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The analysis of highway-crash data has long been used as a basis for influencing highway
and vehicle designs, as well as directing and implementing a wide variety of regulatory
policies aimed at improving safety. And, over time there has been a steady improvement
in statistical methodologies that have enabled safety researchers to extract more
information from crash databases to guide a wide array of safety design and policy
improvements. In spite of the progress made over the years, important methodological
barriers remain in the statistical analysis of crash data and this, along with the availability
of many new data sources, present safety researchers with formidable future challenges,
but also exciting future opportunities. This paper provides guidance in defining these
challenges and opportunities by first reviewing the evolution of methodological applica-
tions and available data in highway-accident research. Based on this review, fruitful
directions for future methodological developments are identified and the role that new
data sources will play in defining these directions is discussed. It is shown that new
methodologies that address complex issues relating to unobserved heterogeneity, endo-
geneity, risk compensation, spatial and temporal correlations, and more, have the
potential to significantly expand our understanding of the many factors that affect the
likelihood and severity (in terms of personal injury) of highway crashes. This in turn can
lead to more effective safety countermeasures that can substantially reduce highway-
related injuries and fatalities.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Worldwide, more than 1.2 million people die annually in highway-related crashes and as many as 50 million more are
injured and, by 2030, highway-related crashes are projected to be the 5th leading cause of death in the world (World Health
Organization, 2009, 2013). In addition to the statistics on death and injuries, highway-related crashes result in
immeasurable pain and suffering and many billions of dollars in medical expenses and lost productivity. The enormity of
the impact of highway safety on human societies has resulted in massive expenditures on safety-related countermeasures,
laws governing highway use, and numerous regulations concerning the manufacturing of highway vehicles. While the
success of many of these efforts in reducing the likelihood of highway crashes and mitigating their impact cannot be denied,
the toll that highway crashes continue to extract on humanity is clearly unacceptable.
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Critical to the guidance of ongoing efforts to improve highway safety is research dealing with the statistical analysis of
the countless terabytes of highway-crash data that are collected worldwide every year. The statistical analysis of these crash
data has historically been used as a basis for developing road-safety policies that have saved lives and reduced the severity
of injuries. And, while the quality of data has not always progressed as quickly as many safety researchers would have liked,
the continual advance in statistical methodologies has enabled researchers to extract more and more information from
existing data sources.

With this said, as in most scientific fields, a dichotomy has evolved between what is used in practice and what is used by
front-line safety researchers, with the methodological sophistication of some of the more advanced statistical research on
roadway accidents having moved well beyond what can be practically implemented to guide safety policy. However, it is
important that the large and growing methodological gap between what is being used in practice and what is being used in
front-line research not be used as an excuse to slow the methodological advances being made, because the continued
development and use of sophisticated statistical methodologies provides important new inferences and ways of looking at
the underlying causes of highway-crashes and their resulting injury severities. Continuing methodological advances, in
time, will undoubtedly help guide and improve the practical application of statistical methods that will influence highway-
safety policy. Thus, while the intent of this paper is to focus on the current frontier of methodological research (after
reviewing current methodological issues), it is important that readers recognize the different objectives between applied
and more fundamental research, and the role that sophisticated methodological applications have in ultimately improving
safety practice and developing effective safety policies.

The current paper begins by quickly reviewing traditional sources of highway-accident data (Section 2) and the evolution
of statistical methods used to analyze these data (Section 3). It then moves on to present some critical methodological issues
relating to the analysis of highway-accident data (Section 4). This is followed by a discussion of some emerging sources of
crash data that have the potential to significantly change methodological needs in the safety-research field (Section 5).
The paper concludes with a discussion of some of the more promising methodological directions in accident research
(Section 6), and a summary and insights for the future methodological innovation in accident research (Section 7).
2. Traditional highway crash data

Most existing highway-accident studies have extracted their data from police crash reports. These reports are used to
establish the frequency of crashes at specific locations and the associated injury-severities of vehicle occupants and others
involved in these crashes. In the U.S., common injury severities are assessed by police officers at the scene of the crash such
as no injury, possible injury, evident injury, disabling injury, fatality (within 30 days of the crash).1 Police-reported data also
include a great deal of information that can serve as explanatory variables in modeling injury-severity outcomes, including
information on time of day, age and gender of vehicle occupants, road-surface conditions, weather conditions, possible
contributing factors to the crash, roadway type, roadway lighting, speed limits, basic roadway geometrics (curve, grade, etc.),
type of crash (rollover, rear end, etc.) type of object(s) struck, driver sobriety, safety belt usage, airbag deployment, and so
on. This information can be quickly expanded further by linking the data with government-provided roadway information
(including traffic volumes, pavement friction, detailed roadway geometric characteristics, traffic-signal details) and detailed
weather-related data (including temperature ranges, specific precipitation types and accumulations).

While the occurrence of a crash and the severity levels reported by police data have been used in many previous studies
to provide insights relating to the factors affect highway safety, the inaccuracies of police-reported data are well
documented. For example, it has been well established in the literature that less severe crashes are less likely to be
reported to police and thus less likely to appear in police databases (Yamamoto et al., 2008; Ye and Lord, 2011). With regard
to the severity of crashes, considerable inaccuracies have been found when comparing police severity reports with the
severity assessment made by medical staff at the time of admission to the hospital (Compton, 2005; McDonald et al., 2009;
Tsui et al., 2009). Also, with regard to traditional police data, a study by Shin et al. (2009), showed that the medical costs
associated with the “no injury” compared to the “evident injury” severity categories were higher due to subsequent hospital
admissions (injuries sustained were not reported or observed at the scene). Despite the limitations of traditional crash data
(such as police-reported data), these data have supported countless research efforts that have attempted to improve our
understanding of the factors that influence the occurrence of crashes and the personal injuries that result. A wide variety of
methodological approaches have been used to explore traditional crash data, and these methodologies have become
increasingly sophisticated over time as researchers seek to address the many less obvious characteristics of the data in the
hope of uncovering important new inferences relating to highway safety.
1 Other types of injury-severity measurement data that have been used include the Abbreviated Injury Scale (AIS) which was originally developed by
the American Association for Automotive Medicine, the Organ Injury Scales (OIS) proposed by the American Association for the Surgery of Trauma and the
Injury Severity Score (ISS) used by hospitals.
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3. Evolution of methodological approaches in accident research

Two relatively recently published papers provide a comprehensive review of current methodological approaches for
studying crash frequencies, the number of crashes on a roadway segment or intersection over some specified time period
(Lord and Mannering, 2010), and crash severities, usually measured by the most severely injured person involved in the
crash (Savolainen et al., 2011). The intent of this paper is not to replicate the detailed discussions of the methodological
alternatives provided in those papers, but instead to focus on discussing the methodological evolution, the current
methodological frontier and remaining methodological issues (the interested reader is referred to those papers for a review
of previously used methodological approaches). However, because several important methodological developments and
applications have been undertaken since those previous review papers were published, Tables 1 and 2 are provided to give
an update of the literature (by methodological-approach category) previously presented in Lord and Mannering (2010) and
Savolainen et al. (2011) (please see those papers, if necessary, for detailed descriptions of the methodological approaches
listed in these tables). Tables 1 and 2 list the methodological approaches in the approximate chronological order that they
have first appeared in the accident-research literature.

With regard to the evolution of methodological alternatives in accident research, the frequency of crashes has been
studied with a wide variety of methods over the years. Because crash frequencies (the number of crashes occurring on a
roadway entity over some time period) are count data (non-negative integers), the Poisson regression approach to count
data has served as a basis for some initial research efforts that have sought to determine factors that influence crash
frequencies so that effective crash-mitigation designs and policies could be determined. As research progressed, the
limitations of the simple Poisson regression model quickly became obvious and Poisson variants became the dominant
methodological approach. For example, the negative binomial model (or Poisson–Gamma) became widely used because it
can handle overdispersed data (data where the mean of the frequencies is much greater than the variance, see Lord and
Mannering, 2010). And, because crash-frequency data bases were often found to have many observations with no observed
crashes, researchers considered zero-inflated Poisson and negative binomial regressions, which attempt to account for the
preponderance of zeros by splitting roadways into two separate states, a zero state and a normal count state. Similarly,
a variety of other count-data models and variations have also been considered over the years including the Gamma model,
Conway–Maxwell–Poisson model, the negative binomial-Lindley model, and so on. Still other work has looked at crashes
not as count data per se, but instead as the duration of time between crashes (duration models), which in turn can be used
to generate crash frequencies over specified time periods. Recently, a series of studies (see Castro et al., 2012;
Narayanamoorthy et al., 2013; Bhat et al., 2014) have recast count models as a restrictive case of a generalized ordered-
response model, with a latent long-term risk propensity for crashes coupled with thresholds that determine the translation
of that risk to the instantaneous probability of a crash outcome. Such a generalized ordered-response approach to count
data has several potential advantages, including making it much easier to extend univariate count models to multivariate
count models and accommodating spatial and temporal dynamics.

