
Automatic Induction of Bellman-Error Features
for Probabilistic Planning

Jia-Hong Wu JW@PURDUE.EDU

Robert Givan GIVAN @PURDUE.EDU

Electrical and Computer Engineering,
Purdue University, W. Lafayette, IN 47907

Abstract

Domain-specific features are important in representing problem structure throughout machine
learning and decision-theoretic planning. In planning, once state features are provided, domain-
independent algorithms such as approximate value iteration can learn weighted combinations of
those features that often perform well as heuristic estimates of state value (e.g., distance to the
goal). Successful applications in real-world domains often require features crafted by human ex-
perts. Here, we propose automatic processes for learning useful domain-specific feature sets with
little or no human intervention. Our methods select and add features that describe state-space re-
gions of high inconsistency in the Bellman equation (statewise Bellman error) during approximate
value iteration. Our method can be applied using any real-valued-feature hypothesis space and
corresponding learning method for selecting features fromtraining sets of state-value pairs. We
evaluate the method with hypothesis spaces defined by both relational and propositional feature
languages, using nine probabilistic planning domains. We show that approximate value iteration
using a relational feature space performs at the state-of-the-art in domain-independent stochastic
relational planning.

1. Introduction

There is a substantial gap in performance between domain-independent planners and domain-
specific planners. Domain-specific human input is able to produce very effective planners in all
competition planning domains as well as many game applications such as backgammon, chess, and
Tetris. In deterministic planning, work on TLPLAN (Bacchus& Kabanza, 2000) has shown that
simple depth-first search with domain-specific human input,in the form of temporal logic formulas
describing acceptable paths, yields an effective planner for a wide variety of competition domains.
In stochastic planning, feature-based value-function representations have been used with human-
selected features with great success in applications such as backgammon (Sutton & Barto, 1998;
Tesauro, 1995) and Tetris (Bertsekas & Tsitsiklis, 1996). The usage of features provided by hu-
man experts is often critical to the success of systems usingsuch value-function approximations.
Here, we consider the problem of automating the transition from domain-independent planning to
domain-specific performance, replacing the human input with automatically learned domain prop-
erties. We thus study a style of planner that learns from encountering problem instances to improve
performance on subsequently encountered problem instances from the same domain.

We focus on stochastic planning using machine-learned value functions represented as linear
combinations of state-space features. Our goal then is to augment the state-space representation
during planning with new machine-discovered features thatfacilitate accurate representation of the

1

value function. The resulting learned features can be used in representing the value function for
other problem instances from the same domain, allowing amortization of the learning costs across
solution of multiple problem instances. Note that this property is in contrast to most competition
planners, especially in deterministic planning, which retain no useful information between prob-
lem instances. Thus, our approach to solving planning problems can be regarded as automatically
constructing domain-specific planners, using domain-independent techniques.

We learn features that correlate well to the statewise Bellman error of value functions encoun-
tered during planning, using any provided feature languagewith corresponding learner to select
features from the space. We evaluate this approach using both relational and propositional feature
spaces. There are other recent approaches to acquiring features in stochastic planning with sub-
stantial differences from our approach which we discuss in detail in Section 5 (Patrascu, Poupart,
Schuurmans, Boutilier, & Guestrin, 2002; Gretton & Thiébaux, 2004; Sanner & Boutilier, 2006;
Keller, Mannor, & Precup, 2006; Parr, Painter-Wakefield, Li, & Littman, 2007). No previous work
has evaluated the selection of relational features by correlation to statewise Bellman error. Recent
theoretical results (Parr et al., 2007) for uncontrolled Markov processes show that exactly capturing
statewise Bellman error in new features, repeatedly, will lead to convergence to the uncontrolled
optimal value for the value function selected by linear-fixed-point methods for weight training.
Unfortunately for machine-learning approaches to selecting features, these results have not been
transferred to approximations of statewise Bellman-errorfeatures: for this case, the results in (Parr
et al., 2007) are weaker and do not imply convergence. Also, none of this theory has been trans-
ferred to the controlled case of interest here, where the analysis is much more difficult because
the effective (greedy) policy under consideration during value-function training is changing. We
consider the controlled case, where no known theoretical properties similar to those of (Parr et al.,
2007) have been shown. Our purpose is to demonstrate the capability of statewise Bellman error
features empirically, and with rich representations that require machine learning techniques that
lack approximation guarantees. Next, we give an overview ofour approach, introducing Markov
decision processes, value functions, Bellman error, feature hypothesis languages and our feature
learning methods.

We use Markov decision processes (MDPs) to model stochasticplanning problems. An MDP is
a formal model of a single agent facing a sequence of action choices from a pre-defined action space,
and transitioning within a pre-defined state space. We assume there is an underlying stationary
stochastic transition model for each available action fromwhich state transitions occur according to
the agent’s action choices. The agent receives reward aftereach action choice according to the state
visited (and possibly the action chosen), and has the objective of accumulating as much reward as
possible (possibly favoring reward received sooner, usingdiscounting, or averaging over time, or
requiring that the reward be received by a finite horizon).

MDP solutions can be represented as state-value functions assigning real numbers to states. In-
formally, in MDP solution techniques, we desire a value function that respects the action transitions
in that “good” states will either have large immediate rewards or have actions available that lead to
other “good” states; this well-known property is formalized in Bellman equationsthat recursively
characterize the optimal value function (see Section 2). The degree to which a given value function
fails to respect action transitions in this way, to be formalized in the next section, is referred to as
theBellman errorof that value function, and can be computed at each state.

Intuitively, statewise Bellman error has high magnitude inregions of the state space which
appear to be undervalued (or overvalued) relative to the action choices available. A state with high

2

Bellman error has a locally inconsistent value function; for example, a state is inconsistently labeled
with a low value if it has an action available that leads only to high-value states. Our approach is to
use machine learning to fit new features to such regions of local inconsistency in the current value
function. If the fit is perfect, the new features guarantee wecan represent the “Bellman update”
of the current value function. Repeated Bellman updates, called “value iteration”, are known to
converge to the optimal value function. We add the learned features to our representation and then
train an improved value function, adding the new features tothe available feature set.

Our method for learning new features and using them to approximate the value function here
can be regarded as aboosting-stylelearning approach. A linear combination of features can be
viewed as a weighted combination of an ensemble of simple hypotheses. Each new feature learned
can be viewed as a simple hypothesis selected to match a training distribution focused on regions
that the previous ensemble is getting wrong (as reflected in high statewise Bellman error throughout
the region). Growth of an ensemble by sequentially adding simple hypotheses selected to correct
the error of the ensemble so far is what we refer to as ”boosting style” learning.

Our approach can be considered for selecting features in anyfeature-description language for
which a learning method exists to effectively select features that match state-value training data.
We consider two very different feature languages in our empirical evaluation. Human-constructed
features are typically compactly described using a relational language (such as English) wherein the
feature value is determined by the relations between objects in the domain. Likewise, we consider
a relational feature language, based on domain predicates from the basic domain description. (The
domain description may be written, for example, in a standard planning language such as PPDDL
(Younes, Littman, Weissman, & Asmuth, 2005).) Here, we takelogical formulas of one free variable
to represent features that count the number of true instantiations of the formula in the state being
evaluated. For example, the “number of holes” feature that is used in many Tetris experiments
(Bertsekas & Tsitsiklis, 1996; Driessens, Ramon, & Gärtner, 2006) can be interpreted as counting
the number of empty squares on the board that have some other filled squares above them. Such
numeric features provide a mapping from states to natural numbers.

In addition to this relational feature language, we consider using a propositional feature rep-
resentation in our learning structure. Although a propositional representation is less expressive
than a relational one, there exist very effective off-the-shelf learning packages that utilize propo-
sitional representations. Indeed, we show that we can reformulate our feature learning task as a
related classification problem, and use a standard classification tool, the decision-tree learner C4.5
(Quinlan, 1993), to create binary-valued features. Our reformulation to classification considers
only the sign, not the magnitude, of the statewise Bellman error, attempting to learn features that
characterize the positive-sign regions of the state space (or likewise the negative-sign regions). A
standard supervised classification problem is thus formulated and C4.5 is then applied to generate
a decision-tree feature, which we use as a new feature in our value-function representation. This
propositional approach is easier to implement and may be more attractive than the relational one
when there is no obvious advantage in using relational representation, or when computing the exact
statewise Bellman error for each state is significantly moreexpensive than estimating its sign. In
our experiments, however, we find that our relational approach produces superior results than our
propositional learner. The relational approach also demonstrates the ability to generalize features
to larger problems from the same domain, an asset of relational representation that is not readily
available in propositional representations.

3

We present experiments in nine domains. Each experiment starts with a single, constant fea-
ture, mapping all states to the same number, forcing also a constant value function that makes no
distinctions between states. We then learn domain-specificfeatures and weights from automatically
generated sampled state trajectories, adjusting the weights after each new feature is added. We
evaluate the performance of policies that select their actions greedily relative to the learned value
functions. We evaluate our learners using the stochastic computer-gameTetris and seven plan-
ning domains from the two international probabilistic planning competitions (Younes et al., 2005;
Bonet & Givan, 2006). We demonstrate that our relational learner generates superior performance
in Tetris as compared to the best previous domain-independent system (called “Relational Rein-
forcement Learning”, or RRL (Driessens et al., 2006)). Our relational learner also demonstrates
superior success ratio in the probabilistic planning-competition domains as compared both to our
propositional approach and to the probabilistic planners FF-Replan (Yoon, Fern, & Givan, 2007)
and FOALP (Sanner & Boutilier, 2006). Additionally, we showthat our propositional learner out-
performs a previous method of Patrascu et al. (Patrascu et al., 2002) on the sameSysAdmindomain
used for evaluation there.

