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Abstract—This paper investigates commuters’ decision to delay their departure from work to
home, in an effort to avoid traffic congestion. A sample of commuters, from the congested Seattle
metropolitan area, is used to estimate a model of the decision to delay homeward departure as well
as models of the frequency and duration of this delay. The estimation results suggest, as expected,
that traffic system characteristics dominate the delay choice, with socioeconomic characteristics
and the characteristics of the area near the work location (which provides activity opportunities
that can be undertaken during the departure delay) playing a lesser role. The estimated magnitude
of influence that these determinants have, on the delay choice, has important implications for
future departure-time-choice research.

INTRODUCTION

Historically, transportation and traffic planning has, for the most part, focused extensive-
ly on the study of commuters’ mode and route changes in response to traffic congestion.
However, more recently, another very important dimension of commuters’ response to
congestion has begun to receive increasing attention. This dimension, the choice of depar-
ture time, has become an increasingly significant concern as levels of traffic congestion
continue to rise dramatically in urban areas. It is now generally recognized, by researchers
and practitioners alike, that commuters’ choice of departure time is a critical concern in
the study of traffic congestion.

Unfortunately, from a modeling perspective, the choice of departure time necessitates
that explicit consideration be given to the rather complex issue of the time-varying dynam-
ic nature of commuter travel decisions. Operationalizing a traffic forecasting model to
predict urban congestion, while explicitly accounting for departure time decisions, is a
monumental undertaking due to these time-varying concerns, and one that is well beyond
the level of currently used traffic forecasting methods. Due to the complexity of the
problem, research in the area of commuter departure time choice has concentrated on
small, often isolated components of the problem in an effort to gain a further understand-
ing of the factors involved the departure time decision. For example, Mahmassani and
Chang (1985, 1986), Chang and Mahmassani (1988), and Mahmassani and Tong (1986),
have investigated the process by which commuters arrive at a satisfactory departure time
and route choice in a small, isolated traffic network. Their work provided valuable insight
into time involved for a traffic system to reach a state of dynamic equilibrium. In other
work, Abu-Eisheh and Mannering (1988), and Mannering, Abu-Eisheh, and Arnadottir
(in press) have used econometric-based methods to arrive at equilibrium route and depar-
ture times, in response to projected congestion, but again their work was confined to the
analysis of a small, isolated traffic network. Finally, Mannering (1989) investigated the
frequency with which commuters make route and departure time changes in a real traffic
network, but his work did not provide for a theoretical or empirical link to a traffic
equilibrium process. However, despite some rather obvious limitations, past research has
made measurable strides toward a truly operational urban forecasting model that explicitly
accounts for changes in commuter departure time. Such strides have been accomplished by
concentrating on specific components of the departure time choice problem. The intent of
this paper is to continue with the component-concentration approach used in the past and
to add still more to our growing understanding of the departure time choice process.

One key element of commuters’ departure time choice, that has not been adequately
dealt with in past research, is the choice of departure time from work to home or, more
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specifically, the choice to delay homeward departure, from work, to avoid traffic conges-
tion.T Previous work (as listed above) has, for the most part, focused on the choice of
departure time from home to work. Although the departure time decision-making process
for the work-to-home and home-to-work trips share many commonalties, there are some
significant differences. Three important differences come to mind; (1) the work-to-home
trip often does not have fixed, or even preferred, times for arrival at home, (2) the
penalties associated with late arrival at home are substantially different than those asso-
ciated with late arrival at work and, (3) delays in departure from work to home give the
commuter the option of participating in activities, near the work place, from which some
utility or satisfaction can be derived. This paper will present an analysis of the work-to-
home departure time choice process using data from a highly congested real-world traffic
network. As will be shown, the analysis results provide interesting insights into this impor-
tant problem.

The paper begins with an intuitive discussion of the factors affecting the work-to-
home departure time delay choice decision. Next, the empirical setting is described and a
summary of the conducted survey is given. This is followed by a presentation of the
specification and estimation of the work-to-home departure-time delay choice model as
well as models of the frequency and duration of departure delay.