Other methodological advances models have sought to address what might be considered as more subtle issues with
crash-frequency data. Issues such as the effect of unobserved factors on crash frequencies, spatial and temporal correlations
among crash-count data, the possibility of roadway segments shifting among multiple crash states (discrete crash situations
(states) that fundamentally shift roadway safety, and others) have all been addressed in the steady progression of
methodological advances in the field.

A similar path has been followed by studies that have addressed the severity of crashes (see Table 2). Starting with simple
binary discrete outcome models such as binary logit and probit models, models evolved to consider multiple discrete
outcomes (to consider a variety of injury-severity categories such as no injury, possible injury, evident injury, disabling
injury and fatality). For the multiple discrete outcome models, multinomial models that do not account for the ordering of
injury outcome (that is, from no-injury to fatality) have been widely applied from the simple multinomial logit model, to the
nested logit model, and to the random parameters logit model (which can account for the effect of unobserved factors across
crash observations). Modeling approaches that do consider the ordering of injury severities, such as the ordered probit and
logit model, have also been applied with increasingly sophisticated forms to overcome possible restrictions imposed by
traditional ordered-modeling approaches. Also, as with count-data models, crash-severity models have been extended to
consider the existence of multiple crash-severity states (discrete crash situations that fundamentally shift injury severity)
and unobserved differences in injury severity outcomes across the population using finite-mixture/latent-class approaches
(see Table 2).2

4. Some important ongoing methodological considerations

In spite of the steady progression of methodological innovation in the crash analysis field, as reflected in the papers
presented in Tables 1 and 2, there remain many fundamental issues that have not been completely addressed or are often
2 Most crash-severity models are based on data that are conditional on a crash having occurred. This permits the use of detailed crash data including
the age and physical characteristics of people involved in the crash, the possible deployment of airbags, and so on. However, there have also been efforts to
model crash frequencies and severities simultaneously (these efforts have been led by the bivariate/multivariate research efforts listed in Table 1), although
these approaches cannot use the detailed post-crash data that is available in an injury-severity model that is conditioned on the crash having occurred.



Table 1
Summary of previous research analyzing crash-frequency dataa.

Methodological approach Previous research

Poisson regression model Gustavsson and Svensson (1976), Joshua and Garber (1990), Jones et al. (1991), Miaou and Lum
(1993), Miaou (1994), Kumara and Chin (2005), Ma (2009), Ye et al. (2013), Li et al. (2013)

Negative binomial/Poisson–gamma models Maycock and Hall (1984), Brüde and Larsson (1993), Bonneson and McCoy (1993), Miaou (1994),
Kumala (1995), Shankar et al. (1995), Poch and Mannering (1996), Maher and Summersgill (1996),
Mountain et al. (1996, 1998), Milton and Mannering (1998), Brüde et al. (1998), Karlaftis and Tarko
(1998), Persaud and Nguyen (1998), Turner and Nicholson (1998), Heydecker and Wu (2001), Carson
and Mannering (2001), Miaou and Lord (2003), Amoros et al. (2003), Hirst et al. (2004), Abbas
(2004), Lord et al. (2005a), El-Basyouny and Sayed (2006), Lord (2006), Kim and Washington (2006),
Lord and Mahlawat (2009), Malyshkina and Mannering (2010b), Daniels et al. (2010), Cafiso et al.
(2010), Geedipally and Lord (2010), Lao et al. (2011b), Geedipally and Lord (2011), Lord and Kuo
(2012), Meng and Qu (2012), Park et al. (2012), Viera Gomes et al. (2012), Pirdavani et al. (2013),
Ye et al. (2013)

Duration models Jovanis and Chang (1989), Chang and Jovanis (1990), Mannering (1993), Chung (2010), Jovanovic
et al. (2011)

Bivariate/multivariate models Maher (1990), Miaou and Lord (2003), Miaou and Song (2005), Bijleveld (2005), Song et al. (2006),
Ma and Kockelman (2006), Park and Lord (2007), Bonneson and Pratt (2008), Geedipally and Lord
(2010), Ma et al. (2008), Depaire et al. (2008), Ye et al. (2009), Aguero-Valverde and Jovanis (2009),
El-Basyouny and Sayed (2009a), Park et al. (2010a); Wang et al. (2011), Lao et al. (2011a), Pei et al.
(2011), Anastasopoulos et al. (2012a), Chiou and Fu (2013), Caliendo et al., (2013), Yu and Abdel-Aty
(2013b), Castro et al. (2012), Narayanamoorthy et al. (2013)

Zero-inflated Poisson and negative binomial
models

Miaou (1994), Shankar et al. (1997, 2003), Carson and Mannering (2001), Lee and Mannering (2002),
Kumara and Chin (2003), Qin et al. (2004), Lord et al. (2005b, 2007), Malyshkina and Mannering
(2010a)

Random effects models, spatial and temporal
correlation models

Johansson (1996), Shankar et al. (1998), Miaou and Lord (2003), Flahaut et al. (2003), MacNab
(2004), Miaou et al. (2003, 2005), Wang and Abdel-Aty (2006), Aguero-Valverde and Jovanis (2006,
2008), Li et al. (2008a), Quddus (2008), Guo et al. (2010), Aguero-Valverde and Jovanis (2010), Mitra
and Washington (2012), Castro et al. (2012), Narayanamoorthy et al. (2013), Aguero-Valverde (2013),
Mohammadi and Samaranayake (in preparation), Xie et al. (in preparation)

Generalized estimating equation models Lord and Persaud (2000), Lord et al. (2005a), Wang and Abdel-Aty (2008), Lord and Mahlawat (2009)

Neural network, Bayesian Neural network, and
vector machine models

Abdelwahab and Abdel-Aty (2001), Chang (2005), Riviere et al. (2006), Xie et al. (2007), Li et al.
(2008b), Yu and Abdel-Aty (2013c)

Hierarchical/multilevel models Jones and Jørgensen (2003), Kim et al. (2007a), Aguero-Valverde and Jovanis (2010), Ahmed et al.
(2011), Usman et al. (2012), Yu et al. (2013), Deublein et al. (2013), Yu and Abdel-Aty (2013a, 2013b)

Negative multinomial model Ulfarsson and Shankar (2003), Hauer (2004), Caliendo et al. (2007)

Poisson-lognormal and Poisson–Weibull
models

Miaou et al. (2005), Lord and Miranda-Moreno (2008), Aguero-Valverde and Jovanis (2008),
Cheng et al. (2013)

Gamma model Oh et al. (2006), Daniels et al. (2010)

Conway–Maxwell–Poisson model Lord et al. (2008), Sellers and Shmueli (2010), Lord et al. (2010), Geedipally and Lord (2011), Giuffre
et al. (2011), Francis et al. (2012), Lord and Guikema (2012)

Censored regression models Anastasopoulos et al. (2008, 2012a, 2012b)

Generalized additive models Xie and Zhang (2008), Li et al. (2009)

Random parameters count models Anastasopoulos and Mannering (2009), El-Basyouny and Sayed (2009b), Granowski and Manner
(2011),Venkataraman et al. (2011, 2013, in preparation), Ukkusuri et al. (2011), Mitra and Washington
(2012), Wu et al. (2013), Bullough et al. (2013), Castro et al., 2012, Narayanamoorthy et al. (2013),
Bhat et al. (2014), Chen and Tarko (this issue)

Finite-mixture/latent-class and Markov
switching models

Malyshkina et al. (2009), Park and Lord (2009), Malyshkina and Mannering (2010a),
Park et al. (2010b), Peng and Lord (2011), Zou et al. (2013), Zou et al. (2014)

Negative binomial-Lindley model Lord and Geedipally (2011), Geedipally et al. (2012)

Count model recast as a generalized ordered-
response system

Castro et al. (2012), Narayanamoorthy et al. (2013), Bhat et al. (2014)

a Source: Updated from Lord and Mannering (2010).
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Table 2
Summary of previous research analyzing crash-injury severitiesa.