2. Background

2.1 Markov Decision Process

We define here our terminology for Markov decision processes. For a more thorough discussion
of Markov decision processes, see (Bertsekas & Tsitsiklis,1996) and (Sutton & Barto, 1998). A
Markov decision process (MDP)M is a tuple(S,A,R, T, s0). Here,S is a finite state space con-
taining initial states0, andA selects a non-empty finite available action setA(s) for each states in
S. The reward functionR assigns a real reward to each state-action-state triple(s, a, s′) where ac-
tion a is enabled in states, i.e.,a is in A(s). The transition probability functionT maps state-action
pairs(s, a) to probability distributions overS, P(S), wherea is in A(s).

Given discount factor0 ≤ γ < 1 andpolicy π mapping each states ∈ S to an action inA(s), the
value functionV π(s) gives the expected discounted reward obtained from states selecting action
π(s) at each state encountered and discounting future rewards bya factor ofγ per time step. There
is at least one optimal policyπ∗ for which V π∗

(s), abbreviatedV ∗(s), is no less thanV π(s) at
every states, for any policyπ. The following “Q function” evaluates an actiona with respect to a
future-value functionV ,

Q(s, a, V) =
∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)].

Recursive Bellman equations useQ() to describeV ∗ and V π as follows. First,V π(s) =
Q(s, π(s), V π). Then,V ∗(s) = maxa∈A(s) Q(s, a, V ∗). Also usingQ(), we can select an ac-
tion greedily relative to any value function. The policy Greedy(V) selects, at any states, the action
arg maxa∈A(s) Q(s, a, V).

Value iterationiterates the operation

update(V)(s) = max
a∈A(s)

∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)],

computing the “ Bellman update” update(V) from V , producing a sequence of value functions
converging in the sup-norm toV ∗, regardless of the initialV used.

4

We define the statewise Bellman errorB(V, s) for a value functionV at a states to be
update(V)(s) − V (s). We will be inducing new features based on their correlationto the state-
wise Bellman error, or based on the sign of the statewise Bellman error. The sup-norm distance
of a value functionV from the optimal value functionV ∗ can be bounded using the Bellman error
magnitude, which is defined asmaxs∈S |B(V, s)| (e.g., see (Williams & Baird, 1993)).

We note that computing update(V), and thus statewise Bellman error, can involve a summation
over the entire state space, whereas our fundamental motivations require avoiding such summations.
In many MDP problems of interest, the transition matrixT is sparse in a way that set of states
reachable in one step with non-zero probability is small, for any current state. In such problems,
statewise Bellman error can be computed effectively using an appropriate representation ofT . More
generally, whenT is not sparse in this manner, the sum can be effectively approximately evaluated
by sampling next states according to the distribution represented byT .

2.2 Modeling Goal-oriented Problems

Stochastic planning problems can be goal-oriented, where the objective of solving the problem is
to guide the agent toward a designated state region (i.e., the goal region). We model such problems
by structuring the reward and transition functionsR andT so that any action in a goal state leads
with positive reward to a zero-reward absorbing state, and reward is zero everywhere else. We
retain discounting to represent our preference for shorterpaths to the goal. Alternatively, such
problems can be modeled as stochastic shortest path MDPs without discounting (Bertsekas, 1995).
Our techniques can easily be generalized to formalisms which allow varying action costs as well,
but we do not model such variation in this work.

More formally, we define a goal-oriented MDP to be any MDP meeting the following con-
straints. Here, we use the variabless ands′ for states inS anda for actions inA(s). We require that
S contain a zero-reward absorbing state⊥, i.e., such thatR(⊥, a, s) = 0 andT (⊥, a,⊥) = 1 for all
s anda. The transition functionT must assign either one or zero to triples(s, a,⊥), and we call the
region of statess for which T (s, a,⊥) is onethe goal region. The reward function is constrained
so thatR(s, a, s′) is zero unlesss′ = ⊥. In constructing goal-oriented MDPs from other problem
representations, we may introduce dummy actions to carry out the transitions involving⊥ described
here.

2.3 Compactly Represented MDPs

In this work, we consider both propositional and relationalstate representations.

In relational MDPs, the spacesS andA(s) for eachs are relationally represented, i.e., there
is a finite set of objectsO, state predicatesP , and action namesN used to define these spaces as
follows. A state factis an applicationp(o1, . . . , on) of an n-argument state predicatep to object
argumentsoi. A state is any set of state facts, representing exactly the true facts in that state. An
action instancea(o1, . . . , on) is an application of ann-argument action name ton objectsoi. The
action spaceA =

⋃
s∈S A(s) is the set of all action instances.

In propositional problems (which can be derived automatically from relational problems by
grounding), the action space is explicitly specified and thestate space is compactly specified by
providing a finite sequence of basic state properties calledstate attributes, with Boolean, integer, or
real values. A propositional state is then any vector of values for the state attributes.

5

2.4 Representing PPDDL Planning Problems using MDPs

We discuss how to represent goal-oriented stochastic planning problems defined in standardized
planning language such as PPDDL (Younes et al., 2005) as goal-oriented MDPs. We limit our focus
to problems in which the goal regions can be described as (conjunctive) sets of state facts. We
reference and follow the approach used in (Fern, Yoon, & Givan, 2006) here regarding converting
from planning problems to compactly represented MDPs in a manner that facilitates generalization
between problem instances.

A PPDDL problem definition defines a planning problem instance. A planning domainis a
distribution over problem instances sharing the same statepredicatesPW , same action namesN
and corresponding action definitions. Each problem instance in the domain will provide a finite
object setO, initial statesi and goal conditionG. The initial state is given as a set of state facts
and the goal condition is given as a conjunction of state facts, each constructed from the predicates
in PW . Actions can take objects as parameters, and are defined by giving discrete finite probability
distributions over action outcomes, each of which is specified using add and delete lists of state
facts about the action parameters. Conditional effects andquantified preconditions are allowed. For
details of PPDDL, please see (Younes et al., 2005).

In planning competitions, it has been customary to specify planning domains by providingprob-
lem generatorsthat accept size parameters as input and then output PPDDL problem instances.
These generators thus specify size-parameterized planning domains. It is important to note, how-
ever, that not all problem generators provided in the recentplanning competitions specify planning
domains according to the definition used here. In particular, some problem generators vary the
action set or the state predicates between the instances generated. The relationship between the
different problem instances generated by such generators is much looser than that required by our
definition, and as such these “domains” are more like arbitrary collections of planning problems.

Because our logical language allows generalization between problems only if those problems
share the same state and action language, we limit our empirical evaluation in Section 7 to domains
that were provided with problem generators that specify planning domains as just defined here, i.e.,
without varying the action definitions between instances (or for which we can easily code such a
generator). We refer to domains with such generators asplanning domains with fixed action spaces.

Generalization between problems of varying size Because the object set varies in size, without
bound, across the problem instances of a domain, there are infinitely many possible states within
the different instances of a single domain. Each MDP we analyze has a finite state space, and so we
model a planning domain as an infinite set of MDPs for which we are seeking a good policy (in the
form of a good value function), one for each problem instance1.

A value function for an infinite set of MDPs is a mapping from the disjoint union of the state
spaces of the MDPs to the real numbers. Such a value function can be used greedily as a policy
in any of the MDPs in the set. However, explicit representation of such a value function would
have infinite size. Here, we will use knowledge representation techniques to compactly represent
value functions over the infinite set of problem instance MDPs for any given planning domain. The
compact representation derives from generalization across the domains, and our approach is funda-

1. In this paper we consider two candidate representations for features; only one of these, the relational representation,
is capable of generalizing between problem sizes. For the propositional representation, we restrict all training and
testing to problem instances of the same size.

6

mentally about finding good generalizations between the MDPs within a single planning domain.
Our representation for value functions over planning domains is given below in Sections 2.5 and 4.

In this section, we discuss how to represent as a single finiteMDP any single planning problem
instance. However, we note that our objective in this work isto find good value functions for
the infinite collections of such MDPs that represent planning domains. Throughout this paper, we
assume that each planning domain is provided along with a means for sampling example problems
from the domain, and that the sampling is parameterized by difficulty (generally, problem size) so
that easy example problems can be selected. Although, PPDDLdoes not provide any such problem
distributions, benchmark planning domains are often provided with problem generators defining
such distributions: where such generators are available, we use them, and otherwise we code our
own distributions over problem instances.

Generalizing between problems with varying goals To facilitate generalization between prob-
lem instances with different goals, and following (Martin &Geffner, 2004) and (Fern et al., 2006),
we translate a PPDDL instance description into an MDP where each state specifies not only what
is true in the state but also what the goal is. Action transitions in this MDP will never change the
“goal”, but the presence of that goal within the state description allows value functions (that are
defined as conditioning only on the state) to depend on the goal as well. The goal region of the
MDP will simply be those MDP states where the specified current state information matches the
specified goal information.

Formally, in translating PPDDL problem instances into compact MDPs, we enrich the given set
of world-state predicatesPW by adding a copy of each predicate indicating the desired state of that
predicate. We name the goal-description copy of a predicatep by prepending the word “goal-” to
the name. The set of all goal-description copies of the predicates inPW is denotedPG, and we take
PW ∪PG to be the state predicates for the MDP corresponding to the planning instance. Intuitively,
the presence of goal-p(a,b) in a state indicates that the goal condition requires the fact p(a, b) to be
part of the world state. The only use of the goal predicates inconstructing a compact MDP from a
PPDDL description is in constructing the initial state, which will have the goal conditions true for
the goal predicates.

