
Portable Compilers for OpenMP?

Seung Jai Min, Seon Wook Kim??, Michael Voss, Sang Ik Lee, and
Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285

http://www.ece.purdue.edu/ParaMount

Abstract. The recent parallel language standard for shared mem-
ory multiprocessor (SMP) machines, OpenMP, promises a simple and
portable interface for programmers who wish to exploit parallelism ex-
plicitly. In this paper, we present our effort to develop portable compil-
ers for the OpenMP parallel directive language. Our compiler consists
of two parts. Part one is an OpenMP parallelizer, which transforms se-
quential languages into OpenMP. Part two transforms programs writ-
ten in OpenMP into thread-based form and links with our runtime li-
brary. Both compilers are built on the Polaris compiler infrastructure.
We present performance measurements showing that our compiler yields
results comparable to those of commercial OpenMP compilers. Our in-
frastructure is freely available with the intent to enable research projects
on OpenMP-related language development and compiler techniques.

1 Introduction

Computer systems that offer multiple processors for executing a single applica-
tion are becoming common place from servers to desktops. While programming
interfaces for such machines are still evolving, significant progress has been made
with the recent definition of the OpenMP API, which has established itself as
a new parallel language standard. In this paper, we present a research compiler
infrastructure for experimenting with OpenMP.

Typically, one of two methods is used for developing a shared-memory paral-
lel program: Users may take advantage of a restructuring compiler to parallelize
existing uniprocessor programs, or they may use an explicitly parallel language
to express the parallelism in the application. OpenMP is relevant for both sce-
narios. First, OpenMP can be the target language of a parallelizing compiler that
transforms standard sequential languages into parallel form. In this way, a par-
allelizer can transform programs that port to all platforms supporting OpenMP.
A first contribution of this paper is to describe such a portable parallelizer. Sec-
ond, programs written in OpenMP can be compiled for a variety of computer
systems, providing portability across these platforms. Our second contribution

? This work was supported in part by NSF grants #9703180-CCR and #9872516-EIA.
?? The author is now with Kuck & Associates Software, A Division of Intel Americas,

Inc., Champaign, IL 61820.

is to present such an OpenMP compiler, called PCOMP (Portable Compilers for
OpenMP), which is publicly available.

Both compilers are built on the Polaris compiler infrastructure [1], a Fortran
program analysis and manipulation system. The public availability of PCOMP
and its runtime libraries makes it possible for the research community to conduct
such experiments as the study of new OpenMP language constructs, detailed
performance analysis of OpenMP runtime libraries, and the study of internal
compiler organizations for OpenMP programs. In addition, this paper makes
the following specific contributions:

– We describe an OpenMP postpass to the Polaris parallelizing compiler, which
generates parallel code in OpenMP form.

– We describe a compiler that translates OpenMP parallel programs into
thread-based form. The thread-based code can be compiled by a conven-
tional, sequential compiler and linked with our runtime libraries.

– We present performance measurements showing that PCOMP yields results
comparable to the commercial OpenMP parallelizers.

We know of two related efforts to provide a portable OpenMP compiler to the
research community. The Omni OpenMP compiler [2] translates C and Fortran
programs with OpenMP pragmas into C code suitable for compiling with a na-
tive compiler linked with the Omni OpenMP runtime library. Also the compiler
provides a cluster-enabled OpenMP implementation on a page-based software
distributed shared memory. The OdinMP/CCp (C to C with pthreads) [3] is
also a portable compiler for C with OpenMP to C with POSIX thread libraries.
Both efforts are related to our second contribution.

In Section 2 we present an overview of our OpenMP compiler system. Sec-
tion 3 and Section 4 describe the details of our OpenMP parallelizer, which
generates parallel code with OpenMP directives, and the OpenMP compiler,
which translates OpenMP parallel code into thread-based form. In Section 5 we
measure the performance of PCOMP and other OpenMP compilers. Section 6
concludes the paper.

2 Portable OpenMP Compilers

Figure 1 gives an overview of our OpenMP compiler system. A program can
take two different paths through our OpenMP compiler system: (1) A serial
program is analyzed for parallelism by the Polaris Analysis passes and then
annotated with OpenMP directives by the OpenMP postpass. The output is
an OpenMP parallel program. (2) OpenMP parallel programs can be processed
by the OpenMP directive parser and then fed to the MOERAE postpass [4],
which transforms them into thread-based code. In this scenario, no additional
parallelism is recognized by the Polaris Analysis passes. The generated code can
be compiled by a sequential compiler and linked with our MOERAE microtask
library.

