A(IND(P))g falls in the
range of A(1:I-1).
Our GSA based, demand-driven, sparse evaluation

algorithm works well in situations like this where it
is necessary to propagate values from complicated
control structures with conditional assignments and
statically assigned symbolic arrays. The analysis de-
termines how many elements of IND are de�ned in
loop K making use of the fact that the subscript
P for the assignment to IND(P) is a monotonically
increasing variable with an initial value of 1 and
step of 1. Using a monotonic variable identi�cation
technique similar to induction variable identi�cation,
the algorithm determines that all the elements in
fIND(1); IND(2); : : : ; IND(L)g are assigned in loop K.
Now that the algorithm knows the de�nition point

for fIND(1); IND(2); : : : ; IND(P)g, it can substitute the
terms in fA(IND(1)); A(IND(2)); : : : ; A(IND(P))g which
are loop-variant with their values. Each of them takes
on a value of loop index K. Because the value of K falls
in the range [1:I-1], fIND(1); IND(2); : : : ; IND(P)g
will also fall in the same range. Hence all the uses
of A fall within the range [1:I-1] and are therefore
dominated by the de�nition A(1:I-1). Thus, the al-
gorithm determines that the array A is privatizable in
loop I.

3.5 Framework for Run-TimeAnalysis

The access pattern of some programs cannot be deter-
mined at compile time, either because of limitations
in the current analysis algorithms or because the ac-
cess pattern is a function of the input data. For ex-
ample, compilers usually conservatively assume data
dependences in the presence of subscripted subscripts.
Although more powerful analysis techniques could re-
move this limitation when the index arrays are com-
puted using only statically-known values, nothing can
be done at compile-time when the index arrays are a

function of the input data. Therefore, if data depen-
dences such as these are to be detected, the analysis
must occur at run-time. Because of the overhead in-
volved, it is very important that run-time techniques
be fast as well as e�ective.

3.5.1 Runtime Detection of Dependences

Consider a do loop for which the compiler cannot stat-
ically determine the access pattern of a shared array
A that is referenced in the loop. Instead of execut-
ing the loop sequentially, the compiler could decide
to speculatively execute the loop as a doall and gen-
erate code to determine at run-time whether the loop
was, in fact, fully parallel. If the subsequent test �nds
that the loop was not fully parallel, then it will be re-
executed sequentially.
To do this, it is necessary to have the ability to re-

store the original state when re-execution is needed.
One strategy is to save the values of some arrays be-
fore starting the parallel execution of the loop and
restore these values if the sequential re-execution is
needed. However, in our implementation, some of
the values computed during the parallel execution are
stored in temporary locations and then stored in per-
manent locations if the parallel execution was correct.
In order to implement such a strategy, we have de-

veloped a run-time technique, called the Privatizing

Doall test (PD test), for detecting the presence of
cross-iteration dependences in a loop [15]. If there
are any such dependences, this test does not identify
them; it only 
ags their existence. In addition, if any
variables were privatized for speculative parallel ex-
ecution, this test determines whether those variables
were, in fact, validly privatized. Our interest in iden-
tifying fully parallel loops is motivated by the fact
that they arise frequently in real programs.

3.5.2 The PD Test

The PD test is applied to each shared variable refer-
enced during the loop whose accesses cannot be an-
alyzed at compile-time. For convenience, we discuss
the test as applied to only one shared array, say A.
Brie
y, the test traverses and marks shadow array(s)
during speculative parallel execution using the access
pattern of A, and after loop termination, performs a
�nal analysis to determine whether there were cross-
iteration dependences between the statements refer-
encing A.
For each iteration, the �rst time an element of A

is written during that iteration, the corresponding el-
ement in the write shadow array Aw is marked. If,
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during an iteration, an element in A is read, but never
written, then the corresponding element in the read
shadow array Ar is marked. Another shadow array
Anp is used to 
ag the elements of A that cannot be
privatized: an element in Anp is marked if the corre-
sponding element in A is both read and written, and
is read �rst, for any iteration.
A post-execution analysis determines whether there

were any cross-iteration dependences between state-
ments referencing A as follows. If any(Aw(:) \ Ar(:))

1

is true, then there is at least one 
ow- or anti-
dependence that was not removed by privatizing A.
If any(Aw(:)\Anp(:)) is true, then A is not privatizable
(some element is read before being written in an it-
eration). The counter wA records the total number
of writes done to Aw by all iterations, and mA is the
total number of marks in Aw. If wA 6= mA, then there
is at least one output dependence (some element is
overwritten); however, if A is privatizable then these
dependences were removed by privatizing A. The PD
test is fully parallel and requires time O(a=p+ logp),
where p is the number of processors, and a is the total
number of accesses made to A in the loop.