We use the domainBlocksworld as an example here to illustrate the reformulation (the same
domain is also used as an example in (Fern et al., 2006)). The goal condition in a Blocksworld
problem can be described as a conjunction of groundon-top-of facts. The world-state predicate
on-top-of is in PW . As discussed above, this implies that the predicategoal-on-top-of is in PG.
Intuitively, one ground instance of that predicate,goal-on-top-of(b1,b2), means that for a state in
the goal region, the blockb1 has to be directly on the top of the blockb2.

States with no available actions PPDDL allows the definition of domains where some states do
not meet the preconditions for any action to be applied. However, our MDP formalism requires at
least one available action in every state. In translating a PPDDL problem instance to an MDP we
define the action transitions so that any action taken in sucha “dead” state transitions deterministi-
cally to the absorbing⊥ state. Because we consider such states undesirable in plan trajectories, we
give these added transitions a reward of negative one unlessthe source state is a goal state.

The resulting MDP We now formally describe an MDPM = (S,A,R, T, s0) given a planning
problem instance. As discussed in Section 2.3, the setsS andA(s) are defined by specifying the
predicates and objects available. The PPDDL description specifies the setsN of action names and

7

O of objects, as well as a setPW of world predicates. We construct the enriched setP = PW ∪PG

of state predicates and define the state space as all sets of applications of these predicates to the
objects inO. The setA(s) for any states is the set of PPDDL action instances built fromN andO
for which s satisfies the preconditions, except that if this set is empty, A(s) is the set of all PPDDL
action instances built fromN andO. In the latter case, we say the state is “dead.” The reward
function R is defined as discussed previously in Section 2.2; i.e.,R(s, a, s′) = 1 when the goal
conditionG is true ins, R(s, a, s′) = −1 whens is a non-goal dead state, and zero otherwise. We
defineT (s, a, s′) according to the semantics of PPDDL augmented with the semantics of ⊥ from
Section 2.2—T (s, a,⊥) will be one if s satisfiesG, s is dead, ors = ⊥, and zero otherwise.2

Transiting from one state to another never changes the goal condition description in the states given
by predicates inPG. The MDP initial states0 is just the PPDDL problem initial statesi augmented
by the goal conditionG using the goal predicates fromPG. If a propositional representation is
desired, it can be easily constructed directly from this relational representation by grounding.

2.5 Linear Approximation of Value Functions

As many previous authors have done (Patrascu et al., 2002; Sanner & Boutilier, 2006; Bertsekas &
Tsitsiklis, 1996; Tesauro, 1995; Tsitsiklis & Roy, 1997), we address very large compactly rep-
resentedS and/orA by implicitly representing value functions in terms of state-spacefeatures
f : S → R. Our featuresf must select a real value for each state. We describe two approaches to
representing and selecting such features in Section 4.

Recall from Section 1 that our goal is to learn a value function for a family of related MDP
problems. We assume that our state-space features are defined across the union of the state spaces
in the family.

We represent value functions using a linear combination ofl features extracted froms, i.e., as
Ṽ (s) =

∑l
i=0 wifi(s). Our goal is to find featuresfi (each mapping states to real values) and

weightswi so thatṼ closely approximatesV ∗.
Various methods have been proposed to select weightswi for linear approximations (see, e.g.,

(Sutton, 1988) or (Widrow & Hoff, 1960)). Here, we review anduse a trajectory-based approximate
value iteration (AVI) approach. Other training methods caneasily be substituted. AVI constructs a
finite sequence of value functionsV 1, V 2, . . . , V T , and returns the last one. Each value function
is represented asV β(s) =

∑l
i=0 wβ

i fi(s). To determine weightswβ+1
i from V β, we draw a set

of training statess1, s2, . . . , sn by following policy Greedy(V β) in different example problems
selected using the provided problem distribution at the current level of problem difficulty. (See
Section 3 for discussion of the control of problem difficulty.) The number of trajectories drawn and
the maximum length of each trajectory are parameters of the AVI method. For each training states,
we compute the Bellman update update(V β)(s) from the MDP model of the problem instance. We
can then computewβ+1

i from the training states using

wβ+1
i = wβ

i +
1

ni

∑

j

αfi(sj)(update(V β)(sj) − V β(sj))

, whereα is the learning rate andni is the number of statess in s1, s2, . . . , sn for which fi(s) is
non-zero. Weight updates using this weight-update formuladescend the gradient of theL2 distance

2. Note that according to our definitions in Section 2.2, the dead states are now technically “goal states”, but have
negative rewards.

8

betweenV β and update(V β) on the training states, with the features first rescaled to normalize the
effective learning rate to correct for feature values with rare occurrence in the training set.3

Scaling step-size during AVI For the complex domains addressed in this paper, simple gradient
descent has many potential pitfalls. One such pitfall is that the gradient surface may be extremely
steep at some points. Because the weight changes in AVI are proportional to the gradient, arbitrarily
large gradients result in arbitrarily large single-step weight changes that are rarely desirable (and can
also cause floating-point overflow). There is a substantial literature on dynamically adjusting step
size during gradient descent (Jacobs, 1988; Kwong & Johnston, 1992; Harris, Chabries, & Bishop,
1986; Mathews & Xie, 1993); however, gradient descent is notthe main topic of this paper and so
we resort only to a simple work-around for arbitrarily largegradients: rather than step proportional
to the gradient, we compress the unbounded space of possiblestep sizes to a finite interval using a
sigmoidal function, as described next. Large gradients here are due to large statewise Bellman error
averages over the training set, as can be seen by examining the weight update equation, Equation 1.
Here we compress large weight updates by a sigmoidal scalingof the average statewise Bellman
error, as described formally in the next three equations:

Bavg =
1

n

∑

j

(update(V β)(sj) − V β(sj))

τ =
1

1 + exp(−4(1 − |Bavg|/rscale))

wβ+1
i = wβ

i + τ
1

ni

∑

j

αfi(sj)(update(V β)(sj) − V β(sj))

(1)

In our experiments, we use this approach to computingwβ+1 rather than the direct approach given
by equation 1. The scaling factorτ will be close to one unless the average statewise Bellman
errorBavg grows large, and thus significant differences between the direct approach and the scaled
approach appear only in that case. The domain-specific parameter rscale represents the reward
scaling of the problem domain. We note that any MDP problem can be rescaled by multiplying all
rewards by the same positive scalar with consequent rescaling of the value of any policy at any state
by the same scalar. Our method here is not invariant to this rescaling and thus requires a hand-set
domain parameter to represent the reward scaling. It is an interesting topic of future research to
automatically, possibly dynamically, find the value of thisreward scaling parameter.

Sign restriction in weight adjustment Another pitfall in using gradient descent with complex
gradient surfaces is that dramatic increases in error can result from one step of weight update. In
our AVI setting, this can result in dramatic drops in the success rate of the resulting greedy policy.
Because in goal-oriented domains a useful gradient is computed only from successful trajectories,
such dramatic drops in success rate can result in an uninformative gradient from which AVI often
cannot recover. Various mechanisms can be designed for detecting dramatic drops in policy quality
during AVI and revisiting the weight updates that lead to them; here we focus only on revisiting
weight updates that change the sign of a weight, and only whenthe immediately resulting policy
performs much worse than the policy before the weight update.

3. In deriving this gradient-descent weight-update formula, each featurefi is scaled byri =
q

n
ni

, giving f ′

i = rifi.

9

It is fairly intuitive that weight updates changing the signof a weight are particularly suspect.
If the weight for a feature has been tuned to a positive value,it is hopefully because that feature
has been seen to correlate to the desired value function; however, this immediately implies that
the negation of that feature anti-correlates with the desired value. Changing the sign of a weight
is a form of rejecting previous training regarding the entire direction of the importance of the cor-
responding feature. Empirically, we have found that AVI on complex error surfaces often makes
damaging mistakes by stepping too far in weight update to thedegree that the sign of a feature is
reversed and the resulting policy is suddenly severely degraded.

In our experiments in goal-oriented planning problems, we implement a mechanism to detect
and avoid weight sign changes that must be avoided to preserve policy quality, as follows. First, we
define a method for empirically comparing policies: we say that a policyπ1 “tests as significantly
better” than a policyπ2 if Student’s t-test confirms the hypothesis that the successrate ofπ2 is at
most 0.9 times the success rate ofπ1 with significance 0.025 based upon 100 sample trajectories of
each. Second, each time we construct an AVI training set by drawing trajectories, we measure the
success rate of the policy GreedyV used over the trajectories drawn to create the training set—we
call this the training success rate of the value functionV . If the training success of the current value
functionV2 is lower than the training success of the previous value function V1, we then test if the
the policy Greedy(V1) tests as significantly better than the policy Greedy(V2). If so, we reconsider
any weight sign changes (including changes to or from zero) made during the intervening weight
update as follows. Suppose thatV1 is described by weightswβ andV2 by weightswβ+1. For each
weightwi that changed sign fromwβ

i to wβ+1
i , we test if reversing the update of just that weight,

usingwβ
i in place ofwβ+1

i , yields a greedy policy that tests significantly better thanGreedy(V2).
Any such weights that yield significant improvements when theirβ+1-iteration updates are reversed
are then restored to theirβ-iteration values and their sign is locked for the remainderof this run of
AVI. In other words, any future weight update to that weight which would change the sign of that
weight is replaced with no change to that weight.

3. Feature-discovering Value-function Construction

As noted above, we use a “boosting style” learning approach in finding value functions, iterating
between selecting weights and generating new features by focusing on the Bellman error in the
current value function. Our value function representationcan be viewed as a weighted ensemble of
single-feature hypotheses. We start with a value function that has only a trivial feature, a constant
feature always returning the value one, with initial weightzero. We iteratively both retrain the
weights and select new features matching regions of states for which the current weighted ensemble
has high statewise Bellman error.