Polaris
Analysis

OpenMP
Postpass

MOERAE
Postpass

Sequential
Compiler

Machine
Specific
OpenMP
Compiler

Serial
Code

OpenMP
Parallel
Code

Binaries
for SMP

Microtask
Code with
MOERAE
Calls

OpenMP
Parallel
Code

MOERAE
Microtask
Libraries

OpenMP Compiler System

Fig. 1. Overview of our OpenMP compiler system. The same infrastructure can be
used to (1) translate sequential programs to OpenMP parallel form and (2) generate
code from OpenMP parallel programs. In scenario two, the code is translated into a
microtask form, making calls to our MOERAE runtime library.

3 Generating OpenMP from Sequential Program

The Polaris compiler infrastructure is able to detect loop parallelism in sequential
Fortran programs. To express this parallelism in OpenMP, we have added an
OpenMP postpass. It can read the Polaris internal program representation and
emit Fortran code annotated with OpenMP directives.

The implementation of this postpass is a relatively straightforward mapping
of the internal variables in Polaris to their corresponding directives [5]. Only
in the case of array reductions and in privatizing dynamically allocated arrays,
more involved language-specific restructuring is done. All other major code re-
structuring is already implemented in Polaris in a language-independent fashion.

Minor issues arose in that the parallel model used by OpenMP requires some
changes to the internal structure of Polaris. Polaris, being tightly coupled to
the loop-level parallelism model, lacks a clear method for dealing with parallel
regions and parallel sections. Polaris-internally, program analysis information is
typically attached to the statement it describes. For example, a loop that is
found to be parallel has the DO statement annotated with a parallel assertion.
The statement is likewise annotated with the variables that are to be classified as
shared, private and reduction within the loop nest. In all loop-oriented parallel
directive languages that Polaris can generate, this is an acceptable structure.

In order to represent OpenMP parallel regions we have added loop preambles
and postambles. Preambles and postambles are code sections at the beginning
and end of a loop, respectively, that are executed once by each participating
thread. It is now the statement labeled at the beginning of the preamble, which
must contain the annotations for parallelism. This statement may no longer be
the DO statement. The variables classified as reduction variables, still have to
be associated with the DO loop itself. The specification does not require that
reductions occur inside loops. You can reduce across parallel regions. These

changes in the structure of where information is to be stored, required a review
of the Polaris passes.

4 Compiling OpenMP Parallel Programs with PCOMP

PCOMP (Portable Compiler for OpenMP) translates OpenMP parallel programs
into thread-based programs. Two capabilities had to be provided to implement
PCOMP. One is an extension of the parser for OpenMP directives, and the other
is a translator that converts the Polaris-internal representation into the parallel
execution model of the underlying machine. As a target we use a thread-based,
microtasking model, as is common for loop parallel execution schemes. The Po-
laris translation pass into thread-based forms has already been implemented in
the form of the MOERAE system, described in [4]. MOERAE includes a run-
time library that implements the microtasking scheme on top of the portable
POSIX-thread libraries.

We added parser capabilities to recognize the OpenMP directives and repre-
sent their semantics in the Polaris internal program form. The OpenMP direc-
tives are translated in the following manner:

4.1 Parallel Region Construct

The PARALLEL and END PARALLEL directives enclose a parallel region, and define
its scope. Code contained within this region will be executed in parallel on all
of the participating processors.

Figure 2 illustrates parallel region construct translation. PCOMP always re-
places these directives with a parallel DO loop whose lower-bound is a constant
1 and upper-bound is the number of participating threads. Figures 2 (a) and
(b) show the code transformation from the source to PCOMP intermediate form
for a parallel region construct. A variable mycpuid indicates the thread identi-
fier number and cpuvar denotes the number of participating threads. The newly
inserted loop is asserted as PARALLEL, and it allows the MOERAE system to
generate the thread-based code shown in Figure 2 (c). At the beginning of the
program, the function initialize thread is inserted to initialize the execution en-
vironment, such as setting the available number of threads and creating threads.
After this initialization, the created threads are in spin-waiting status until func-
tion scheduling is called.

The function scheduling invokes the runtime library to manage the threads
and copies shared arguments (parameters in Figure 2) into the child threads.
Our runtime library provides different variants of this function for the different
scheduling options. Currently, only static scheduling is supported.

There are several directive clauses, which may be included on the same line
as the PARALLEL directive. They control attributes of the region. The directive
clauses are translated as follows.

The IF(expression) clause will cause the parallel region to be executed on a
single thread, if the expression evaluates to FALSE. This directive will cause a
two-version loop to be generated; one loop is serial and the other is parallel.

!$OMP PARALLEL

!$OMP END PARALLEL
SUBROUTINE _subr_name(parameters)

END

PROGRAM main
...
CALL initialize_thread()
CALL scheduling(_subr_name,parameters,...)
...