Methodological approaches Previous research

Binary logit/probit models Shibata and Fukuda (1994), Farmer et al. (1997), Khattak et al. (1998), Krull et al. (2000), Al-Ghamdi (2002),
Bedard et al. (2002), Toy and Hammitt (2003), Ballasteros et al. (2004), Chang and Yeh (2006), Sze and
Wong (2007), Lee and Abdel-Aty (2008), Pai (2008), Rifaat and Tay (2009), Haleem and Abdel-Aty (2010),
Peek-Asa et al. (2010), Kononen et al. (2011), Moudon et al. (2011), Santolino et al. (2012)

Multinomial logit models Shankar and Mannering (1996), Carson and Mannering (2001), Abdel-Aty and Abdelwahab (2004),
Ulfarsson and Mannering (2004), Khorashadi et al. (2005), Islam and Mannering (2006), Kim et al. (2007b);
Malyshkina and Mannering (2008), Savolainen and Ghosh (2008), Schneider et al. (2009), Malyshkina and
Mannering (2010a, 2010b), Rifaat et al. (2011), Ye and Lord (2011), Schneider and Savolainen (2011), Eluru
(2013), Yasmin and Eluru (2013), Ye and Lord (2014)

Nested logit models Shankar et al. (1996), Chang and Mannering (1998, 1999), Lee and Mannering (2002), Abdel-Aty and
Abdelwahab (2004), Holdridge et al. (2005), Savolainen and Mannering (2007), Haleem and Abdel-Aty
(2010), Hu and Donnell (2010), Patil et al. (2012), Wu et al. (2013); Yasmin and Eluru (2013)

Sequential logit/probit models Saccomanno et al. (1996), Dissanayake and Lu (2002a, 2002b), Helai et al. (2008), Yamamoto et al. (2008),
Jung et al. (2010), Xu et al. (2013)

Heteroskedastic ordered logit/probit
models

O'Donnell and Connor (1996), Wang and Kockelman (2005), Lemp et al. (2011)

Ordered logit/probit models Khattak et al. (1998, 2002), Klop and Khattak (1999), Renski et al. (1999), Khattak (2001), Kockelman and
Kweon (2002), Quddus et al. (2002), Abdel-Aty (2003), Austin and Faigin (2003), Kweon and Kockelman
(2003), Zajac and Ivan (2003), Khattak and Rocha (2003), Yamamoto and Shankar (2004), Donnell and
Mason (2004), Khattak and Targa (2004), Abdel-Aty and Keller (2005), Lee and Abdel-Aty (2005),
Shimamura et al. (2005), Garder (2006), Lu et al. (2006), Oh (2006), Siddiqui et al. (2006), Pai and Saleh
(2007), Das et al. (2008), Gray et al. (2008), Wang and Abdel-Aty (2008), Chimba and Sando (2009),
Wang et al. (2009); Pai (2009), Xie et al. (2009), Haleem and Abdel-Aty (2010), Jung et al. (2010), Quddus
et al. (2010), Ye and Lord (2011), Zhu and Srinivasan (2011), Ferreira and Couto (2012), Abay (2013a), Jiang
et al. (2013a, 2013b), Eluru (2013), Mergia et al. (2013), Yasmin and Eluru (2013), Ye and Lord (2014)

Log-linear models Chen and Jovanis (2000)

Generalized ordered outcome models Srinivasan (2002), Eluru et al. (2008), Quddus et al. (2010), Castro et al. (2013), Eluru (2013), Abay et al.
(2013), Yasmin and Eluru (2013), Yasmin et al. (2014)

Simultaneous binary logit model Ouyang et al. (2002)

Bivariate/multivariate binary probit
models

Winston et al. (2006), Lee and Abdel-Aty (2008)

Bivariate/multivariate ordered probit
models

Yamamoto and Shankar (2004), de Lapparent (2008), Eluru et al. (2010), Rana et al. (2010), Abay et al.
(2013), Chiou et al. (2013a), Yasmin et al. (2013), Russo et al. (in preparation)

Artificial neural networks Abdelwahab and Abdel-Aty (2001), Delen et al. (2006), Chimba and Sando (2009)

Mixed joint binary ordered logit model Eluru and Bhat (2007)

Mixed logit model (random parameters
logit model)

Milton et al. (2008), Kim et al. (2008, 2010, 2013), Malyshkina and Mannering (2010b), Kim et al. (2010),
Altwaijri et al. (2011), Anastasopoulos and Mannering (2011), Moore et al. (2011), Ye and Lord (2011),
Morgan and Mannering (2011), Chiou et al. (2013b), Aziz et al. (2013), Abay (2013a); Manner and
Wunsch-Ziegler (2013), Yasmin and Eluru (2013), Ye and Lord (2014)

Partial proportional odds model Wang and Abdel-Aty (2008), Wang et al. (2009), Quddus et al. (2010)

Finite-mixture/latent-class and Markov
switching models

Malyshkina and Mannering (2009), Xie et al. (2012), Eluru et al. (2012), Xiong and Mannering (2013), Xiong
et al. (2013), Yasmin et al. (2014)

Heterogeneous outcome model Quddus et al. (2010)

Mixed ordered probit (random
parameters probit) model

Zoi et al. (2010), Paleti et al. (2010), Xiong et al. (2013)

Spatial and temporal correlations Castro et al. (2013)

a Source: Updated from Savolainen et al. (2011).
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overlooked.3 These include issues relating to: parsimonious vs. fully specified models; unobserved heterogeneity;
selectivity-bias/endogeneity; risk compensation; choice of methodological approach; under-reporting of crashes with less
severe injuries; and spatial and temporal correlations. Each of these can substantially influence findings and the inferences
drawn from the analysis of data. Table 3 provides a listing of some research efforts that have addressed these issues in the
past, and a discussion of these issues is provided below.
3 See the review articles by Lord and Mannering (2010) and Savolainen et al. (2011) for some additional discussions on fundamental issues in existing
crash-frequency and crash-severity research.



Table 3
Research that has addressed identified ongoing methodological considerations in highway-accident research.

Methodological consideration Previous research

Parsimonious vs. fully specified
modelsa

Jovanis et al. (2011), Mitra and Washington (2012)

Unobserved heterogeneity Eluru and Bhat (2007), Milton et al. (2008), Eluru et al. (2008, 2010), Kim et al. (2008, 2010, 2013), Malyshkina
et al. (2009), Park and Lord (2009), Anastasopoulos and Mannering (2009), El-Basyouny and Sayed (2009b),
Malyshkina and Mannering (2009, 2010a, 2010b), Park et al. (2010a), Zoi et al. (2010); Paleti et al. (2010),
Peng and Lord (2011); Granowski and Manner (2011), Venkataraman et al. (2011, in preparation), Ukkusuri
et al. (2011), Altwaijri et al. (2011), Anastasopoulos and Mannering (2011), Moore et al. (2011), Ye and Lord
(2011), Peng and Lord (2011); Morgan and Mannering (2011), Xie et al. (2012), Mitra and Washington (2012),
Wu et al. (2013), Chiou et al. (2013b), Aziz et al. (2013), Zou et al. (2013), Castro et al. (2013), Abay et al. (2013),
Yasmin and Eluru (2013), Xiong and Mannering (2013), Xiong et al. (2013), Bhat et al. (2014), Shaheed et al. (in
preparation), Yasmin et al. (2014)

Selectivity bias/endogeneity Winston et al. (2006), Eluru and Bhat (2007), Paleti et al. (2010), Rana et al. (2010), Abay et al. (2013), Bhat
et al. (2013)

Risk compensation Winston et al. (2006)