We take a “learning from small problems” approach and learn features first in problems with
relatively lower difficulty, and increasing problem difficulty over time, as discussed below. Learning
initially in small problems (Martin & Geffner, 2004; Yoon, Fern, & Givan, 2002) is more effective
due to the smaller state space and the ability to obtain positive feedback (i.e., reach the goal) in
a smaller number of steps. We show experimentally in Section7 that good value functions for
high difficulty problems can indeed be learned in this fashion from problems of lower, increasing
difficulties.

Our approach relies on two assumed subroutines, and can be instantiated in different ways by
providing different algorithms for these subroutines. First, a method of weight selection is assumed;

10

Initial feature vector
Initial weight vector
Initial problem difficulty D

Reselect attempting
to minimize Bellman
error of

Performance at
current difficulty
meets threshold or
out of time?

Learn new feature correlating
to training set, and add it to .
Keep the current problem
difficulty D.

No

Yes

Increase problem
difficulty D. Keep
and .Reweighted value

function

Performance at
target level or out
of time?

No

Done

Generate statewise-Bellman-
error training set Yes

w
r

w
r

Φ⋅= rr
wV

w
r

Φ⋅= rr
wV

Φ
r

Φ
r

Φ
r

Figure 1: Control flow for feature learning. Boxes with double borders represent assumed subroutines for
our method. We assume that the targeted class of problems is parameterized by problem difficulty (such
as problem size). When this is not so, all problems are treated as having the same difficulty, and the two
performance tests are the same; in this case, the step named ”Increase problem difficulty” is never reached.

this method takes as input a problem domain and a fixed set of features, and selects a weight vector
for a value function for the problem domains using the provided features. We intend this method to
heuristically or approximately minimizeL∞ Bellman error in its choice of weight vector. Second,
a feature hypothesis space and corresponding learner are assumed to be provided by the system
designer.

The control flow for our approach is shown in Figure 1. Each iteration at a fixed problem
difficulty selects weights for the current feature set (using any method attempting to minimizeL∞

Bellman error), computes the statewise Bellman error of theresulting value function for a training
set of states, and learns a new feature matching that training set, adding that feature to the feature
set.

For the experiments reported in Section 7, we evaluate the following choices for the assumed
subroutines. For all experiments we use AVI to select weights for feature sets. We evaluate two
choices for the feature hypothesis space and correspondinglearner, one relational and one proposi-
tional, as described in Section 4.

Separate training sets are drawn for weight selection and for the feature learning; the former
will depend on the weight selection method, and is describedfor AVI in Section 2.5, and the latter
is described in this section.

Problem difficulty is increased when sampled performance ofthe greedy policy at the current
difficulty exceeds user-specified performance thresholds.In our planning-domain experiments, the
performance parameters measured are success ratio (percentage of trials that find the goal) and av-

11

erage successful plan length (the average number of steps tothe goal among all successful trials).
The non-goal-oriented domains ofTetris andSysAdminuse different performance measures: aver-
age total reward for Tetris and Bellman error for SysAdmin (to facilitate comparison with (Patrascu
et al., 2002)).

We also assume a user-provided schedule for problem difficulty increases in problems where
difficulty is parameterized by more than one parameter (e.g., size may be measured in by the number
of objects of each type); further domain-independent automation of the increase in difficulty is a
topic for future research. We give the difficulty-increase schedules and performance thresholds for
our experiments in the section presenting the experiments,Section 7.

Training set generation The training set for selection of a new feature is a set of state-value
pairs. The training set is constructed by repeatedly sampling an example problem instance from
the problem distribution at the current level of difficulty,and applying the current greedy policy
Greedy(V) to that problem instance to create a trajectory of states encountered. Every state (re-
moving duplicates) encountered is added to the training set, paired with its statewise Bellman error
computed in the problem instance that generated it. The sizeof the feature-selection training set
and the maximum length of each training trajectory are specified by the user as parameters of the
algorithm.

A possible problem occurs when the current greedy policy cannot reach enough states to com-
plete the desired training set. If 200 consecutive trajectories are drawn without visiting a new state
before the desired training set size is reached, the processis modified as follows. At that point,
the method attempts to complete the training set by drawing trajectories using random walk (again
using sampled example problems from the current problem distribution). If this process again leads
to 200 consecutive trajectories without a new state, the method terminates training-set generation
and uses the current training set even though it is smaller than the target size.

Applicability of the method Feature-discovering value-function construction as justdescribed
does not require complete access to the underlying MDP model. The AVI updates and the training
set generation are both based on the following computationson the model:

1. Given a states the ability to compute the action setA(s).

2. Given a states, actiona ∈ A(s), and value functionV , the ability to compute theQ-value
Q(s, a, V).

3. Given a states and actiona ∈ A(s), the ability to draw a state from the next state distribution
defined byT (s, a, s′).

4. Given a states, the ability to compute the features in the selected featurelanguage ons and
any computations on the state required for the selected feature learner.

The first three items enable the computation of the Bellman update ofs and the last item enables
computation of the estimated value function given the weights and features defining it as well as the
selection of new features by the feature learner.

While the PPDDL planning domains studied provide all the information needed to perform these
computations, our method also applies to domains that are not natural to represent in PPDDL. These
can be analyzed by our method once the above computations canbe implemented. For instance, in
ourTetris experiments in Section 7.2, the underlying model is represented by providing hand-coded
routines for the above computations within the domain.

12

Analysis MDP value iteration is guaranteed to converge to the optimalvalue function if conducted
with a tabular value-function representation in the presence of discounting (Bertsekas, 1995). Al-
though weight selection in AVI is designed to mimic value iteration, while avoiding a tabular rep-
resentation, there is no general guarantee that the weight updates will track value iteration and thus
converge to the optimal value function. In particular, there may be no weighted combination of
features that represents the optimal value function, and likewise none that represents the Bellman
update update(V) for some value functionV produced by AVI weight training process. Our learn-
ing system introduces new features to the existing feature ensemble in response to this problem:
the training set used to select the new feature pairs states with their statewise Bellman error. If the
learned feature exactly captures the statewise Bellman-error concept (by exactly capturing the train-
ing set and generalizing successfully) then the new featurespace will contain the Bellman update
of the value function used to generate the training data.

We aim to find features that approximate the “Bellman error feature,” which we take to be a
function mapping states to their statewise Bellman error. Theoretical properties of Bellman error
features in the uncontrolled Markov processes (i.e., without the max operator in the Bellman equa-
tion) have recently been discussed in (Parr et al., 2007), where the addition of such features (or
close approximations thereof) is proven to reduce the weightedL2-norm distance between the best
weight setting and the the true (uncontrolled) valueV ∗, when linear fixed-point methods are used
to train the weights before feature addition. Prior to that work (in (Wu & Givan, 2005)), and now in
parallel to it, we have been empirically exploring the effects of selecting Bellman error features in
the more complex controlled case, leading to the results reported here.

It is clear that if we were to simply add the Bellman error feature directly, and set the correspond-
ing weight to one, the resulting value function would be the desired Bellman update update(V) of
the current value functionV Adding such features at each iteration would thus give us a way to
conduct value iteration exactly, without enumerating states. But each such added feature would
describe the Bellman error of a value function defined in terms of previously added features, posing
a serious computational cost issue when evaluating the added features. In particular, each Bellman
error feature for a value functionV can be estimated at any particular state with high confidence
by evaluating the value functionV at that state and at a polynomial-sized sample of next statesfor
each action (based on Chernoff bounds). However, if the value functionV is based upon a previ-
ously added Bellman-error feature, then each evaluation ofV requires further sampling (again, for
each possible action) to compute. In this manner, the amountof sampling needed for high confi-
dence grows exponentially with the number of successive added features of this type. The levels
of sampling do not collapse into one expectation because of intervening choices between actions,
as is often the case in decision-theoretic sampling. Our feature selection method is an attempt to
tractably approximate this exact value iteration method bylearning concise and efficiently com-
putable descriptions of the Bellman-error feature at each iteration.

Our method can thus be viewed as a heuristic approximation toexact value iteration. Exact
value iteration is the instance of our method obtained by using an explicit state-value table as the
feature representation and generating training sets for feature learning containing all states — to
obtain exact value iteration we would also omit AVI trainingbut instead set each weight to one.

When the feature language and learner can be shown to approximate explicit features tightly
enough (so that the resulting approximate Bellman update isa contraction in theL∞ norm), then it is
easy to prove that tightening approximations ofV ∗ will result if all weights are set to one. However,

13

for the more practical results in our experiments, we use feature representations and learners for
which no such approximation bound relative to explicit features is known.

4. Two Candidate Hypothesis Spaces for Features

In this section we describe two hypothesis spaces for features, a relational feature space and a
propositional feature space, along with their respective feature learning methods. For each of the
two feature spaces, we assume the learner is provided with a training set of states paired with their
statewise Bellman error values.

Note that these two feature-space-learner pairs lead to twoinstances of our general method and
that others can easily be defined by defining new feature spaces and corresponding learners. In this
paper we empirically evaluate the two instances presented here.

4.1 Relational Features

A relational MDP is defined in terms of a set of state predicates. These state predicates are the basic
elements from which we define a feature-representation language. Below, we define a general-
purpose means of enriching the basic set of state predicates. The resulting enriched predicates
can be used as the predicate symbols in standard first-order predicate logic. We then consider any
formula in that logic with one free variable as a feature, as follows.

A state in a relational MDP is a first-order interpretation. Afirst-order formula with one free
variable is then a function from such states to natural numbers which maps each state to the number
of objects in that state that satisfy the formula. We take such first-order formulas to be real-valued
features by normalizing to a real number between zero and one—this normalization is done by
dividing the feature value by the maximum value that the feature can take, which is typically the
total number of objects in the domain, but can be smaller thanthis in domains where objects (and
quantifiers) are typed. A similar feature representation isused in (Fawcett, 1996).