DETERMINANTS OF WORK-TO-HOME DEPARTURE DELAY

The decision to delay departure from work to home, in an effort to avoid traffic
congestion, is influenced by factors that can be broadly classified into four areas; (1)
socioeconomic, (2) traffic system, (3) activity opportunities, and (4) related travel
choices.t Socioeconomic factors can play a potentially important role, since one might
expect individuals with different socioeconomic characteristics to respond differently to
traffic congestion. For example, regardless of traffic conditions and radio traffic reports
indicating traffic delay, risk-seeking individuals and/or those with a high tolerance for
traffic congestion can be expected to depart from work without delay whereas risk-averse
individuals and/or those with a low tolerance for traffic congestion may very well delay
their homeward trip in an effort to avoid congestion. In as much as socioeconomics are
correlated with risk characteristics, traffic tolerance, and the tendency to listen for, and
use, radio traffic reports, they can be expected to be important factors in the delay
decision. Moreover, socioeconomics are likely to have a more direct effect on the decision
to delay, with certain socioeconomic characteristics influencing the utility derived from
activities that the commuter may undertake if the decision to delay homeward departure is
made. Such activities include additional work, shopping, recreational activities, and social
activities.

The traffic system also plays an important role in determining whether or not com-
muters delay. Traffic system factors that likely influence this decision include; (1) the level
of congestion, with more congested traffic networks making delay more likely, (2) the
duration of congestion, with traffic congestion over extended periods ot time reducing the
benefits from delaying and, (3) the availability of alternate homeward routes, with a high
availability making options other than departure delay possible as a means of avoiding
traffic congestion.

Activity opportunities at or near the commuter’s work location clearly intluence the
choice to delay, with the possibility of working additional hours, shopping in nearby
stores, visiting friends and undertaking recreational activities (jogging, aerobics, music
lessons, and so on) all increasing the attractiveness of the delay alternative.

Finally related travel choices, such as mode choice, impact delay decisions with, for

+This paper considers only the possibility of delaying work-to-home departure. As such, the possibility of
departing earlier than scheduled from work, to avoid congestion, is not addressed.
tIn this paper, departure delay is defined as a delay from a departure time that would normally be taken if

traffic congestion was not sufficiently high to induce a delay. This definition of delay applies toc commuters with
and without flexible work hours.
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example, modes such as carpools and vanpools offering much less departure-time delay
opportunity than the single-occupancy automobile mode, due to scheduling problems
among pool participants. To be truly correct, the choice of mode should be considered
jointly with the choice of work-to-home departure delay. However in this study, we will
focus exclusively on departure delay with the assumption that mode choice decisions are
fundamentally longer-term in nature and, in contrast to departure time decisions, are not
likely to be made in response to short-term fluctuations in traffic congestion.

EMPIRICAL SETTING AND SURVEY RESULTS

To study the delay of departure from work to home, a traveler survey was conducted
in the Seattle area. The Seattle area is particularly well suited to the study of work-to-home
departure delay due to its heavily congested traffic network. In all, 204 Seattle commuters
were surveyed, in May 1988, and a summary of their socioeconomic and commuting
characteristics is presented in Table 1.

Referring to Table 1, it is noted that, although the sample contains a slightly higher
than expected percentage of male respondents, most of the socioeconomic characteristics,
such as age, number of household automobiles, number of children, income, percent with
flexible work hours, and mode split percentages are fairly reasonable for west-coast urban
commuters. Turning to work-to-home departure delay, we find that nearly half (47.06%)
of the respondents delay their homeward departure, from work, to avoid traffic congestion
and that the average of this delay is slightly less than one hour (51.29 minutes). In terms of
activities undertaken by respondents during this departure delay, there is roughly a 50/50
split between working and not working (i.e. shopping, social, and recreational). The

+The fact that only work-to-home departure delay is being considered, further diminishes the possibility of a
mode change being made to avoid traffic congestion. This is because commuters are limited in their modal
options due to their having already chosen a mode for their home-to-work trip.