Choice of methodological approach Abdel-Aty (2003), Lord et al. (2005b), Anastasopoulos and Mannering (2011), Geedipally et al. (2010),
Geedipally and Lord (2011), Ye and Lord (2011, 2014), Anastasopoulos et al. (2012a), Abay (2013a), Ye et al.
(2013), Eluru (2013), Yasmin and Eluru (2013)

Under-reporting of crashes with less
severe injuries

Kumara and Chin (2005), Yamamoto et al. (2008), Ma (2009), Ye and Lord (2011), Patil et al. (2012), Yasmin
and Eluru (2013)

Spatial and temporal correlation Flahaut et al. (2003), MacNab (2004), Miaou and Song (2005), Song et al. (2006), Wang and Abdel-Aty (2006),
Aguero-Valverde and Jovanis (2006, 2008, 2010), Guo et al. (2010), Peng and Lord (2011), Castro et al. (2012,
2013), Abay (2013a), Narayanamoorthy et al. (2013), Chiou et al. (in preparation), Mohammadi and
Samaranayake (in preparation), Xie et al. (in preparation)

a The bias introduced by omitting a significant variable is discussed and demonstrated in any standard econometrics text (see for example,
Greene, 2012).
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4.1. Parsimonious vs. fully specified models

The data available to researchers is often limited, and many variables known to significantly affect the frequency and
severity of crashes may not be available. There may also be a need to develop relatively simplistic models using only
explanatory variables that can be gathered and projected for use in practice, where practitioners may have access to little
data or technical expertise. Given these data limitations or the need to specify models with a few simplistic explanatory
variables, parsimonious models are often estimated.4 An example would be estimating a model of crash frequency using
only the volume of traffic as an explanatory variable. Clearly many other factors affect the frequency of crashes such as
environmental conditions, roadway geometrics, the vehicle mix of traffic, lane widths, and so on. The problem with just
using traffic volume as the explanatory variable is that the model will be excluding significant explanatory variables and the
model-estimated parameter for traffic volume will be estimated with bias (this is referred to as an omitted variables bias)
and application of the model will be fundamentally flawed because changes in the omitted variables (environmental
conditions, roadway geometrics, etc.) cannot be captured and the predicted crash frequencies will be incorrect. In addition, a
model with only traffic volume is limited in its value for designing countermeasures, precisely because the impacts of design
features that can be controlled by traffic engineers (such as roadway curvature or pavement surface type) are not
considered. In summary, the real problemwith parsimonious models is that practitioners, and even researchers, do not fully
grasp, or often conveniently overlook, the limitations of these simplistic models in terms of biased parameter estimates and
policy value. For practitioners, the application of such models can easily produce erroneous estimates and provide lesser
information for countermeasure design relative to a more fully specified model that includes variables that are amenable to
changes in design. Researchers often extend simplistic parsimonious models with more sophisticated statistical methods
often not realizing that the omitted variable bias present in their model compromises all of the conclusions that they are
likely to draw. Thus, it is extremely important to recognize the limitations of parsimonious models, avoid them if at all
possible, and consider more sophisticated statistical approaches to mitigate their adverse consequences. This is particularly
important because parsimonious specifications can lead to more susceptibility to the econometric considerations listed and
discussed below.
4 Examples of this include the models in the Highway Safety Manual (2010), where many practical compromises have to be made to arrive at usable
models of highway safety.
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4.2. Unobserved heterogeneity

Some of the many factors affecting the frequency and severity of crashes are not observable, or the necessary data may be
nearly impossible to collect. If these unobserved factors (often referred to as unobserved heterogeneity) are correlated with
observed factors, biased parameters will be estimated and incorrect inferences could be drawn. For example, consider a
statistical model of crash-injury severity that has age as one of the explanatory variables. Age is correlated with many
underlying factors that are likely to affect crash-injury severity such as physical health, susceptibility of bones to breakage,
body positioning at the time of crash, reaction times that may mitigate the severity of the crash, and so on. By including only
age, age is acting as a proxy variable for many underlying factors that are likely to vary considerably across crash-injury
observations because people of the same age are likely to have differences in these unobserved factors. By assuming that age
has the same effect on injury severity across the population, the analyst is placing a potentially significant restriction on the
model that may affect not only the inferences drawn from the age-variable parameter estimate, but also from other
parameter estimates in the model. There are statistical corrections for dealing with this problem (see Table 3), but many
researchers have overlooked this issue in the past.
4.3. Selectivity-bias/endogeneity

One of the most often overlooked elements in model estimation can be generally termed as selectivity-bias/endogeneity.
This can take many forms, some of which are obvious and some of which are more subtle. As an example, consider a model
that seeks to determine the effectiveness of ice-warning signs in reducing the frequency of crashes during icy conditions.
The most common approach to studying this problem would be to collect crash-frequency data (crashes occurring during icy
conditions) for roadway segments with ice-warning signs and roadway segments without. Then, using a naïve approach,
estimate a model that has the presence of an ice-warning sign as an indicator variable – which takes a value of one if an
ice-warning sign is present and zero otherwise (there are other statistical approaches to evaluating this phenomenon
including the estimation of completely separate models for ice-warning sign and non-ice-warning sign roadway segments). If
one were to estimate such a model, it is quite likely that the parameter estimate for the ice-warning sign indicator variable
would have a substantial downward bias – seriously understating the effectiveness of ice warning signs. This is because ice-
warning signs are likely to be placed on roadway segments with a history of a large number of ice crashes. Thus, the presence
of an ice-warning sign (and its indicator variable in the model) will be correlated with unobserved factors that affect the
frequency of ice-related crashes. These unobserved factors could include things such local micro-climate conditions that make
some roadway segments more likely to accumulate moisture and freeze relative to others, making them more susceptible to
high ice-crash frequencies. There have been countless studies that have likely arrived at erroneous inferences by ignoring such
effects and not undertaking the proper statistical techniques for correcting such a selectivity effect.

Often times, the selectivity-bias/endogeneity can be more subtle. An example would be a study to determine the
effectiveness of a new vehicle safety feature (such as side-impact airbags) in reducing the injury severity in crashes.
The naïve approach would be to look at vehicles with the safety feature and those without, and assess the safety feature's
effectiveness in reducing injury severity by, for example, using an indicator variable (one if the vehicle has the safety feature
present and zero otherwise). The problem with this approach is that the drivers owning the vehicles with the safety feature
are not likely to be a random sample of the driver population. In fact, studies have shown that the safest drivers are most
likely to own cars with advanced safety features (Winston et al., 2006). Thus, the parameter estimate for the indicator
variable for the presence of the safety feature will capture all the unobserved heterogeneity relating to its driver (which is
more likely to be a safe driver) that will tend to result in less severe crashes (unobserved factors such as those relating to risk
aversion and so on). This in turn will tend to impart a serious upward bias in the parameter estimate that would
substantially overstate the effectiveness of the safety feature in reducing injury severity. Again, there are statistical
corrections for this (see Winston et al., 2006), but they are often overlooked in model estimation.

Yet another example would be an attempt to capture the true effect of a posted speed limit on the frequency and severity of
crashes. However, again there is a self-selectivity present in that speed limits may be set as a function of road classification or
may be influenced by past crash histories. For example, a 70 mi/h maximum speed will likely only be observed on full-access-
controlled rural interstates, so all of the unobserved characteristics (unobserved heterogeneity) of such roads may end up
being captured by the model's parameter estimate of the speed-limit variable, which may then tend to over or under estimate
the true effect of the speed limit. Similarly, highways with many crashes (for whatever reason) may be given lower speed
limits to improve safety, but a poorly specified model (with potentially important missing variables that truly explain why the
highway is dangerous) may conclude that lower speed limits are less safe because the roads with low speed limits will be
correlated with a higher than expected number of crashes.