This feature representation is used for our relational experiments, but the learner we describe
in the next subsection only considers existentially quantified conjunctions of literals (with one free
variable) as features. The space of such formulas is thus theeffective features space for our relational
experiments.

Example 4.1: TakeBlocksworld with the table as an object for example,on(x, y) is
a predicate in the domain that asserts the blockx is on top of the objecty, wherey
may be a block or the table. A possible feature for this domaincan be described as∃y
on(x, y), which is a first-order formula withx as the one free variable. This formula
means that there is some other object immediately below the block objectx, which
essentially excludes the table object and the block being held by the arm (if any) from
the object set described by the feature. Forn blocks problems, the un-normalized value
of this feature isn for states with no block being held by the arm, orn − 1 for states
with a block being held by the arm.

The enriched predicate set More interesting examples are possible with the enriched predicate
set that we now define. To enrich the set of state predicatesP , we add for each binary predicatep
a transitive closure form of that predicatep+ and predicates min-p and max-p identifying minimal
and maximal elements under that predicate. In goal-based domains, recall that our problem repre-
sentation (from Section 2.4) includes, for each predicatep, a goal version of the predicate called

14

goal-p to represent the desired state of the predicatep in the goal. Here, we also add a means-ends
analysis predicate correct-p to representp facts that are present in both the current state and the goal.

So, for objectsx andy, correct-p(x,y) is true if and only if bothp(x, y) and goal-p(x,y) are
true. p+(x, y) is true of objectsx andy connected by a path in the binary relationp. The relation
max-p(x) is true if objectx is a maximal element with respect top, i.e., there exists no other object
y such thatp(x, y) is true. The relation min-p(x) is true if objectx is a minimal element with respect
to p, i.e., there exists no other objecty such thatp(y, x) is true.

Example 4.1 (cont.):The feature∃y correct-on(x, y) means thatx is stacked on top of
some objecty both in the current state and in the goal state. The feature∃y on+(x, y)
means that in the current state,x is directly above some objecty, i.e., there is a sequence
of on relations traversing a path betweenx andy, inclusively. The feature max-on+(x)
means thatx is the table object when all block-towers are placed on the table, since the
table is the only object that is noton any other object. The feature min-on+(x) means
that there is no other object on top ofx, i.e.,x is clear.

4.2 Learning Relational Features

We select first-order formulas as candidate features using abeam search with a beam widthW . The
search starts with basic features derived automatically from the domain description and repeatedly
derives new candidate features from the best scoringW features found so far, adding the new fea-
tures as candidates and keeping only the best scoringW features at all times. After new candidates
have been added a fixed depthd of times, the best scoring feature found overall is selectedto be
added to the value-function representation. Candidate features are scored for the beam search by
their correlation to the Bellman error feature as formalized below.

Specifically, we score each candidate featuref with its correlation coefficient to the Bellman
error featurefBE as estimated by this training set. The correlation coefficient betweenf andf ′ is
defined as corr-coef(f, f ′) = E{f(s)f ′(s)}−E{f(s)}E{f ′(s)}

σf σf ′

. Instead of using a known distribution to

compute this value, we use the states in the training set and compute a sampled version instead. Note
that our features are non-negative, but can still be well correlated to the Bellman error (which can
be negative), and that the presence of a constant feature in our representation allows a non-negative
feature to be shifted automatically as needed. The scoring function for feature selection is then a
regularized version of the correlation coefficient betweenthe feature and the Bellman error feature

score(f) = |corr-coef(f, fBE)|(1 − λdepth(f)),

where the “depth” of a feature is the depth in the beam search at which it first occurs, andλ is a
parameter of the learner representing the degree of regularization (bias towards low-depth features).

It remains only to specify which features in the hypothesis space will be considered initial, or
basic, features for the beam search, and to specify a means for constructing more complex features
from simpler ones for use in extending the beam search. We first take the state predicate setP in
a domain and enrichP as described in Section 4.1. After this enrichment ofP , we take as basic
features the existentially quantified applications of (possibly negated) state predicates to variables
with zero or one free variable4. A feature with no free variables is treated technically as aone-
free-variable feature where that variable is not used; thisresults in a “binary” feature value that

4. If the domain distinguishes any objects by naming them with constants, we allow these constants as arguments to the
predicates here as well.

15

is either zero or the total number of objects, because instantiating the free variable different ways
always results in the same truth value. We assume throughoutthat every existential quantifier is
automatically renamed away from every other variable in thesystem. We can also take as basic
features any human-provided features that may be available, but we do not add such features in
our experiments in this paper in order to clearly evaluate our method’s ability to discover domain
structure on its own.

At each stage in the beam search we add new candidate features(retaining theW best scoring
features from the previous stage). The new candidate features are created as follows. Any feature in
the beam is combined conjunctively with any other, or with any basic feature. The method of com-
bination of two features is described in Figure 2. This figureshows non-deterministic pseudo-code
for combining two input features, such that any way of makingthe non-deterministic choices results
in a new candidate feature. The pseudo-code refers to the feature formulasf1 andf2 describing the
two features. In some places, these formulas and others are written with their free variable exposed,
asf1(x) andf2(y). Also substitution for that variable is notated by replacing it in the notation, as
in f1(z).

The combination is by conjoining the feature formulas, as shown in line 2 of Figure 2; however,
there is additional complexity resulting from combining the two free variables and possibly equating
bound variables between the two features. The two free variables are either equated (by substitu-
tion) or one is existentially quantified before the combination is done, in line 1. Up to two pairs
of variables, chosen one from each contributing feature, may also be equated, with the resulting
quantifier at the front, as described in line 3. Every such combination feature is a candidate.

Example 4.2: Assume we have two basic features∃z p(x, z) and∃w q(y,w). The set
of the possible candidates that can be generated by combining these two features are:
When line 3 in Figure 2 runs zero times,

1. (∃x ∃z p(x, z)) ∧ (∃w q(y,w)), from ∃xf1(x) ∧ f2(y)

2. (∃z p(x, z)) ∧ (∃y ∃w q(y,w)), from f1(x) ∧ ∃yf2(y), and

3. (∃z p(x, z)) ∧ (∃w q(x,w)), from f1(x) ∧ f2(x)

and when line 3 runs one time,

4. ∃u ((∃z p(u, z)) ∧ (q(y, u))), from equatingx andw in item 1 above,

5. ∃u (∃x p(x, u)) ∧ (q(y, u)), from equatingx andz in item 1 above,

6. ∃u (p(x, u) ∧ (∃w q(u,w))), from equatingz andy in item 2 above,

7. ∃u (p(x, u) ∧ (∃y q(y, u))), from equatingz andw in item 2 above, and

8. ∃u (p(x, u) ∧ (q(x, u))), from equatingz andw in item 3 above.

The first three are computed using cases 1a, 1b, and 1c, respectively. The remaining
five derive from the first three by equating bound variables fromf1 andf2.

Features generated at a depthk in this language can easily require enumerating allk-tuples
of domain objects. Since the cost of this evaluation grows exponentially withk, we bound the
maximum number of quantifiers in scope at any point in any feature formula toq, and refuse to
consider any feature violating this bound.

The valuesW , λ, d, andq are the parameters controlling the relational learner we evaluate in
this paper. How we set these parameters is discussed furtherin the experimental setup description
in Section 6.

16

Input: f1(x), f2(y)

1. Perform one of
a. f1 = (∃x)f1(x)
b. f2 = (∃y)f2(y)
c. f2 = f2(x)

2. o1 = f1 ∧ f2

3. Perform the following zero, one, or two times:

a. Letv be a variable occurring inf1 ando1.
Let e1 be the expression of the form(∃v)φ1(v) that occurs ino1

b. Letw be a variable occurring inf2 ando1.
Let e2 be the expression of the form(∃w)φ2(w) that occurs ino1

c. Letu be a new variable, not used ino1

d. o2 = replacee1 with φ1(u) and replacee2 with φ2(u) in o1

e. o1 = (∃u)o2

4. returno1

Figure 2: A non-deterministic method for combining two feature formulas. The choice between 1a, 1b, and
1c, the choice of number of iterations of step 3, and the choices ofe1 ande2 in steps 3a and 3b are all non-
deterministic choices. Any feature that can be produced by any run of this non-deterministic method is a
candidate. Note: it is assumed thatf1 andf2 have no variables in common, by renaming if necessary before
this operation.

4.3 Propositional Features

Here we discuss a second candidate hypothesis space for features, using a propositional represen-
tation. We use decision trees to represent these propositional features. A detailed discussion of
classification using decision trees can be found in (Mitchell, 1997). A decision tree is a binary tree
with internal nodes labeled by binary tests on states, edgeslabeled “yes” and “no” representing
results of the binary tests, and leaves labeled with classes(in our case, either zero or one). A path
through the tree from the root to a leaf with labell identifies a labeling of some set of states—each
state consistent with the state-test results on the path is viewed as labeledl by the tree. In this way, a
decision tree with real number labels at the leaves is viewedas labeling all states with real numbers,
and is thus a feature.

We learn decision trees from training sets of labeled statesusing the well known C4.5 algorithm
(Quinlan, 1993). This algorithm induces a tree greedily matching the training data from the root
down. We use C4.5 to induce new features—the key to our algorithm is how we construct suitable
training sets for C4.5 so that the induced features are useful in reducing Bellman error.

17

We include as possible state tests for the decision trees we induce every grounded predicate
application5 from the state predicates, as well as every previously selected decision-tree feature
(each of which is a binary test because all leaf labels are zero or one).