Table 1. Sample summary statistics (Averages unless otherwise noted)

Number of household automobiles 1.8
Number of children in the household 0.7
Annual household income (dollars) 32,456
Age of respondent (years) 32.45
Sex of respondent (percent male/female) 63.7/37.3
Percent of respondents with flexible work hours 62.3

Percent of respondents commuting in single-occupant autos/buses/carpool-
vanpool

Percent of respondents indicating that they sometimes delay work-to-home trip

59.31/15.69/25.00

departure in an attempt to avoid traffic congestion 47.06
Average duration of delay, for those respondents indicating that they sometimes

delay (minutes) 51.29
Activity undertaken during work-to-home delay, for those respondents indicating

that they sometimes delay, percent working/shopping-social-recreational 48.96/51.04
Frequency of work-to-home delay, for those respondents indicating that they

sometimes delay (number of times in past week) 1.83
Distance from work to home (miles) 7.35
For average weekday, the ratio of expected work-to-home travel time, during the

afternoon peak, to the free-flow travel time 1.61
Population of the work zone 25,367
Retail employment in the work zone 4,605
Service employment in the work zone 9,733
Size of the work zone (acres) 3,088
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frequency of departure delay, which is presumably a function of recurring traffic conges-
tion and commuters’ activity plans, was found to be 1.83 times per week.

Additional characteristics of respondents’ commutes were computed based on infor-
mation provided in the survey. Specifically, zip codes of the work place and home were
used to compute work-to-home trip length, based on the shortest available route by
distance, and, for the average weekday, the ratio of expected afternoon-peak work-to-
home travel time to the free flow travel time. The expected peak-period travel time was
computed using a user equilibrium traffic assignment model of the Seattle area.t The
average commuting trip distance of 7.35 miles and the average ratio of expected to free
flow travel time of 1.61 are viewed as reasonable values. Finally, to capture the attractive-
ness of the area near work for engaging in nonwork activities during the departure delay,
information on work zone population, retail and service employment, and work zone size,
were imputed, using zip code information, for each respondent.

DEPARTURE TIME DELAY CHOICE

To begin the empirical analysis of commuters’ decision to delay departure from work
to home, we first focus on whether or not they ever delay their departure, in response to
traffic congestion, and later will shift our attention to the frequency and duration of
departure delay. The commuter can be assumed to face three choices with respect to
possible work-to-home departure time delays, (1) never delay departure time, (2) delay
departure time and undertake a work activity and, (3) delay departure time and undertake
a nonwork activity such as shopping, social, or recreational activitiest. These choices are
shown schematically in Fig. 1. With the choice alternatives in mind, consider a function
(referring back to the earlier discussion of the determinants of work-to-home departure
delay) that defines the utility that each commuter, &, derives from the departure time delay
choice as,

Uc=Fi(i, Zis Yis Vs Cis €) H‘)\

where U, is the total utility derived from the choice, i denotes the departure delay alterna-
tive, z, is a vector of commuter socioeconomic characteristics, y, is a vector of traffic
characteristics faced by the commuter, v, is a vector of activity opportunities at or near the
work-place location, ¢, is a vector of related travel choices (e.g. mode choice), and ¢, is the
random, unobservable portion of utility. It can be readily shown that if the ¢’s are assumed

+It is assumed, in standard user equilibrium, that travel time is constant over the peak period (defined herein
as covering the hours from 4:00 p.m. to 7:00 p.m.). Therefore, this variable does not account for the fluctuations
in travel time within the peak period. Instead, average peak-period travel times are used as a proxy for the actual
departure-time dependent travel time faced by commuters. This averaging is necessary due to data limitations.

$Respondents were only asked which activity they generally undertook during departure delay. This pre-
cludes analysis of the potentially interesting phenomenon of commuters undertaking different activities on
different days. A more extensive trip-diary type survey is needed to study such activity variation.

Do Not Delay Delay Delay
and Work and Shop, Socialize,

or Undertake Recreational Activities

Fig. 1. Structure of commuters’ departure-time delay choice.
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to be generalized extreme value distributed, the standard multinomial logit probabilistic
choice model can be obtained such that,

Py=exp[V, ]/ Y exp[V,] )
J

where P,; is the probability of the commuter selecting departure delay alternative i, V,, is
the mean utility of alternative / to commuter k, and J is the set of available alternatives.

With the model formulation defined in eqn 2, the mean utility for each alternative, i,
can be estimated as the linear function,

Vii=Bo+B1 2k + B+ B3V +Back ?3)

where (’s are coefficient vectors estimable by standard maximum likelihood methods (see
Train (1986) for additional details).