Resolving the self-selectivity/endogeneity issue can be achieved through various statistical corrections, but this is not done
nearly enough in accident-related research and there is an urgent need for future studies to give full consideration to this issue.5
5 It is also worthy to note that a skeptical view of this issue would be that almost every variable can be hypothesized to be endogenous in some way,
which would make model estimation cumbersome if not impossible. The key to addressing endogneity, then, is to carefully consider the context and
potential impact of the endogeneity of specific variables in the model.
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4.4. Risk compensation

The likelihood that drivers respond to changing road conditions by altering their behavior makes understanding the
effect of these changing road conditions extremely difficult. An example would be a model that may find that the frequency
of crashes declines during inclement weather. There are a number of explanations for this, including the possibility that the
drivers self-select so that the safest drivers are more likely to drive in inclement weather and less-safe drivers may avoid
inclement weather. But there is the very real possibility that each driver will compensate for the adverse conditions by
altering their driving behavior to keep an acceptable level of risk. A simple illustration of this process is given in Fig. 1 with
approximate speed/crash probability curves.6 In looking at Fig. 1, under normal weather conditions each individual driver
makes a trade-off between their selected speed and what they consider to be an acceptable level of safety (represented by
the probability of a crash in this figure), resulting in Point A. Under adverse weather conditions, the relationship between
speed and the probability of a crash shifts the curve upward. If the driver continues at the same speed as driven in normal
weather conditions, Point B is reached and the probability of a crash increases accordingly. If the driver were to maintain the
same crash probability, slowing down to Point C would be required. It is reasonable to speculate that all drivers will adapt to
the adverse weather condition to some degree, likely resulting in a speed/crash probability equilibrium somewhere between
Points B and C on the adverse weather-conditions curve (for example, Point D). There is also the possibility that some drivers
may over compensate for the adverse weather conditions driving much slower resulting in equilibrium at Point E where the
probability of a crash is even lower than it was before the adverse weather conditions.

From a statistical perspective, risk compensation presents a very difficult problem because the equilibrium point of each
driver is not known (some may be at Point B, some at Point C, some at Point D, and so on) and the equilibrium point may not
be stable over time. With regard to time stability, consider driver reactions to snowy weather conditions. In areas that
experience snowy conditions frequently, driver experience will enable them to reach a snowy-condition equilibrium point
that is more likely to be stable over time. However, in regions with infrequent snow fall, the spread of driver equilibrium
points is likely to be over a much broader range of the speed/crash-probability curve because drivers do not have the
experience to accurately assess crash probabilities under these conditions. And, as the frequency of snowfall changes over
time, the resulting impacts on the frequency and severity of crashes will also change. So the effects of the same adverse
weather conditions are likely to be both temporally and spatially (across geographic regions) unstable.

More recently applied statistical and econometric methods such as random parameters models and finite-mixture/
latent-class/Markov-switching models can potentially provide some insight into the effects of risk compensation on the true
impact of phenomena such as adverse weather conditions, but much additional methodological work is needed to move
beyond simple statistical applications in order to seek fundamentally new insights.

4.5. Choice of methodological approach

Researchers have expended considerable energy in trying to determine which general methodological approaches are
best suited to crash-related data. For example, with regard to crash-injury severities, there have been countless studies and
discussions as to which general discrete-outcome approach is most appropriate: models that do not consider the natural
ordering of injury severity data (ranging from no injury to fatality) such as the multinomial logit, nested logit and random
parameters (mixed) logit; or models that do consider the natural ordering of data such as traditional ordered probit and
6 In fact, many other elements could easily be considered in this graph (for example, risky behaviors beyond speed such as the decision to engage in
distracted or impaired driving, following other cars too closely, and so on) but only speed and crash probability are used here for illustrative purposes.
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logit models (see Table 2). Because the data are ordered, many researchers have assumed without much empirical
exploration that ordered models are the preferred methodological approach (see Washington et al. (2011) for a discussion of
this point). However, all methodological approaches have inherent limitations and the superiority of one model over
another can often not be proven mathematically and, in fact, even empirical generalizations cannot be made because the
overall model fit may vary from one database to the next.

To provide an illustration of the trade-offs that must sometimes be made in applying competing methodological
approaches, consider the inherent limitations of the traditional ordered probit model when applied to crash-injury data
(see for example Eluru et al. (2008), who discuss this in detail when proposing a generalized ordered probit model for injury
severity). Traditional ordered probability models are derived by defining an unobserved variable, z, which is typically
specified as a linear function of a vector of explanatory variables (X) and the associated vector of parameters (β) is estimated
by assuming a distribution of is an independently randomly distributed disturbance terms (ε). The probability of specific
crash-injury severity outcomes is then determined by integration of the area under the density function as shown in Fig. 2,
with the vertical lines in this figure (the vertical dash-dot lines) being thresholds separating discrete injury-severity
categories and these are also determined as part of the estimation process. In standard ordered probability models, the
effect of explanatory variables is to shift the thresholds as shown in Fig. 2 (from the dash-dot vertical lines to the dot vertical
lines). A visual inspection of this figure reveals a severe limitation of ordered probability models in that is impossible for an
explanatory variable to simultaneously increase or decrease both of the extreme severity categories (no injury and fatality).

To see how this is a problem, consider the following example provided in Washington et al. (2011). Suppose that one of
the explanatory variables in determining injury severity is whether or not an airbag was deployed in the crash. The airbag-
deployment indicator variable in a standard ordered model would move the thresholds shown in Fig. 2 to either increase the
probability of a fatality (and subsequently decrease the probability of no injury) or decrease the probability of fatality (and
subsequently increase the probability of property damage only). But the reality may be that the deployment of an airbag not
only reduces the probability of a fatality but also reduces the probability of no-injury since airbag deployment itself could
cause minor injuries. If this situation exists, a traditional ordered probability model is not appropriate because it does not
have the flexibility to allow the extreme categories to simultaneously increase or decrease.7 Estimation with a standard
ordered model in this case will produce biased parameter estimates that could easily lead to incorrect inferences.

In an unordered discrete-modeling framework (such as a multinomial logit, nested logit or random parameters logit),
accounting for the fact that an explanatory variable can simultaneously increase or decrease extreme severity categories is a
total non-issue since this can be readily handled by including the airbag-deployment indicator in specific equations that
determine individual severity-category probabilities. Thus, in choosing between ordered and unordered models, researchers
often must make a tradeoff between considering the ordered nature of the data and restricting how explanatory variables
affect outcome probabilities.8

Developing a general rule that establishes the superiority of one methodological approach over another has under-
standably eluded both crash-frequency and injury-severity researchers. Empirical evidence from many studies suggest that
the superiority of one methodological approach over another can be very data-dependent9 and, even with the same data,
7 In recognition of this important limitation, there has been a body of recent work using generalized ordered outcome models which relax this
restriction (see, for example, Eluru et al., 2008; Castro et al., 2013).

8 Similar issues arise when considering how best to model crash-frequency analysis. For models that can be statistically compared, such as the simple
Poisson and negative binomial models, a specific model can be justified using simple statistical tests such as the likelihood ratio test. However, models that
do not lend themselves to direct statistical comparison, such as modeling frequencies as a count process vs. modeling them as duration data using the time
between successive crashes, often lead to ambiguous statistical justifications.

9 For example, in injury-severity models that are nested and can be directly compared statistically (such as the standard fixed-parameters multinomial
logit and nested logit models), depending on the source of the injury-severity data, some studies have found the simple multinomial logit model to be
justified whereas others have found the more involved nested logit model to be justified (see, for example, Savolainen and Mannering, 2007).
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comparison of models which are often non-nested (such as is the case for ordered and unordered probability models) can
leave much to be desired in terms of defensible statistical evidence. With this said, there have been a number of recent
efforts that have undertaken empirical comparisons of alternate injury-severity model structures (Abay, 2013a; Yasmin and
Eluru, 2013; Ye and Lord, 2014) and, although there will always be questions relating the generalizability of the results
across multiple databases, these studies provide at least some evidence for model comparisons.

4.6. Under-reporting of crashes with less severe injuries

It is well documented that crashes resulting in no injuries, or less severe injuries, are more likely to be under-reported
and thus do not appear in crash databases (Yamamoto et al., 2008; Ye and Lord, 2011; Yasmin and Eluru, 2013). In the
presence of such under-reporting, the observed distribution of crashes (from reported crashes) among the injury-severity
categories will differ from the actual distribution of crashes among the severity categories. For modeling crash-injury
severities with traditional model-estimation techniques, the consequence will be a potentially severe bias in model-
estimated parameters that could lead to incorrect inferences.10 The matter of under-reporting has been extensively studied
in discrete-outcome model literature, and is just a variation of outcome-based sampling. There are numerous corrective
estimation techniques such as the weighted conditional maximum likelihood estimator and others (Ye and Lord, 2011; Patil
et al., 2012). While several researchers have addressed the under-reporting problem in crash-severity analyses (see Abay,
2013b), there is a need to continue work in this area, particularly with more advanced methodologies such as random
parameters and multiple-state models.