DO mycpuid = 1, cpuvar

ENDDO

parallel region code

parallel region code

parallel region code

(b) PCOMP internal representation (c) PCOMP thread-based code

(a) OpenMP parallel program

Fig. 2. OpenMP PARALLEL construct transformation. The parallel region is sur-
rounded by a loop whose lower-bound is a constant 1 and upper-bound is the number
of participating threads.

The SHARED(variable list) clause includes variables that are to be shared
among the participating threads.

The PRIVATE(variable list) clause includes variables that are local to each
thread, and for which local instances must exist on each participating thread.

The LASTPRIVATE(variable list) clause is similar to PRIVATE directive. The
difference is that when the LASTPRIVATE clause appears on a DO directive, the
thread that executes the sequentially last iteration updates the version of the
object it had before the construct. PCOMP uses two-version statements to con-
ditionally perform the updates to the variables if the iteration is the last one.

The REDUCTION(variable list) directive clause contains those scalar variables
that are involved in a scalar reduction operation within the parallel loop. The Po-
laris program representation already contains fields with this semantics. PCOMP
transforms the OpenMP clauses into these fields. The parallel reduction trans-
formation is then performed using the techniques described in [6]. Preamble and
postamble code is generated to initialize a new, private reduction variable and
to update the global reduction variable, respectively. The update is performed
in a critical section using a lock/unlock pair.

4.2 Work-Sharing Construct

The DO and END DO directives enclose a DO loop inside a region. The iteration
space of the enclosed loop is divided among the threads. As an example, the
translation process of the DO directive with a REDUCTION clause is described in
Figure 3. The PCOMP OpenMP parser reads Work-Sharing directives and as-
sert them to the corresponding DO statement. In Figure 3 (b), there are two DO

statements. The first one is a parallel DO loop, which is created by the trans-
lation of the PARALLEL construct. The directive clauses, such as PRIVATE and

!$OMP PARALLEL
!$OMP DO
!$OMP+PRIVATE(x)
!$OMP+REDUCTION(+:sum)
 DO i = lb, ub, step
 x = func(i)
 sum = sum + x
 ENDDO
!$OMP END DO
!$OMP END PARALLEL

SUBROUTINE _subr_name(parameters)
 ...
 chunk = (1 + ub - lb)/cpuvar
 init = lb + chunk x (mycpuid-1)
 max = lb + (chunk x mycpuid)-1
 IF (mycpuid.EQ.cpuvar) THEN
 max = ub
 ENDIF
 sum0 = 0
 DO i = init, max, step
 x = func(i)
 sum0 = sum0 + x
 ENDDO
 CALL lock(0)
 sum = sum + sum0
 CALL unlock(0)
END

PROGRAM main
 ...
 CALL initialize_thread()
 CALL scheduling(_subr_name,parameters,...)
 ...
END

(a) OpenMP parallel program

(c) Thread-based program generated by PCOMP

DO_STMT : S0 DO mycpuid=1,cpuvar,1
 assertions = { AS_PRIVATE x, sum0}
 { AS_PRIVATE init, max, step,chunk}
 { AS_PARALLEL mycpuid }
 { AS_REDUCTION }
 { AS_LOOPLABLE loop_name0}

DO_STMT : S1 DO i = init, max, step
 assertions = { AS_LOOPLABLE loop_name1}

(b) PCOMP internal representation

Fig. 3. OpenMP PARALLEL REDUCTION DO construct transformation

REDUCTION are transformed to the assertion type information. These assertions
give the PCOMP postpass information to generate thread-based code. The sec-
ond DO statement is the original DO statement whose loop bound indices will be
modified to share iteration space by the participating threads.

Figure 3(c) depicts how the iteration space is divided using loop bound modi-
fication. The loop bounds are adjusted to reflect the chunk of iterations assigned
to each thread. The if statement that compares mycpuid, a thread number with
cpuvar, the number of threads detects the last iteration and adjust the upper
bound of the loop to come up with the case when the total number of iterations
is not a multiple of the number of threads. PCOMP generates postamble code
for REDUCTION clauses and encloses the postamble code with lock and unlock

functions implemented in the MOERAE runtime libraries [4].

Synchronization Constructs Critical blocks are surrounded by CRITICAL

and END CRITICAL directives. The code enclosed in a CRITICAL/END CRITICAL

directive pair will be executed by only one thread at a time. We replace the
directives with lock and unlock functions. The BARRIER directive synchronizes
all the threads in a team. When encountered, each thread waits until all of
the other threads in that team have reached this point. PCOMP replaces the
BARRIER directive with a sync function, which is a runtime library function.