In estimating the multinomial logit model (eqn 2), we define alternative 1 as the never
delay choice, alternative 2 as the delay and work choice, and alternative 3 as the choice to
delay and to shop socialize or participate in recreational activities. Without loss of general-
ity, the utility of alternative one, the never delay choice, is implicitly scaled to zero. The
resulting coefficient estimates are given in Table 2.

Table 2 indicates that all coefficients are of plausible sign, and most are highly
significant, statistically. The ratio of expected afternoon-peak work-to-home travel time to
free flow travel time, has a strong positive effect on the likelihood of a commuter delaying
homeward departure.t Thus, this variable reflects the reasonable finding that an increase
in travel time of 10 minutes, on a trip that would take 8 minutes under free flow condi-
tions, is much more onerous than an increase of 10 minutes, on a trip that would take 45
minutes under free flow conditions. The use of a single-occupancy auto also was found to
have a strong positive effect on the likelihood of delaying, due to the fact that this modal
alternative provides much more departure time flexibility than carpools, vanpools or even

FIt is interesting to note that this variable was found to be much more significant than the arithmetic
difference between the increase in travel time, resulting from congestion, and the free flow travel time.

Table 2. Multinomial logit estimation results, z-statistics in parentheses

Estimated
Variable Coefficient
Constant (Alt2, Alt3) —14.088
(—8.056)
Ratio of the expected work-to-home travel time, during the afternoon peak, to 7.480
the free-flow travel time (Alt2, Alt3) (7.213)
Single-occupancy auto indicator (Alt2, Alt3) (1 if single-occupancy auto used, 0 1.081
otherwise) (2.109)
State route 520 indicator (Alt2, Alt3) (1 if state route 520 used, 0 otherwise) —1.147
(—1.791)
Distance from work to home, in miles (Alt2) 0.01
(2.745)
Population of the work zone (Alt3) 0.000036
(2.686)
Female indicator (Alt3) (1 if female, 0 if male) 0.330
(0.825)
Income indicator (Alt3) (1 if annual income greater than $60,000, 0 otherwise) 0.966
(1.327)

Note: Alt=alternative, Altl=no delay choice (implicitly normalized to zero), Alt2=delay and work,
Alt3=delay and shop, socialize, or participate in recreational activities. A variable’s coefficient value is
defined only for those alternatives listed in parentheses and is zero for non-listed alternatives. Number of
observations =204; log-likelihood at zero=—224.12 and at convergence= —120.14.

TR(8B) 24:2-C
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bus. One network specific variable, commuters’ use of State Route 520, was found to have
a negative effect on the delay alternatives. State Route 520 is the major bridge-crossing
connecting Seattle with her extensive eastern suburbs and is characterized by it exceptional
long periods of congestion. It is speculated that the length of congestion on this facility
implies that little is to be gained by commuters by delaying.

Four model variables were defined for only one of the two delay alternatives. The
distance from work to home was found to have a positive effect the choice of delaying
departure and engaging in additional work, supporting the reasonable assertion that
longer commute distances are generally more prone to have major traffic disruptions.
Since the work activity choice tends to be somewhat less spontaneous than nonwork
activity choice, the distance variable seems to be capturing some longer-term departure-
delaying response. The population of the work zone had a positive effect on the choice of
delaying and undertaking nonwork activities, with population being used as an indicator
of opportunities for nonwork activities in the work zone. Finally, there was a slight
tendency for female respondents and wealthier respondents to be more likely to delay and
shop, socialize, or participate in recreational activities.

To more accurately assess the implications of the coefficient estimates, it is useful to
compute point elasticities. For the logit model, average elasticities can be readily computed
by sample enumeration (see Train, 1986). The computed values are shown in Table 3.
Indicator variables are excluded from the table since, by definition, their point elasticities
are not particularly meaningful. Note that the table indicates that only the number of
times longer that the expected travel time is, relative to free flow travel time, has an
elasticity greater than unity. This underscores the dominant effect that traffic congestion
conditions have on the decision to delay. To a much lesser extent, distance and work zone
activity opportunities (as captured by zonal population) influence the delay decision.