3.5.3 Performance of run-time techniques

It can be shown that if the PD test passes, i.e., the
loop is in fact fully parallel, then a signi�cant por-
tion of the ideal speedup of the loop is obtained. In
particular, the speedups obtained range from nearly
100% of the ideal in the best case, to at least 25% of
the ideal in the worst case (as derived from the par-
allel model). On the other hand, if the PD test fails,
i.e., the loop is not fully parallel, then the sequential
execution time will be increased by the time required
by the failed parallelization attempt. Since the PD
test is fully parallel, this slowdown is proportional to
1

p
Tseq, where Tseq is the sequential execution time of

the loop. If the target architecture is a MPP with
hundreds of processors, then the worst case potential
speedups can be very high and the cost of a failed test
becomes a very small fraction of sequential execution
time. Thus, speculating that the loop is fully parallel
has the potential to o�er large gains in performance,
while at the same time risking only a small increase
in the sequential execution time.
In Figure 6, we show experimental results of a

Fortran implementation of the PD test on loop NL-
FILT/300 in a subroutine of TRACK. The measure-
ments were made on an 8-processor Alliant FX/80
machine. The access pattern of the shared array in

1any returns the \OR" of its vector operand's elements, i.e.,
any(v(1 : n)) = (v(1)_ v(2)_ : : : _ v(n)).

Figure 6: Speedup and Potential Slowdown for NL-
FILT/300 from TRACK

this loop cannot be analyzed by the compiler since
the array is indexed by a subscript array that is com-
puted at run-time. In addition, this loop is parallel
for only 90% of its invocations. In the cases when the
test failed, we restored state, and re-executed the loop
sequentially. The speedup reported includes both the
parallel and sequential instantiations. The potential
slowdown re
ects the increase in total execution time
that would have resulted if the PD test had shown
that the loop was not fully parallel: it is expressed as
the ratio between (Tseq + Tpdt) and Tseq, where Tpdt
is the time required for the PD test.

Our experimental results indicate that our tech-
niques for loops with unknown iteration spaces usu-
ally yield signi�cant speedups when compared to the
available parallelism in the original loop. The exper-
iments have also shown that the overhead associated
with these techniques is generally very small. In ad-
dition, we have found that the additional memory re-

10



quirements do not make these techniques impractical
for the programs we have examined.

The implementation of these techniques in Polaris
is underway with the SGI Challenge as the �rst target
architecture.

4 Evaluation

We place great importance on the evaluation of our
work. As stated in the introduction, we began testing
commercial parallelizers in the 1980s and found that
when faced with actual scienti�c programs they per-
formed poorly. Based on an analysis of the causes of
these de�ciencies, we have identi�ed and implemented
several transformations in the Polaris compiler, and
now once again we must evaluate where and how we
have or have not succeeded.

4.1 The Benchmark Codes

The scienti�c programs that we used in our previous
work were the Perfect Benchmarks R
 making it nat-
ural to use them in our evaluation of Polaris. We also
included other scienti�c programs in order to deter-
mine the extent to which our techniques apply to pro-
grams in general. For our evaluation e�orts we chose
six of the 13 Perfect codes, eight codes from the SPEC
CFP92 and CFP95 suites, plus two currently-in-use
codes that we obtained from the National Center for
Supercomputing Applications. Table 1 summarizes
the origin, number of lines and serial execution time
for each code.

arc2d is an implicit �nite di�erence code for

uid 
ow, bdna simulates molecular dynamics of
biomolecules, flo52 analyzes transonic 
ow past an
airfoil, mdg is a molecular dynamics model for water
molecules, ocean solves Boussinesq 
uid layer, and
trfd is a kernel for quantum mechanics calculations.

applu is a parabolic/elliptic PDE solver, appsp

solves systems using gaussian elimination, hydro2d
calculates galactical jets using the Navier Stokes
method, su2cor simulates a Monte Carlo quantum
mechanics problem, swim solves shallow water equa-
tions using a �nite di�erence scheme, tfft2 is a col-
lection of FFT routines from NASA codes, tomcatv
generates 2D meshes around geometric domains, and
wave5 solves particle and Maxwell's equations.

cmhog is a 3D ideal gas dynamics code and cloud3d
computes 3D models of atmospheric convection.