Under-reporting of less severe crashes obviously also affects crash-frequency models, but the effect of under-reporting on
crash frequencies has been studied less often than it has been studied on crash severities. The consequence of omitting
minor crashes from frequency models can be problematic in that locations with a large number of minor crashes may not
show up as the safety hazard that they are, and minor changes in conditions (weather events, traffic volumes, etc.) could
quickly move a roadway location with seemingly no major safety concern, into a very serious safety-deficient location as
many of the unreported minor crashes become more severe reported crashes. The complexity of issues involved with under-
reporting in count-data models can be formidable, but ignoring under-reporting in these models can also lead to erroneous
inferences.

4.7. Spatial and temporal correlation

Both crash frequency and severity data often have observations that are in close spatial or temporal proximity. All data
are likely to have unobserved factors that may influence the frequency and/or severity of crashes and, because these
unobserved factors are likely to be correlated over space and time, ignoring the spatial and temporal correlation of data will
almost certainly result in inefficient and possibly inconsistent parameter estimates. Examples of such unobserved factors
could be pavement irregularities that may not be observed but may extend over time or space, micro-climate effects that
may result in reduced friction over time and space, local sight-distance restrictions that again may extend over time and
space. There have been numerous efforts that have begun to explicitly address spatial and temporal correlation (see the
section on methodological frontiers later in this paper).

5. Emerging data sources

Traditional crash frequency and severity are based on data that is collected after a crash has occurred. This is highly
restrictive in many ways. First, there are many near-crashes that contain potentially important information regarding crash
generation and severity that do not appear in traditional crash data bases. Second, as discussed above, many minor crashes
are not recorded through traditional sources leading to a loss of potentially important information. Third, many important
contributing factors to crash occurrence and resulting severity are not collected (for example, vehicle speed, driver braking
and maneuvering responses, etc.) leading to considerable unobserved heterogeneity that complicates modeling and
precludes important information that could be used to make significant new inferences. Fourth, police-reported measures of
injury severity (no injury, possible injury, evident injury, disabling injury, fatality) are based on observations at the crash
scene and can change as further medical diagnosis is undertaken.

There are several important emerging sources of data that could address some of these data concerns. One example is the
recent availability of Crash Outcome Data Evaluation System (CODES) data in select U.S. states which has permitted
researchers to assess crash severity with significantly greater detail. These data provide detailed information on injury
levels, location of injuries, cost of injuries, and so on, but they rely on the linkage of police-reported crash records with
medical records which is itself often a difficult and imprecise task.11 However, when police crash reports are successfully
10 An exception to this is the multinomial logit model. If the restrictive assumptions of the fixed-parameters multinomial logit model hold (the
independence of irrelevant alternatives), in the presence of such under-reporting all parameters will be correctly estimated except the constants, and these
can be readily corrected if the extent of under-reporting is known (see Washington et al., 2011).

11 CODES data may also help with some of the under-reporting of crashes if those involved in a non-reported crash subsequently seek medical
attention.
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matched with corresponding medical data, the level of detail available in CODES data goes well beyond police-reported
injury assessment and includes details on injury types (fractures, dislocations, internal organ damage, crushing, burns, etc.)
and locations body (head and neck, spine and back, torso, extremities). CODES data can also allow for more detailed analysis
of cost data (another potential but underutilized assessment of severity) with information on medical costs (professional,
hospital, emergency department, drugs, rehabilitation, long-term care), other associated costs (police/ambulance/fire,
insurance administration, loss of wages, loss of household work, legal/court costs, property damage) and possible quality-of-
life costs in terms of quality-adjusted life years (Blincoe et al., 2002).

Another emerging source of data is that collected from specially equipped cars to gather so-called naturalistic driving
data. In these cases, cars are equipped with video-recording technologies, onboard vehicle sensors that record a wide array
of data including lateral and longitudinal acceleration, yaw rate, brake and accelerator applications, and radars to measure
proximities to other vehicles and objects. Such an instrumented car generates an incredible amount of data, but many issues
arise in using such data including (1) the infrequent occurrence of crash and near-crash events results and the need for very
long observation periods to generate enough truly useful data; (2) drivers knowing that they are driving in an instrumented
vehicle may alter their behavior; and (3) the sheer volume of data makes managing and statistically modeling a
cumbersome task. Even with these issues considered, the emergence of naturalistic data offers the potential greatly expand
the scope of statistical modeling and the inferences that can be drawn in years to come.

Still another promising source of data is information gathered from vehicles' Event Data Recorders (EDR's), often referred
to as a “black boxes”, which record significant amounts of data prior and during the crash. Currently, EDR's are not
mandatory, but many automakers include them in their cars and it has been estimated that even as early as the 2005 model
year, 64% of passenger vehicles sold had the device (Insurance Institute for Highway Safety, 2013). In December of 2012, the
National Highway Traffic Safety Administration (NHTSA) proposed a rule requiring the devices in all 2015 and later model
vehicles. Most EDR's are built into a vehicle's airbag control module and record information about airbag deployment.
However, some also record pre-crash data, like engine throttle and vehicle speed from the engine control module. For the
2013 model year, EDR's must record: change in forward crash speed; maximum change in forward crash speed; time from
beginning of crash at which the maximum change in forward crash speed occurs; speed vehicle was traveling; percentage of
engine throttle, percentage full (how far the accelerator pedal was pressed); whether or not brake was applied; whether or
not driver was using safety belt; whether or not frontal airbag warning lamp was on; driver frontal airbag deployment; and
number of impact events. Some more advanced EDR's currently record additional information such as sideways
acceleration, forward or rearward acceleration, engine speed, driver steering input, right front passenger safety belt status,
engagement of electronic stability control system, antilock brake activity, side airbag deployment time for driver and right
front passenger and seat track positions for both the driver and right front passenger. Occupant size and position for drivers
and right front passengers may also be recorded. Clearly accessibility to such information could greatly improve the
specification of crash injury-severity models.

6. The methodological frontier

Given the limitations of traditional data, there have been substantial methodological developments in recent years that
have led to important new inferences in the study of crash frequency and severity. Perhaps some of the most important
methodological advances have dealt with ways of addressing (a) unobserved heterogeneity, and have included random
parameters and multi-state models such as Markov switching and finite-mixture/latent-class models, (b) multivariate
models, including spatial and/or temporal dependence effects, and (c) self-selection or endogeneity issues. Finally, there has
been some effort to incorporate “soft” measures of driver personalities and attitudes in safety modeling. Each one of these
issues is discussed in turn in the subsequent sections.

6.1. Unobserved heterogeneity

As shown in Tables 1 and 2 (see also the references listed in the unobserved heterogeneity category in Table 3), there has
been great interest in recent years in models that incorporate unobserved heterogeneity. These modeling approaches
provide important ways to address issues relating to unobserved heterogeneity. Random parameters models can potentially
capture unobserved heterogeneity by allowing parameters to vary across observations (such as a roadway segment) or be
fixed within group of observations but vary across groups that are specified by the analyst (such as roadway segments on
the same highway route). The disadvantage of random parameters models is that the distributional assumption required to
estimate the random parameters may not adequately capture unobserved group-specific features within the population
(in contrast to groups of observations that the analyst may specify, there may exist homogeneous groups of data which may
not be known to the analyst).

Finite-mixture/latent-class models take a somewhat different approach to addressing unobserved heterogeneity by
identifying distinct subgroups of data with homogeneous attributes. In contrast to traditional random parameters models,
finite-mixture/latent-class models consider unobserved heterogeneity by using a finite and specified number of mass points
to identify homogeneous subgroups of data (as opposed to having the analyst identify subgroups based on some observed
characteristics, such as grouping roadway segments that are along the same route). The potential advantage of this is that it
does not require, as in the case of traditional random parameters models, a distributional assumption relating how
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parameters vary across observations (or groups of observations) or analyst determination of observation groups. The
disadvantage is that it does not account for the possibility of within-group variation due its restrictive homogeneity
assumption on characteristics of the within-group observations.