From a model specification perspective, the issue of possible Independence of Irrele-
vant Alternatives (IIA) violations in the multinomial logit (MNL) structure must be con-
sidered. One might expect such violations since the delay alternatives (delay and undertake
a work activity and delay and undertake a nonwork activity) might be viewed as grouped
since both involve the decision to delay. This would in turn imply shared unobservables
which would violate the logit modeling structure. To investigate the possibility of IIA
violations, the specification test developed by Small and Hsiao (1985) was conducted.
Numerous combinations of subsamples of the population and reductions in available
alternatives were used in the tests. The findings indicate that in the worst case, the validity
of the MNL structure could only be rejected with 58% confidence (as indicated by the chi-
squared statistic). Thus, it appears that commuters view the delay choices of work and
nonwork, as qualitatively distinct, making the MNL formulation appropriate as used.

FREQUENCY OF DEPARTURE TIME DELAYS

In addition to modeling the choice of whether or not commuters ever delay their
work-to-home trip in response to traffic congestion, it would also be useful to develop, for
those commuters indicating that they sometimes delay, a model of the frequency with
which they delay. One would expect this conditional frequency of delay to be some func-
tion of the utility that the individual commuter derives from delaying as well as random
fluctuations in traffic congestion resulting from the occurrence of accidents and other
disruptive incidents. In accounting for the randomness of traffic disruptions, a Poisson

Table 3. Multinomial logit elasticity estimates

Elasticity with respect to: Elasticity
Ratio of expected travel time to free flow travel time (Alt2) 8.67
Ratio of expected travel time to free flow travel time (Alt3) 8.44
Distance from work to home (Alt2) 0.513
Population of work zone (Alt3) 0.669

Note: All variables, Alt2 and Alt3 as defined in Table 2.
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Fig. 2. Frequency of departure delay, in the past week, for those commuters indicating that they sometime delay.

distribution is a reasonable descriptive making a Poisson regression an obvious frequency-
of-delay modeling approach (see Lerman and Gonzalez, 1980; Hausman, Hall, and Gri-
liches, 1984; and Mannering, 1989).

One of the questions asked in the survey was, the number of times, in the past week,
that a delay in work-to-home departure was actually made. For those respondents indicat-
ing that they sometimes delay (47.06% of the sample), the distribution of the frequency of
their delaying, in the past week, is shown in Fig. 2.1 Since there is a maximum of five
delays per week, it is necessary to specify a right-truncated Poisson distribution for the
delay-frequency model (see Johnson and Kotz, 1969). The right-truncated Poisson model
is,

P(ny) =\ n E Ok im, )]~ )

my=0

where P(n,) is the probability of commuter k delaying work-to-home departure # times per
week and A, is the Poisson parameter for commuter k which will be some estimable
function of the utility that the commuter derives from delaying, m, is the number of
departure delays per week, and r is the right truncation (in our case, 5 times per week).}
Given this specification, it is now necessary to develop an expression that captures the
utility that a commuter derives from delaying departure. The multinomial logit model
previously estimated can be used (see McFadden, 1981) to arrive at the expected maximum
utility, X, that a commuter will derive from delaying work-to-home departure. That is,

X,=In[exp(Via,) +exp(Vignw)] &)

where V,,, is the mean utility, for commuter &, of the delay and work alternative and V,,,,,
is the mean utility, for commuter k, of the delay and nonwork alternative (both as shown
in eqn 3 with coefficients estimated in Table 2). Note that since the MNL structure was
shown to be valid, this maximum utility is the same as that that would have been obtained

+The mean of this distribution is 1.83 departure changes per week, with a variance of 1.88, and, since the
Poisson distribution has the restrictive property that the mean and variance are equal, it would appear that this
data is particularly well suited to Poisson regression analysis (see Lee, 1986).

$Note that the traditional Poisson factor, exp(—\y), is omitted from both numerator and denominator.
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had a nested logit structure been adopted with the delay choice of either work or shop/so-
cial/recreational activities occupying the lower-level nest.