4.4 Learning Propositional Features

To construct binary features, we use only the sign of the “Bellman error feature,” not the magni-
tude. The sign of the statewise Bellman error at each state serves as an indication of whether the
state is undervalued or overvalued by the current approximation, at least with respect to exactly
representing the Bellman update of the current value function. If we can identify a collection of
“undervalued” states as a new feature, then assigning an appropriate positive weight to that feature
will increase their value. Similarly, identifying “overvalued” states with a new feature and assigning
a negative weight will decrease their value. We note that thedomains of interest are generally too
large for state-space enumeration, so we will need classification learning to generalize the notions
of overvalued and undervalued across the state space from training sets of sample states.

To avoid blurring the concepts of overvalued and undervalued with each other, we discard states
with statewise Bellman error near zero from either trainingset. Specifically, among the states with
negative statewise Bellman error, we discard any state withsuch error closer to zero than the median
within that set; we do the same among the states with positivestatewise Bellman error. More
sophisticated methods for discarding training data near the intended boundary can be considered
in future research; these will often introduce additional parameters to the method. Here, we seek
an initial and simple evaluation of our overall approach. After this discarding, we defineΣ+ to be
the set of all remaining training pairs with states having positive statewise Bellman error, andΣ−

likewise those with negative statewise Bellman error.
We then useΣ+ as the positive examples andΣ− as the negative examples for a supervised

classification algorithm; in our case, C4.5 is used. The hypothesis space for classification the space
of decision trees built with tests selected from the primitive attributes defining the state space and
goal; in our case, we also use previously learned features that are decision trees over these attributes.
The concept resulting from supervised learning is then treated as a new feature for our linear ap-
proximation architecture, with an initial weight of zero.

4.5 Discussion

Generalization across varying domain sizes The propositional feature space described above
varies in size as the number of objects in a relational domainis varied. As a result, features learned
at one domain size are not generally meaningful (or even necessarily defined) at other domain sizes.
The relational approach above is, in contrast, able to generalize naturally between different domains
sizes. Our experiments report on the ability of the propositional technique to learn within each
domain size directly, but do not attempt to use that approachfor learning from small problems to
gain performance in large problems. This is a major limitation in producing good results for large
domains.

Learning time The primary motivation for giving up generalization over domain sizes in order
to employ a propositional approach is that the resulting learner can use highly efficient, off-the-

5. A grounded predicate application is a predicate applied to the appropriate number of objects from the problem in-
stance.

18

shelf classification algorithms. The learning times reported in Section 7 show that our propositional
learner learns new features orders of magnitude faster thanthe relational learner.

5. Related Work

5.1 Previous research on feature-learning value-functionconstruction

Automatic learning of relational features for approximatevalue-function representation has surpris-
ingly not been frequently studied until quite recently, andremains poorly understood. Here, we
review recent work that is related on one or more dimensions to our contribution.

Feature selection based on Bellman error magnitude Feature selection based on Bellman error
has recently been studied in the uncontrolled (policy-evaluation) context in (Keller et al., 2006)
and (Parr et al., 2007), with attribute-value or explicit state spaces rather than relational feature
representations. Here, we extend this work to the controlled decision-making setting and study the
incorporation of relational learning and the selection of appropriate knowledge representation for
value functions that generalize between problems of different sizes within the same domain.

The main contribution of (Parr et al., 2007) is formally showing, for the uncontrolled case of
policy evaluation, that using (possibly approximate) Bellman-error features “provably tightens ap-
proximation error bounds,” i.e., that adding an exact Bellman error-feature provably reduces the
(weightedL2-norm) distance from the optimal value function that can be achieved by optimizing
the weights in the linear combination of features. This result is extended in a weaker form to approx-
imated Bellman-error features, again for the uncontrolledcase. The limitation to the uncontrolled
case is a substantial difference from the setting of our work. The limited experiments shown use
explicit state-space representations, and the technique learns a completely new set of features for
each policy evaluation conducted during policy iteration.In contrast, our method accumulates fea-
tures during value iteration, at no point limiting the focusto a single policy. Constructing a new
feature set for each policy evaluation is a procedure more amenable to formal analysis than retain-
ing all learned features throughout value iteration because the policy being implicitly considered
during value iteration (the greedy policy) is potentially changing throughout. However, when us-
ing relational feature learning, the runtime cost of feature learning is currently too high to make
constructing new feature sets repeatedly practically feasible.

(Parr et al., 2007) builds on the prior work in (Keller et al.,2006) that also studied the uncon-
trolled setting. That work provides no theoretical resultsnor any general framework, but provides
a specific approach to using Bellman error in attribute valuerepresentations (where a state is repre-
sented as a real vector) in order to select new features. The approach provides no apparent leverage
on problems where the state is not a real vector, but a structured logical interpretation, as is typical
in planning benchmarks.

Feature discovery via goal regression Other previous methods (Gretton & Thiébaux, 2004; San-
ner & Boutilier, 2006) find useful features by first identifying goal regions (or high reward regions),
then identifying additional dynamically relevant regionsby regressing through the action defini-
tions from previously identified regions. The principle exploited is that when a given state feature
indicates value in the state, then being able to achieve thatfeature in one step should also indicate
value in a state. Regressing a feature definition through theaction definitions yields a definition of
the states that can achieve the feature in one step. Repeatedregression can then identify many re-

19

gions of states that have the possibility of transitioning under some action sequence to a high-reward
region.

Because there are exponentially many action sequences relative to plan length, there can be
exponentially many regions discovered in this way, as well as an exponential increase in the size of
the representation of each region. Both exponentials are interms of the number of regression steps
taken. To control this exponential growth in the number of features considered, regression has been
implemented with pruning optimizations that control or eliminate overlap between regions when it
can be detected inexpensively as well as dropping of unlikely paths. However, without a scoring
technique (such as the fit to the Bellman-error used in this paper) to select features, regression still
generates a very large number of useless new features. The currently most effective regression-based
first-order MDP planner, described in (Sanner & Boutilier, 2006) is only effective when disallowing
overlapping features to allow optimizations in the weight computation, yet clearly most human
feature sets in fact have overlapping features.

Our inductive technique avoids these issues by consideringonly compactly represented features,
selecting those which match sampled statewise Bellman error training data. We provide extensive
empirical comparison to the First-Order Approximate Linear Programming technique (FOALP)
from (Sanner & Boutilier, 2006) in our empirical results. Our empirical evaluation yields stronger
results across a wide range of probabilistic planning benchmarks than the goal-regression approach
as implemented in FOALP (although aspects of the approachesother than the goal-regression can-
didate generation vary in the comparison as well).

Regression-based approaches to feature discovery are related to our method of fitting Bellman
error in that both exploit the fact that states that can reachvaluable states must themselves be valu-
able, i.e. both seek local consistency. In fact, regressionfrom the goal can be viewed as a special
case of iteratively fitting features to the Bellman error of the current value function. Depending
on the exact problem formulation, for anyk, the Bellman error for thek-step-to-go value function
will be non-zero (or otherwise nontrivially structured) atthe region of states that reach the goal first
in k + 1 steps. Significant differences between our Bellman error approach and regression-based
feature selection arise for states which can reach the goal with different probabilities at different
horizons. Our approach fits the magnitude of the Bellman error, and so can smoothly consider the
degree to which each state reaches the goal at each horizon. Our approach also immediately gen-
eralizes to the setting where a useful heuristic value function is provided before automatic feature
learning, whereas the goal-regression approach appears torequire goal regions to begin regression.
In spite of these issues, we believe that both approaches areappropriate and valuable and should be
considered as important sources of automatically derived features in future work.

Effective regression requires a compact declarative action model, which is not always available6.
The inductive technique we present does not require even a PDDL action model, as the only deduc-
tive component is the computation of the Bellman error for individual states. Any representation
from which this statewise Bellman error can be computed is sufficient for this technique. In our em-
pirical results we show performance for our planner onTetris, where the model is represented only
by giving a program that, given any state as input, returns the explicit next state distribution for that
state. FOALP is inapplicable to such representations due todependence on logical deductive rea-

6. For example, in the Second International Probabilistic Planning Competition, the regression-based FOALP planner
required human assistance in each domain in providing the needed domain information even though the standard
PDDL model was provided by the competition and was sufficientfor each other planner.

20

soning. We believe the inductive and deductive approaches to incorporating logical representation
are both important and are complementary.

The goal regression approach is a special case of the more general approach of generating candi-
date features by transforming currently useful features. One such transformation is goal regression.
Others that have been considered include abstraction, specialization, and decomposition (Fawcett,
1996) — all of which simplify the features, in contrast to goal regression. Research on human-
defined concept transformations dates back at least to the landmark AI program AM (Davis &
Lenat, 1982). Our work uses only one means of generating candidate features: a beam search of log-
ical formulas in increasing depth. This means of candidate generation has the advantage of strongly
favoring concise and inexpensive features, but may miss more complex but very accurate/useful fea-
tures. But our approach directly generalizes to these othermeans of generating candidate features.
What most centrally distinguishes our approach from all previous work leveraging such feature
transformations is the use of statewise Bellman error to score candidate features. FOALP (Sanner
& Boutilier, 2006) uses no scoring function, but includes all non-pruned candidate features in the
linear program used to find an approximately optimal value function; the Zenith system (Fawcett,
1996) uses a scoring function provided by an unspecified “critic.”

Previous scoring functions for MDP feature selection A method, from (Patrascu et al., 2002),
selects features by estimating and minimizing theL1 error of the value function that results from
retraining the weights with the candidate feature included. L1 error is used in that work instead
of Bellman error because of the difficulty of retraining the weights to minimize Bellman error.
Because our method focuses on fitting the Bellman error of thecurrent approximation (without
retraining with the new feature), it avoids this expensive retraining computation during search and
is able to search a much larger feature space effectively. While (Patrascu et al., 2002) contains no
discussion of relational representation, theL1 scoring method could certainly be used with features
represented in predicate logic; no work to date has tried this (potentially too expensive) approach.