Lines Ser.
Program Origin of Time

Code (sec.)
APPLU SPEC 3870 1203
APPSP SPEC 4439 1241
ARC2D PERFECT 4694 215
BDNA PERFECT 4887 56
CMHOG NCSA 11826 2333
CLOUD3D NCSA 9813 20404
FLO52 PERFECT 2370 38
HYDRO2D SPEC 4292 1474
MDG PERFECT 1430 178
OCEAN PERFECT 3288 118
SU2COR SPEC 2332 779
SWIM SPEC 429 1106
TFFT2 SPEC 642 946
TOMCATV SPEC 190 1327
TRFD PERFECT 580 20
WAVE5 SPEC 7764 788

Table 1: Benchmark codes studied

4.2 The Results

Figure 7 presents a comparison of the speedups ob-
tained by Polaris with those of SGI's PFA compiler.
Sixteen programs (described in Section 4.1) were used
in the comparison. The programs were executed (in
real-time mode for accuracy) on eight processors on
an SGI Challenge with 150 MHz R4400 processors.
Figure 7 shows that Polaris delivers, in many cases,
substantially better speedups than PFA.

However, for a few of the programs, the speedups
are close to, or even below, 1. Additional strategies
are necessary for handling these programs, and are
outlined in [3]. In two of the sixteen programs, PFA
produces better speedups than Polaris. The reason is
that PFA uses an elaborate code generation strategy
that includes loop transformations such as loop inter-
changing, unrolling, and fusion which, when applied
to the right loops, improve performance by decreasing
overhead, enhancing locality, and facilitating the de-
tection of instruction-level parallelism. However, the
sophisticated code generation strategy has a negative
e�ect on two of the codes, appsp and tomcatv; al-
though PFA detects as much parallelism as Polaris,
the code it generates does not take much advantage
of it.
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Figure 7: Speedup: Polaris vs. SGI PFA

5 Conclusion

We have presented Polaris, a new parallelizing com-
piler, developed at the University of Illinois. Polaris
includes a powerful basic infrastructure for manipu-
lating Fortran programs and a number of improved
analysis and transformation passes, most notably sub-
routine inline expansion, symbolic analysis, induction
and reduction variable recognition and solution, data-
dependence analysis, array privatization, and run-
time analysis.
The current prototype of the Polaris compiler is

able to parallelize our evaluation suite of programs
signi�cantly better than available compilers. Polaris'
performance is as good as the best manual paralleliza-
tion e�orts that we are aware of in many cases.
Previous attempts at automatic parallelization

were successful in a limited number of cases. Now,
however, we are successful in half of the codes tested
in our evaluation suite, and expect to further increase
this percentage using new and extended techniques
described in [3]. This is a substantial improvement,
and moves parallelizing compilers one step closer to
the class of tools considered essential in a parallel
computing environment. We have come a signi�cant
step closer to the goal of making parallel computing
available to a broader user community.
A couple of remaining issues include the representa-

tiveness of our program suite and the machine model
we are using. We believe that the Perfect Bench-
marks, SPEC CFP suites, and the NCSA suite are
a good starting point for a truly representative high-
performance computer workload. The fact that newly
inspected programs from the SPEC and NCSA suites
have con�rmed our previous �ndings using the Perfect

Benchmarks indicates that we may indeed be converg-
ing in our search for the right compiler ingredients.

The output of Polaris is suitable for a wide vari-
ety of machines that provide a global address space.
Early results of an implementation for the Cray T3D,
for example, have shown that even in the absence
of a cache-coherence scheme, signi�cant speedups are
achievable using the same basic framework for analy-
sis [11]. In addition, due to the similarity in the vir-
tual shared-memory model presented to many users of
strictly message-passing machines2, we expect many
of the same techniques implemented in Polaris will
apply to these architectures as well. Nevertheless,
global address-based features will most likely be part
of many parallel machines in the coming years. This
is already becoming evident as can be seen by the re-
cent MPP announcements of Cray, Convex, and other
manufacturers.

In conclusion, the key innovation provided by Po-
laris is improved recognition of parallelism. Such
recognition is a necessary prerequisite to porting con-
ventional programs to any parallel machine available
today.
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