The current implementation of PCOMP supports a subset of the OpenMP
1.0 specification for Fortran. Among the unsupported constructs are parallel
sections, flushing operation in critical section and dynamic scheduling for parallel
loops.

5 Performance Results

We used benchmark programs (WUPWISE, SWIM, MGRID, and APSI) from the
SPEC CPU2000 [7] and the SPEComp2001 benchmark suite to evaluate the
performance of our compiler. We generated executable code using the op-
tions f95 -fast -stackvar -mt -nodepend -xvector=no -xtarget=ultra2

-xcache=16/32/1:4096/64/1. The thread-based codes by PCOMP are linked
with the MOERAE runtime libraries. For comparison, we also compiled each
OpenMP code with the SUN Forte 6.1 OpenMP compiler. We ran the codes on
a SUN Enterprise 4000 (Solaris 2.6) system [8] using ref data sets.

First, we parallelized the SPEC2000 applications using the Polaris paralleliz-
ing compiler [1], which generated the OpenMP codes using our OpenMP post-
pass. We generated two executable codes: (1) using the SUN parallel compiler,
and (2) using a sequential compiler to compile the translated code by PCOMP
and link with the runtime library. Figure 4 shows the speedup of these codes
relative to the serial execution time of the original codes. The figure shows that
our compiler performs similarly to the commercial compiler. The super-linear
speedup in SWIM is due to a loop interchange in the SHALOW DO3500 loop by the
parallelizer. In MGRID the performance of our compiler is better than Forte 6.1
in all loops except in RESID DO600, where our thread-based postpass generates
inefficient code handling LASTPRIVATE variable attributes. Figure 4 shows that
the Polaris-generated codes successfully exploit parallelism in two of the four
benchmarks.

We used an early version of the SPEComp2001 benchmarks for measuring
the performance of our PCOMP compiler. Figure 5 shows the speedup of these
codes relative to the one-processor execution time of the code generated by the
SUN compiler. The figure shows that our compiler performs similarly to the
commercial compiler.

6 Conclusion

We presented an OpenMP compiler system for SMP machines. The compilers
are built using the Polaris infrastructure. The system includes two compilers
for translating sequential programs into OpenMP and for compiling OpenMP
programs in a portable manner (PCOMP), respectively.

We showed that the performance of PCOMP is comparable to commercial
OpenMP compilers. Our infrastructure is publicly available, enabling experi-
mental research on OpenMP-related language and compiler issues. The Polaris
infrastructure has already been widely used in parallelizing compiler research
projects. The availability of an OpenMP compiler component now also supports
this important, emerging standard in parallel programming languages. Currently,
only Fortran77 is supported. Extensions for Fortran90 and C are being devel-
oped, providing a complete open-source compiler environment for OpenMP.

Fig. 4. Automatic generation of OpenMP programs. Speedup of benchmarks as
executed on SUN Enterprise 4000 using our OpenMP postpass. The OpenMP codes
are parallelized by the Polaris parallelizer with our OpenMP postpass. The codes are
compiled by the SUN Forte compiler, and by our PCOMP Portable OpenMP translator
with a sequential compiler. P represents the number of processors used.

Fig. 5. Compilation of OpenMP programs. Speedup of benchmarks as executed
on SUN Enterprise 4000. The OpenMP Suite codes are compiled by the SUN Forte
compiler and our PCOMP Portable OpenMP compiler. P represents the number of
processors used.

References

1. William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Parallel programming with Polaris. IEEE
Computer, pages 78–82, December 1996.

2. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design of
OpenMP compiler for a SMP cluster. In The 1st European Workshop on OpenMP
(EWOMP’99), pages 32–39, September 1999.

3. C. Brunschen and M. Brorsson. OdinMP/CCp - a porable implementation of
OpenMP for C. Concurrency: Practice and Experience, (12):1193–1203, 2000.

4. Seon Wook Kim, Michael Voss, and Rudolf Eigenmann. Performance analysis of
parallel compiler backends on shared-memory multiprocessors. In Compilers for
Parallel Computers (CPC2000), pages 305–320, January 2000.

5. Mike Voss. Portable level-parallelism for shared-memory multiprocessor architec-
tures. Master’s thesis, Electrical and Computer Engineering, Purdue University,
December 1997.

6. Bill Pottenger and Rudolf Eigenmann. Idiom Recognition in the Polaris Parallelizing
Compiler. Proceedings of the 9th ACM International Conference on Supercomputing,
pages 444–448, 95.

7. John L. Henning. SPEC CPU2000: Measuring CPU performance in the new mil-
lennium. IEEE Computer, July 2000.

8. Sun Microsystems Inc., Mountain View, CA,
http://www.sun.com/servers/enterprise/e4000/index.html. Sun Enterprise
4000.