5.2 Relational reinforcement learning

In (Džeroski, DeRaedt, & Driessens, 2001), a relational reinforcement learning (RRL) system learns
logical regression trees to represent Q-functions of target MDPs. This work is related to ours since
both use relational representations and automatically construct functions that capture state value. In
addition to the Q-function trees, a policy tree learner is also introduced in (Džeroski et al., 2001)
that finds policy trees based on the Q-function trees. We do not learn an explicit policy description
and instead use only greedy policies for evaluation.

The logical expressions in RRL regression trees are used as decision points in computing the
value function (or policy) rather than as numerically valued features for linear combination, as in our
method. Generalization across problem sizes is achieved bylearning policy trees; the learned value
functions apply only to the training problem sizes. To date,the empirical results from this approach
have failed to demonstrate an ability to represent the valuefunction usefully in familiar planning
benchmark domains. While good performance is shown for simplified goals such as placing a
particular block A onto a particular block B, the technique fails to capture the structure in richer
problems such as constructing particular arrangements of Blocksworld towers. RRL has not been
entered into any of the international planning competitions. These difficulties representing complex
relational value functions persist in extensions to the original RRL work (Driessens & Džeroski,

21

2004; Driessens et al., 2006), where again only limited applicability is shown to benchmark planning
domains such as those used in our work.

5.3 Approximate policy iteration for relational domains

Our planners use greedy policies derived from learned valuefunctions. Alternatively, one can di-
rectly learn representations for policies. The policy-tree learning in (Džeroski et al., 2001), dis-
cussed previously in Section 5.2, is one such example. Recent work uses a relational decision-list
language to learn policies for small example problems that generalize well to perform in large prob-
lems (Khardon, 1999; Martin & Geffner, 2004; Yoon et al., 2002). Due to the inductive nature of
this line of work, however, the selected policies occasionally contain severe flaws, and no mecha-
nism is provided for policy improvement. Such policy improvement is quite challenging due to the
astronomically large highly structured state spaces and the relational policy language.

In (Fern et al., 2006), an approximate version of policy iteration addressing these issues is
presented. Starting from a base policy, approximate policyiteration iteratively generates training
data from an improved policy (using policy rollout) and thenuses the learning algorithm in (Yoon
et al., 2002) to capture the improved policy in the compact decision-list language again. Similar to
our work, the learner in (Fern et al., 2006) aims to take a flawed solution structure and improve its
quality using conventional MDP techniques (in that case, finding an improved policy with policy
rollout) and machine learning. Unlike our work, in (Fern et al., 2006) the improved policies are
learned in the form of logical decision lists. Our work can beviewed as complementary to this
previous work in exploring the structured representation of value functions where that work explored
the structured representation of policies. Both approaches are likely to be relevant and important to
any long-term effort to solve structured stochastic decision-making problems.

5.4 Automatic extraction of domain knowledge

There is a substantial literature on learning to plan using methods other than direct representation
of a value function or a reactive policy, especially in the deterministic planning literature. These
techniques are related to ours in that both acquire domain specific knowledge via planning experi-
ence in the domain. Much of this literature targets control knowledge for particular search-based
planners (Estlin & Mooney, 1997; Kambhampati, Katukam, & Qu, 1996; Veloso, Carbonell, Perez,
Borrajo, Fink, & Blythe, 1995), and is distant from our approach in its focus on the particular plan-
ning technology used and on the limitation to deterministicdomains. It is unclear how to generalize
this work to value-function construction or probabilisticdomains.

However, the broader learning-to-plan literature also contains work producing declarative
learned domain knowledge that could well be exploited during feature discovery for value func-
tion representation. In (Fox & Long, 1998), a pre-processing module called TIM is able to infer
useful domain-specific and problem-specific structures, such as typing of objects and state invari-
ants, from descriptions of domain definition and initial states. While these invariants are targeted
in that work to improving the planning efficiency of a Graphplan based planner, we suggest that
future work could exploit these invariants in discovering features for value function representation.
Similarly, in (Gerevini & Schubert, 1998), DISCOPLAN infers state constraints from the domain
definition and initial state in order to improve the performance of SAT-based planners; again, these
constraints could be incorporated in a feature search like our method but have not to date.

22

6. Experimental Setting

We present experiments in nine stochastic planning domains, including both reward-oriented and
goal-oriented domains. We use Pentium 4 Xeon 2.8GHz machines with 3GB memory. In this sec-
tion, we give a general overview of our experiments before giving detailed results and discussion for
individual domains in Section 7. Here, first, we briefly discuss the selection of evaluation domains
in Section 6.1. Second, in Section 6.2, we give details on theparameter selection for our learning
algorithms.

6.1 Domains considered

In all the evaluation domains below, it is necessary to specify a discount factorγ when modeling the
domain as an MDP with discounting. The discount factor effectively specifies the tradeoff between
the goals of reducing expected plan length and increasing success rate.γ is not a parameter of our
method, but of the domain being studied, and our feature-learning method can be applied for any
choice ofγ. Here, for simplicity, we chooseγ to be 0.95 throughout all our experiments. We note
that this is the same discount factor used in theSysAdmin domain formalization that we compare
to from the previous work of Patrascu et al. (Patrascu et al.,2002).

Tetris In Section 7.2 we evaluate the performance of both our relational and propositional learners
using the stochastic computer-gameTetris, a reward-oriented domain where the goal of a player is
to maximize the accumulated reward. We compare our results to the performance of a set of hand-
crafted features, and the performance of randomly selectedfeatures.

Planning Competition Domains In Section 7.3, we evaluate the performance of our relational
learner in seven goal-oriented planning domains from the two international probabilistic planning
competitions (IPPCs) (Younes et al., 2005; Bonet & Givan, 2006). For comparison purposes, we
evaluate the performance of our propositional learner on two of the seven domains (Blocksworld
and a variant ofBoxworld described below). Results from these two domains illustrate the diffi-
culty of learning useful propositional features in complexplanning domains. We also compare the
results of our relational planner with two recent competition stochastic planners FF-Replan (Yoon
et al., 2007) and FOALP (Sanner & Boutilier, 2006) that have both performed well in the planning
competitions. Finally, we compare our results to those obtained by randomly selecting relational
features and tuning weights for them. For a complete description of, and PPDDL source for, the
domains used, please see (Younes et al., 2005; Bonet & Givan,2006).

Every goal-oriented domain with a problem generator from the first or second IPPC was con-
sidered for inclusion in our experiments. For inclusion, werequire a planning domain with a fixed
action space, as defined in Section 2.4, that in addition has only ground conjunctive goal regions.
Four domains have these properties directly, and we have adapted three more of the domains to have
these properties as we describe in the next paragraph. The resulting selection provides seven IPPC
planning domains for our empirical study. Figure 3 lists thereasons for the exclusion of the other
six goal-oriented domains. In addition, four of the domainsthat we use in evaluation occur in both
competitions in slightly different forms and we evaluate onone version of each of these four, as
described in Figure 4.

The three domains we adapted for inclusion are as follows. Wecreated our own problem gen-
erators for the first IPPC domainsTowers of Hanoi andFileworld , as none were provided in the
competition. For both these domains, there is only one instance of each size. In Towers of Hanoi,

23

Domain name IPPC versionReason for exclusion

Colored blocksworld IPPC1 Goal region is not a ground conjunction
Drive IPPC2 Uses predicates with three or more arguments
Elevators IPPC2 Uses predicates with three or more arguments
Pitchcatch IPPC2 Action space not fixed throughout domain
Schedule IPPC2 Action space not fixed throughout domain
Random IPPC2 Action space not fixed throughout domain

Figure 3: Reasons for excluding some planning competition domains from our experiments.

Domain name Differences
Version
used Reason for choice

Blocksworld

Many small differences
– IPPC2 addsemptyhand, on-table(x), andclear(x)
– IPPC2 removes table object
– IPPC2 adds actions:pick-up-from-table , put-down,

pick-tower, put-tower-on-block, andput-tower-down
– IPPC2 allowson(x, x)

IPPC1
IPPC2 version inaccuracy
allowson(x, x)

Exploding blocksNo generator in IPPC1 IPPC2 Problem generator in IPPC2
Tireworld No generator in IPPC1 IPPC2 Problem generator in IPPC2
Zenotravel No generator in IPPC1 IPPC2 Problem generator in IPPC2

Figure 4: Differences between IPPC1 and IPPC2 versions of planning domains present in both competitions,
which version is used in our experimental evaluation, and why.

all instances share the same action set and state predicates, so that a suitable problem generator is
straightforward. In Fileworld, a planning domain with a fixed action space results if we consider
the collection of instances that share the same fixed number of folders, but varying the number of
files. When the number of folders varies, the state predicates and actions change, so that instances
with varying numbers of folders cannot be in the same fixed-action-space planning domain under
our definitions (preventing natural generalization between sizes). For our experiments, we create a
suitable domain by coding a problem generator restricted tothree folders.

Furthermore,Fileworld , as written for the competition, is partially propositionalized (for un-
known reasons). First, rather than have a one-argument predicate “have-folder”, the competition
domain has one proposition “have-f ” for each folderf . Also, the competition domain duplicates
and renames each action for each folder rather than take a folder object as an action argument (again
for unknown reasons). Finally, the competition domain contains an apparent bug because it does
not give types to the objects, so it is possible to file a folderin itself. Because we study relational
generalization here, we have constructed the obvious lifted version of this domain with object types;
we include the PPDDL source as Appendix A-1 of this paper. We call the resulting domainLifted-
Fileworld3.