The combination of finite-mixture/latent-class and random-parameters models (incorporating random parameters
within a finite-mixture/latent-class model) to more fully capture the unobserved heterogeneity has been considered in a
number of research efforts in statistics (Verbeke and Lesaffre, 1996), econometrics (Lenk and DeSarbo, 2000), marketing
research (Allenby et al., 1998), and recently in accident research (Xiong and Mannering, 2013). This hybrid modeling idea
considers the possibility of observational random parameters sampled from an assumed continuous distribution within
each of the groups within a finite-mixture framework. Hence it can account for group-specific heterogeneity and individual-
observation heterogeneity within each group.

Models that have multiple states of safety also have the potential to address unobserved heterogeneity in exciting new
ways. The idea is that fundamentally different states of safety exist and that highways may shift between these over time.
This has given rise to the application of Markov switching models, in crash-count and crash-severity applications (see
Tables 1 and 2), which assume highway segments switch over time, according to a Markov process, among multiple states of
highway safety. The logic behind addressing unobserved heterogeneity in this way is unobserved multiple states may exist
because of different environmental conditions, driver reactions and other factors that may not necessarily be available to the
analyst and that these may change over time, and that these states can be identified as part of the model-estimation
process.12
6.2. Multivariate models

Multivariate models refer to cases where there are multiple dependent variables that are inter-related with each another.
In the context of crash frequencies, a simple example of a multivariate count model is the case of analyzing intersection
crash-related injuries by crash type (head-on, rear-end, angular, collision with a stationary object, etc.). Analyzing crash-
related injuries by type is important because of differential impacts of relevant exogenous variables on different crash types.
For instance, intersections with stop signs may lead to more rear-end crashes relative to intersections controlled by signal
lights, as drivers may brake suddenly when arriving at the stop sign and do not leave adequate time for the following driver
to stop in time (relative to the case of a signal light), as has been observed by Kim et al. (2006). However, there may be
relatively little difference between stop sign controlled intersections and signal controlled intersections in the number of
head-on collisions. This is an example of a case where the control type at the intersection has a differential effect on
different crash types, and ignoring this will, in general, lead to inconsistent estimates for the count of crashes of each type as
well for the total count of crashes. A possible approach to consider this heterogeneity in variable effects is to estimate
separate univariate count models for each crash type, but the problem is that unobserved factors are likely to impact
multiple crash counts simultaneously. This necessitates the consideration of multivariate count models.

There are other motivations that also lead to multivariate models. Thus, the frequency of crashes at a particular
intersection may be inter-linked with those at other intersections over space because of unobserved factors (such as land-
use design features, and local variations in driver behavior) that can cause a dependence between crash occurrences at
proximately located intersections. At the same time, if data are collected at each intersection over multiple years, and the
unit of analysis is the annual number of crashes, intersection-specific unobserved factors (such as pedestrian walkway
continuity) will cause a temporal correlation in the number of crashes at the same intersection over time. Such spatial and
temporal dependencies result in multivariate models of very large dimension.

From a methodological standpoint, the field has long since matured in the area of univariate count models, but this has
not been the case with multivariate count data. Current methods to deal with multivariate data are either too restrictive,
relatively cumbersome and time-consuming, and/or literally infeasible in the case of high dimensionality (as often is the
case when accommodating spatial and temporal dependencies). One promising approach that has been recently applied for
multivariate models involves the recasting of traditional count models as a special case of a generalized ordered-response
model. In this recasting, the count is the result of a latent risk propensity that gets mapped into the observed count
outcomes through thresholds that are themselves functions of exogenous variables. In this formulation, the linkage across
count categories is generated through the latent risk propensity, and excess probability masses (such as excess zero values)
are easily handled without the need for zero-inflated and hurdle-count type devices that get very cumbersome in
multivariate count settings (see the last row in Table 1).

Multivariate issues also readily arise in crash injury-severity data, such as the case of vehicle crashes in which multiple
vehicles are involved, with each vehicle having one or more occupants. In such cases, the different occupants of each vehicle
may experience different levels of injury severity, based on observed factors (such as seat belt use, vehicle type, and position
of the occupant in the vehicle) and unobserved factors (such as vehicle condition and maintenance record, and mental and
physical state of the vehicle occupant). Some of the unobserved factors may play a role in the injury severity sustained by
12 The empirical success of zero-inflated count-data models (see Table 1) to model crash frequencies provides some empricial evidence of the presence
of unobserved safety states. Multi-state models (Markov switching models) have also been successfully estimated in the safety field by Malyshkina et al.
(2009), Malyshkina and Mannering (2009, 2010a) and Xiong et al. (2013).
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multiple individuals. For example, the vehicle condition should affect the injury severities of all occupants of each vehicle,
while the pavement condition at the location of the crash should affect the injury severities of all individuals involved in the
crash. The presence of these common unobserved elements points to the need for a multivariate injury-severity model that
characterizes the severity levels of all individuals involved in the crash. In contrast, most crash-related injury severity
studies in the safety literature either pool all individuals across all crashes and estimate an individual-level injury severity
model that completely severs the link between individuals involved in the same crash (which leads to inefficient
econometric estimation at the very least, and potentially inconsistent estimation in many situations; see Abay et al.,
2013), or model the injury severity of the most severely injured individual in a crash (which does not provide a
comprehensive view of the nature and severity of all injuries sustained in the crash). Recently, there have been a few safety
studies that have formulated and employed a multivariate injury severity model (see Table 2). These include copula-based
models as introduced by Bhat and Eluru (2009) in the general transportation literature and Eluru et al. (2010) in the safety
literature that allow a flexible dependency structure in the unobserved factors influencing injury risk across individuals (see,
for example, Rana et al. (2010); Yasmin et al. (2013)). The concept of copulas is discussed in a little more detail in the next
section.

As in the case of crash counts, a multivariate injury-severity model also arises when taking account of spatial and
temporal dependencies. For example, consider the case of crashes at proximally located intersections. It is certainly possible
that observed design elements at one crash location (say, for example, the presence of an island at an intersection) not only
influences injury risk propensity at that location, but also have a “spatial spillover” effect on the injury propensity at
proximally located crash sites. In addition, there may be common unobserved (to the analyst) location factors that may lead
to a spatial-correlation effect in the error terms of the injury-risk propensity at proximally located crash locations. Ignoring
such spatial dependencies will, in general, result in inconsistent and inefficient parameter estimation in non-linear models
(see LeSage and Pace, 2009). There have been some recent efforts to address this concern in general, and in the safety literature
in particular. For example, Castro et al. (2013) use Bhat's (2011) maximum approximate composite marginal likelihood
(MACML) approach to estimate a multivariate model with spatial dependency, and the approach holds considerable potential
for application in a variety of multivariate contexts.

Another related area where multivariate models should be useful is in the analysis of naturalistic driving data. Indeed,
the sheer volume of the naturalistic driving data makes statistical modeling an interesting and challenging task. There are
several opportunities to enhance currently used analytic methods (or even venture into alternative approaches) to deal with
such massive data sets. For instance, statistical pattern recognition and machine learning may offer avenues for combination
with more traditional multivariate statistical methods to deal with high dimensional data and recognize/model patterns
from large data streams (National Academies, 2013).

6.3. Selectivity bias/endogeneity

The issue of selectivity bias/endogeneity has been discussed earlier in Section 4.3, and falls under the general framework
of treatment-outcome models in econometrics (see Heckman and Vytlacil, 2005), with the treatment (for example,
ice-warning signs and posted speed limits) and the outcome (crash frequency or injury severity) being modeled jointly. The
method used in almost all of the very few earlier safety analysis studies to accommodate endogeneity is based on the use of
an instrumental variable approach that involves computing the predicted probability of the treatment, and replacing the
treatment variable in the outcome equation by the predicted probability. Unfortunately, the two stage estimation as just
discussed is not appropriate for non-linear outcome models such as count models and injury severity models (see Greene,
2009).