With this definition of maximum expected utility, the Poisson parameter of eqn 4 can
be defined as,

ln >\k = an (6)

where « is coefficient that can be readily estimated, by maximum likelihood, from the
Poisson regression likelihood function (using eqns 4 and 6),

L(c) =] Jlexplexp(eX, k)]”"/n Jl Er: explexp(aX k)]m"/m AL @)
k

my=0

Table 4 presents the estimation results of the Poisson regression. As can be seen, the
coefficient is of plausible sign, with increasing utility from the delay choice increasing the
average number of departure delays per week. To assess the importance of the variables
comprising the utility, on the frequency of departure delays (which enter the Poisson
regression as indicated by eqn 5), elasticity estimates are again made. The elasticity esti-
mates are presented in Table 5 (again, for reasons previously discussed, point elasticities
for indicator variables are not computed). The table indicates that, as was the case for the
delay choice model, only the ratio of expected travel time to free flow travel time has an
elasticity greater than unity. Thus, even more so than the decision to ever delay or not, the
frequency of delay is dominated by the level of congestion.

DURATION OF DEPARTURE DELAYS

The final area of concern is to develop a model of the average duration of departure
delay, using commuters’ reported average delay duration (in minutes). In modeling depar-
ture delay duration, the hazard function approach is an obvious choice. The premise of the
approach is to focus on the probability of ending a departure-delay duration conditioned
on having delayed up to a specified time. Formally, if the probability distribution is
defined as,

F()=Pr(T<?) ¥

where T is a random variable and ¢ is some specified value, with corresponding density
function,

fO=dF(t)/dt )]
the hazard function is,

w(®O=A0)/[1-F(1)] (10)

Table 4. Frequency of delay Poisson regression results,
t-statistics in parentheses

Coefficient
Variable Estimate
Expected maximum utility of delaying 0.1512
work-to-home departure time (eqn. 5) (7.464)
Number of observations 96
log-likelihood at zero —194.21

log-likelihood at convergence —146.06
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Table 5. Poisson regression elasticities (estimated by
sample enumeration)

Elasticity with respect to: Elasticity
Ratio of expected travel time to free flow travel time 1.790
Distance from work to home 0.061
Population of work zone 0.072

Note: All variables defined as in Table 2.

where u(?) is roughly the rate at which delay durations are ending at time 7, given that they
have lasted until time ¢.

An interesting assessment of hazard functions can be made by evaluating the first
derivative with respect to time, du(¢)/dt. If the value of this derivative is greater than zero,
at some time 7, the hazard is increasing in duration, indicating that the probability that a
departure-delay duration will end soon increases with increasing departure-delay duration.
If du(f)/dt<0, a decreasing hazard exists and the probability that a departure delay will
end soon decreases with increasing departure-delay duration, and if du(#)/d¢=0, a con-
stant hazard exists and the probability of ending a departure delay is independent of
departure-delay duration. For commuters’ departure delay as defined herein, an increasing
hazard is expected since the longer the duration the more likely it is to end soon.

Given the hazard function of eqn 10, the question becomes one of selecting an
appropriate duration probability distribution. A convenient and reasonable distribution is
the Weibull,+ with its relatively simple hazard and its provision for the special case of a
constant hazard, in which case it reduces to the exponential distribution’s hazard. The two
parameter Weibull (y >0 and p >0) has,

F(f)=1-exp[—(y?)] (11
S(t)y=vp(yt)y~! exp[—(v2)] (12)

with hazard,
w(=vyp(yt) >~ 1. (13)

Note that with this specification, the hazard function is increasing in duration if p>1,
decreasing in duration if p<1, and constant in duration if p=1 (i.e. the exponential
hazard).

To estimate our model of duration delay, an accelerated lifetime model is specified
(Kalbfleisch and Prentice, 1980). The accelerated lifetime approach assumes a baseline
survivor function (see earlier footnote for definition) for all individuals and rescales time
to account for individual characteristics that impact duration. For the departure-delay
duration model, the rescaling of time in the accelerated lifetime framework should be a
function of the expected maximum utility that a commuter will derive from delaying work-
to-home departure (X, as previously defined in eqn 5 and also used as a basis for the
frequency of delay model). With this, an accelerated lifetime model can be formalized as,

S(t,Xk’Oann)=So[t"7(00,01an)] (14)

+The end of a departure delay can be viewed as being induced by any one of a number of random factors
such as a decrease in homeward traffic congestion, boredom with the activity undertaken, completion of the
activity undertaken, and so on. Thus, since the end of departure delay depends on the shortest time to the
occurrence of one of these random factors (i.e. a distribution of the smallest extreme), some theoretical support
exists for the use of a Weibull distribution. This is roughly analogous to reliability theory with, for example,
machine failure being induced by the random failure of the single most severely flawed component (see Mann,
Schaefer and Singpurwalla, 1974).