There are two possible (and correct) approaches to accommodate endogeneity in non-linear models. The first, control
function or two stage residual inclusion (2SRI), approach involves (a) estimating the treatment or endogenous variable
(which can itself be a continuous variable or a limited-dependent variable) using appropriate techniques (with one or more
instrumental variables as predictors), (b) obtaining predictions of the endogenous variable, (c) computing residuals from
this first stage, and then (d) including these first stage residuals (in addition to the endogenous variable). In the case when
both the first stage and second stage equations are linear relationships as opposed to one or both being non-linear
relationships, this 2SRI approach is equivalent to two stage least squares or 2SLS. Terza et al. (2008) show that 2SRI is
consistent for non-linear models, while other two stage approaches are not. But it can be a challenge in this 2SRI approach
to find good instruments, and the approach also constitutes a limited information approach that can be fraught with
econometric efficiency and collinearity problems (Puhani, 2000). In addition, the analytic correction or a bootstrapping
empirical estimator for obtaining the correct standard errors can be cumbersome.

The second approach is a full information maximum likelihood (FIML) approach. When using the traditional count
formulations for crash frequency, the FIML approach includes a random error term in the parameterization of the expected
value of the count discrete distribution (so that the expected value is not only a function of exogenous variables and the
treatment variable, but also includes a random term). A dependence structure is then specified between this random term
and the random term involved in the treatment model. Then, conditional on the error term in the count model, the
probability of the treatment and of the outcome can be written as the product of the individual probabilities of the
treatment and of the outcome. The unconditional probability of the treatment and outcome may be obtained by integrating
out the error term of the count model (see Greene, 2009, for a discussion). Similarly, in the case of an injury severity
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outcomes, and assuming a binary treatment variable, one needs to have a propensity equation for the treatment (this
propensity translates to the observed treatment indicator, in the usual binary model fashion) and an appropriate
specification for injury severity with the treatment as an indicator variable (in the form of either a single injury-severity
propensity equation that is related to the observed injury severity levels through thresholds in the ordered-response or
generalized ordered-response formulation, or in the form of multiple propensity equations, one for each injury severity
category, in the unordered-response formulation). The error terms in the treatment and outcome propensities are then
specified to have a dependency structure. After accommodating this dependency structure, the structural parameter on the
treatment in the outcome model may be viewed as the “cleansed” and “true” causal effect of the treatment. In this
formulation, the joint probability of the treatment and the outcome takes a bivariate truncated distribution (if an ordered-
response or generalized ordered-response model is used for injury severity) or a multivariate truncated distribution (if an
unordered model is used for injury severity).

A methodological frontier issue in safety analysis is then first to accommodate endogeneity considerations appropriately.
For the count model outcome, the recasting as a generalized ordered-response model may be particularly effective in
capturing endogeneity issues, and should open up a suite of possibilities for specifying and testing endogeneity effects.
Further, there is substantial room for exploring a variety of copula structures for the error dependency between the
treatment and outcome variables. A copula is a device or function that generates a stochastic dependence relationship
(a multivariate distribution) among random variables with pre-specified marginal distributions (see Bhat and Eluru, 2009).
The precise definition of a copula is that it is a multivariate distribution function defined over the unit cube linking
uniformly distributed marginals. There are several different types of copulas, each of which provides a different probability
density function for the stochastic dependence relationship. Using a copula approach, an analyst can make use of the full
information content available in the data through the FIML approach, while also alleviating misspecification problems in the
dependence structure.13

6.4. Accommodating soft psychometric measures in safety analysis

Safety analysis research, for the most part today, uses “hard” observed variables as explanatory variables in crash
frequency and injury-severity modeling. However, there are many examples where “soft” attitude measures and related
“values” also may be important determinants. Understanding the impact of such “soft” measures can be very helpful for the
design of information campaigns and behavioral modification considerations. For example, consider the effect of driver
aggressiveness on crash occurrence and injury-severity levels. The analyst can obtain indicators of aggressiveness through
surveys that elicit information on self-reported frequency (per month or per week) of participating in such acts as “excessive
speeding”, “making threatening maneuvers with the car”, and “failure to signal”, or through personality inventories such as
the Driver Anger Expression Inventory and the Driver Angry Thoughts Questionnaire (see Benfield et al., 2007), or through
naturalistic driving data. Unfortunately, these indicators typically get combined and converted into a single binary indicator
of aggressiveness, and are then occasionally studied as a function of demographic/situational attributes. Rarely has there
been an examination of the effect of driver aggressiveness on crash occurrence and injury severity. One area that would
certainly benefit the safety literature is to consider soft latent constructs (such as driver aggressive personality in general
and when driving in particular), and relate these not only to relevant demographic/situational attributes, but also to the
outcome of interest in safety analysis. A useful approach for this is the integrated choice and latent variables (ICLV) framework
that expands typical econometric models to allow latent constructs representing “soft” psychometric considerations (see
Bolduc et al., 2005; McFadden, 2013). The ICLV approach not only can provide a deeper understanding into safety
determinants, but can also potentially enhance the predictive ability of current safety models. A typical ICLV model includes
a latent variable structural equations model that specifies latent constructs of safety-related personality traits and attitudes
(such as aggressiveness, responsibility, nervousness under pressure, etc.) as a function of observed covariates. Further, the
latent constructs (or variables) themselves are viewed as being manifested through the attitudinal and perception indicator
variables in a latent measurement equation model, which recognizes the presence of measurement error in capturing the
intrinsic latent constructs. Finally, the “soft” latent variables and the “hard” observed variables are used together to explain
safety-relate outcomes. The ICLV approach has substantial potential for use in safety analysis, particularly with recent
developments that make the estimation and application of the approach much more practical (see Bhat and Dubey, 2013).14

7. Summary and insights

It is clear from the above discussion that accident research has benefited greatly from the application of more
appropriate, and often more sophisticated, statistical methodologies. The application of these new statistical methodologies
has enabled researchers to extract important new inferences from available data. However, many important methodological
13 Another useful research frontier is to extend consideration to treatments that are not binary (see, for example, Bhat et al., 2013).
14 Another important issue is to accommodate several of the econometric considerations discussed in earlier sections simultaneously. For example,

accommodating the multivariate nature of counts or injury-severity levels does not alleviate the problems caused by unobserved heterogeneity or
endogeneity. A few recent studies (see the studies that appear in more than one row in Table 3) have started considering the multiple econometric
challenges simultaneously, but such studies are far and few in between.
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issues remain relating to model specification, unobserved heterogeneity, selectivity-bias/endogeneity, risk compensation,
missing data, addressing spatial and temporal correlations, and so on. Important new data sources, such as data from
naturalistic driving, are becoming available, but many of the fundamental issues facing the statistical modeling of current
data will also pervade these new data sources, and many new methodological concerns will most certainly arise from these
sources. To be sure, there have been recent methodological applications such as random parameters models, finite-mixture/
latent-class models, multi-state switching models, and others that hold considerable promise for improving the statistical
analysis of current and future data sources.

Considering the above, the development and application of analytic methods in accident research is entering an era of
unprecedented opportunities. This era that is being brought about by a combination of recent advances in methodological
techniques and the availability of exciting new data sources. To show the interaction between methodology and data in the
field and how it is evolving, it could be easily argued that the accident-research field has been dealing with relatively static
data (quantity and quality) for decades (primarily police-reported crash data). This has kept a virtually constant “data
frontier” while the “methodological frontier” has marched, in many respects, well beyond data capabilities. This is
illustrated in Fig. 3, where it can be seen that the methodological opportunities have been limited by data availability from
traditional sources. However, as illustrated in Fig. 4, the advent of many emerging data sources is beginning to greatly
expand the data frontier, creating an urgent need for new methodological advances.

It is important to recognize that the many methodological opportunities that will present themselves in the coming years
must be viewed from the perspective of what has been done in the past. Fundamental methodological issues encountered
with past data (unobserved heterogeneity, selectivity-bias/endogeneity, risk compensation, missing data) will most
certainly be present with new data sources and great caution must be exercised because there is often the tendency with
new data (particularly data that is greatly expanded in terms volume and number of observations) to adopt methodological
approaches that ignore important fundamental methodological issues.
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As research relating to the statistical analysis of highway crash data (and new data that can provide information on near-
crash events) progresses, it is important that researchers continue to address the fundamental methodological questions
and continually strive to expand the methodological frontier. Not expanding the methodological frontier, and continuing to
use methodological approaches with known deficiencies, has the potential to lead to erroneous and ineffective safety
policies that may result in unnecessary injuries and loss of life.
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