+The survivor function, S(#), is commonly presented in duration studies and is equal to Pr(T=¢) (see eqn 8).
It follows that for the Weibull distribution S(#) =exp[—(y£)¢].
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where 6, and 6, are estimable parameters, 7(6,,6,,X,) is the scaling factor, and Sol.] is the
baseline survivor function. It follows that the hazard function associated with S(.) is,

u(2,00,0,, X)) =poltn(6,,6, X1 1(00,0,,X,). (15)

For estimation we set 7(6,,6,,X,)=exp(—6, —0, X,).t The estimation results of an
accelerated lifetime model of commuters’ work-to-home departure delay duration (in
minutes) are presented in Table 6. Note that since 7(.) is specified with —6, and -0, a
positive coefficient estimate reduces S(.) (see eqn 14) and thus increases the expected
duration of the departure delay.

The table indicates, as expected, that increasing utility from the delay choice increases
the duration of departure delay. The duration parameter estimate of 1.65 implies an
increasing hazard (positive duration dependence) with the probability of departure delay
ending soon, increasing in duration. The fact that the standard error of the duration
parameter estimate is so small (0.148), suggests that the hypothesis of a constant hazard
(as implied by the exponential distribution) can be readily rejected. As previously men-
tioned, the finding of an increasing hazard is intuitively reasonable for commuters’ depar-
ture-delay durations.

As with the Poisson model of delay frequency, it is again interesting to compute
implied duration elasticities as presented in Table 7 (with point elasticities for indicator
variables excluded for reasons previously discussed). The table indicates that only the ratio
of expected to free flow travel time is elastic with a 1% increase in this variable resulting in
roughly a 2.05% increase in the duration of departure delay. The fact that only this
variable is elastic, underscores the dominance of the overall level of traffic congestion in
determining the length of commuters’ work-to-home departure delay.

CONCLUDING OBSERVATIONS

This paper has examined commuters’ option to delay the departure from work to
home in response to congestion. The findings suggest, as expected, that the overall level of
congestion facing commuters plays the dominant role in the delay decision, with socioeco-
nomics and activity opportunities at commuters’ work locations playing a significant but
noticeably less dominant role. With nearly half the commuters surveyed indicating that
they sometimes change their departure time, in response to traffic congestion, it is clear
that work-to-home departure-time delay is already an important phenomenon in urban
commuting. This fact, when combined with the high elasticities computed in our empirical
analysis paper, with respect to congestion level, suggest that the phenomenon of home-to-
work departure delay, in terms of frequency and delay duration, will increase rapidly as
urban traffic congestion continues to grow. Thus, ongoing research in the area of depar-

+This form implies survival probabilities Pr{T =t exp(—0y—8,X)].

Table 6. Duration Model Coefficient Estimates
(#-statistics in parentheses)

Estimated
Variable Coefficient
Constant 3.754

(33.41)
Expected maximum utility of delaying 0.1058
work-to-home departure time (eqn. 5) 3.71)
Duration parameter, p 1.65

(11.15)
Log-Likelihood at Convergence -99.35

Number of Observations 96
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Table 7. Duration elasticities (estimated by sample enumeration)

Elasticity with respect to: Elasticity
Distance from work to home (in miles) 0.31
Ratio of expected travel time to free-flow travel time 2.052
Population of the work zone 0.075

Note: All variables defined as in Table 2.

ture time choice has a potentially important contribution to make now and even more so in
the future.

In terms of future research on work-to-home departure delay, the key element is better
and more elaborate data. Specifically, the models presented in this paper could have
benefited considerably by having information on the duration of the traffic congestion
facing commuters, both actual and perceived. Similar data limitations have plagued virtu-
ally every departure time study to date. It seems a virtual certainty that, in the future, truly
significant advances in the study of commuter departure time choice will evolve largely
from the availability of an excellent data source as opposed to further conceptual develop-
ment of modeling approaches.
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