Finally, for Boxworld, we modify the problem generator so that the goal region is always a
ground conjunctive expression by replacing the goal “all boxes must be at their destinations” with a
conjuction of specific box location goals. We call the resulting domainConjunctive-Boxworld.

SysAdmin We conclude our experiments by comparing our propositionallearner with a previous
method by Patrascu et al. (Patrascu et al., 2002), using the the sameSysAdmin domain used for
evaluation there. This empirical comparison on the SysAdmin domain is shown in Section 7.4.

24

6.2 Parameterization of our methods

Here we describe our choice of parameters for our methods. Where possible, parameterization is
done once, to apply identically to all experiments, as described here. There are some choices made
once for each domain, and these are described in the subsection dedicated to each domain. The
primary choices that must be made in a domain-specific way control learning from small problems:
we must specify for each domain the performance threshold atwhich difficulty will be increased (as
shown in Fig. 1) as well as the sequence of difficulties to be considered (in cases where there is more
than one parameter controlling problem size). We defer to future research the topic of automated
control of problem difficulty when learning from small problems.

Trajectory termination Training sets for both feature learning and for AVI weight update are
drawn by drawing trajectories based on the current greedy policy in problems drawn from the prob-
lem distribution at the current level of difficulty, as detailed in Sections 3 and 2.5. It is an important
and somewhat independent research topic to automatically recognize when such a trajectory is not
making progress, e.g., by recognizing dead-end regions of states and/or lack of progress towards
the goal. Any such research can be plugged into our methods directly by terminating all training
trajectories when they fail an appropriate test.

Here, we do not address this issue in any sophisticated way, but terminate trajectories whenever
one of three conditions holds:

1. a goal state is reached,

2. a dead-end state is reached,

3. the trajectory contains 1,000 steps.

Training set sizes Each feature-learning training set across all our relational-learning experiments
is drawn to be 20,000 states by the method described in Section 3. Because propositional feature
learning is faster than relational feature learning, we areable to allow 200,000 states in propositional
feature learning training sets in theTetris andSysAdmin experiments, but still only 20,000 states
in the planning domains.

Throughout all experiments, each AVI weight-update training set is drawn by collecting the
states from 30 trajectories.

Learning rate for weight updates in AVI As discussed in Section 2.5, we adjust the weights
of our approximated value functions using AVI. We use a search-then-converge schedule for the
learning rate of this iterative gradient descent method throughout our experiments (see (Darken &
Moody, 1992)); specifically, we set the learning rateα in AVI to 3

1+k/100 , wherek is the number of
AVI iterations already executed.

Parametrization of the relational algorithm There are various parameters in the feature con-
struction process described in this section, including thebeam-widthW , the beam-search depth
limit d, the regularization parameterλ, and the bound on the maximum number of quantifiers in
scopeq. Changes to these parameters affect the quality of the constructed features by changing the
feature-space regions searched and the number of candidatefeatures considered, as well as changing
the preferences expressed in scoring the features. The selection of these parameters further affects
the choice of the size of feature training set, as in practicefewer training examples can be considered
when the number of candidate features grows.

25

Throughout all our experiments we chooseW to be 60,d to be 5, andλ to be 0.03 for all
domains. We setq to 1 for the planning competition domains (settingq to 2 does not result in
a noted improvement in the performance in these domains whenusing the above parameters, but
results in a substantial and occasionally intolerable runtime cost), and we setq to 2 forTetris. These
severe limits onq are necessary to control the expense of searching the feature space. Note however
that there is implicit quantification in the transitive-closure predicates and min/max predicates in the
extended predicate set defining the feature space, in addition to the explicit quantifiers limited byq.
See Section 4.1 for discussion of the extended predicate set.

Parametrization of the propositional algorithm Our propositional feature learning algorithm is
already well defined in Section 4.4, except for how to setup the underlying C4.5 learner (Quinlan,
1993). We use the default parameters for C4.5, except for thefollowing: we use the gain criterion
instead of the gain ratio criterion. We allow the trees to grow from a node without any restriction
on the minimum number of objects in the resulting branches7. The pruning confidence level is set
to 0.9.

7. Experimental Results

7.1 How to read our results

The task of evaluating a feature-learning planning system is subtle and complex. This is particularly
a factor in the relational case because generalization between problem sizes and learning from small
problems must be evaluated. The resulting data is extensiveand highly structured, requiring some
training of the reader to understand and interpret. Here we introduce the reader to the structure of
our results.

In experiments with the propositional learning (or with randomly selected propositional fea-
tures), the problem size never varies within one run of the learner, because the propositional repre-
sentation from Section 4.3 can’t generalize between sizes.We run a separate experiment for each
size considered. Each experiment is two independent trials; each trial starts with a single trivial
feature and repeatedly adds features until a termination condition is met. After each feature addi-
tion, AVI is used to select the weights for combining the features to form a value function, and the
performance of that value function is measured (by samplingthe performance of the greedy policy).
We then compute the average (of the two trials) of the performance as a function of the number
of features used. Since this results in a single line plot of performance as a function of number
of features, several different fixed-problem-size learners can be compared on one figure, with one
line for each, as is done for example in Figures 7 and 14. The performance measure used varies
appropriately with the domain as presented below.

We study the ability of relational representation from Section 4.1 to generalize between sizes.
This study can only be properly understood against the backdrop of the flowchart in Figure 1. As
described in this flowchart, one trial of the learner will learn a sequence of features and encounter
a sequence of increasing problem difficulties. One iteration of the learner willeither add a new
featureor increase the problem difficulty (depending on the current performance). In either case,
the weights are then retrained by AVI and a performance measurement of the resulting greedy policy
is taken. Because different trials may increase the size at different points, we cannot meaningfully
average the measurements from two trials. Instead, we present two independent trials separately

7. The default C4.5 parameter requires at least 2 branches from any node to contain at least 2 objects.

26

in two tables, such as the Figures 5 and 12. For the first trial,we also present the same data a
second time as a line plot showing performance as a function of number of features, where problem
size changes are annotated along the line, such as the plots in Figures 6 and 13. Note that success
ratio generally increases along the line when features are added, but falls when problem size is
increased. (InTetris, however, we measure “rows erased” rather than success ratio, and “rows
erased” generally increases with either the addition of a new feature or the addition of new rows to
the available grid.)

To interpret the tables showing trials of the relational learner, it is useful to focus on the first
two rows, labeled “# of features” and “Problem difficulty.” These rows, taken together, show the
progress of the learner in adding features and and increasing problem size. Each column in the table
represents the result in the indicated problem size using the indicated number of learned features.
From one column to the next, there will be a change in only one of these rows—if the performance
of the policy shown in a column is high enough, it will be the problem difficulty that increases, and
otherwise it will be the number of features that increases. Further adding to the subtlety in inter-
preting these tables, we note that when several adjacent columns increase the number of features,
we sometimes splice out all but two of these columns to save space. Thus, if several features are
added consecutively at one problem size, with slowly increasing performance, we may show only
the first and last of these columns at that problem size, with aconsequent jump in the number of
features between these columns. We likewise sometimes splice out columns when several consec-
utive columns increase problem difficulty. We have found that these splicings not only save space
but increase readability after some practice reading thesetables.

Performance numbers shown in each column (success ratio andaverage plan length, or number
of rows erased, forTetris) refer to the performance of the weight-tuned policy resulting for that
feature set at that problem difficulty. We also show in each column the performance of that value
function (without re-tuning weights) on the target problemsize. Thus, we show quality measures
for each policy found during feature learning on both the current problem size at that point and on
the target problem size, to illustrate the progress of learning from small problems on the target size
via generalization.

In both propositional and relational experiments, trials are stopped by experimenter judgment
when additional results are too expensive for the value theyare giving in evaluating the algorithm.
Also, in each trial, the accumulated real time for the trial is measured and shown at each point during
the trial. We use real time rather than CPU time to reflect non-CPU costs such as paging due to high
memory usage.

7.2 Tetris

Overview of Tetris The gameTetris is played in a rectangular board area, usually of size10×20,
that is initially empty. The program selects one of the sevenshapes uniformly at random and the
player rotates and drops the selected piece from the entry side of the board, which piles onto any
remaining fragments of the pieces that were placed previously. In our implementation, whenever
a full row of squares is occupied by fragments of pieces, thatrow is removed from the board and
fragments on top of the removed row are moved down one row; a reward is also received when a row
is removed. The process of selecting locations and rotations for randomly drawn pieces continues
until the board is “full” and the new piece cannot be placed anywhere in the board. Tetris is stochas-
tic since the next piece to place is always randomly drawn, but this is the only stochastic element

27

Trial #1

of features 0 1 2 3 11 11 12 17 17 18 18 18
Problem difficulty 5 5 5 5 5 6 6 6 7 7 8 9
Score 0.2 0.5 1.0 3.0 18 31 32 35 55 56 80 102
Accumulated time (Hr.) 0.0 2 4.2 5.2 20 21 24 39 42 46 50 57
Target size score 0.3 1.3 1.4 1.8 178 238 261 176 198 211 217 221

Trial #2

of features 0 1 2 3 8 8 12 12 14 14 14
Problem difficulty 5 5 5 5 5 6 6 7 7 8 9
Score 0.2 0.6 1.1 4.5 16 28 36 53 56 78 97
Accumulated time (Hr.) 0.0 2.4 3.9 4.9 15 15 27 29 39 44 49
Target size score 0.3 1.7 1.7 30 104 113 108 116 130 157 171

Figure 5: Tetris performance (averaged over 10,000 games). Score is shown inaverage rows erased, and
problem difficulty is shown in the number of rows on the Tetrisboard. The number of columns is always 10.
Difficulty increases when the average score is greater than 15+20*(n-5), wheren is the number of rows in
the Tetris board. Target problem size is 20 rows. Some columns are omitted as discussed on page 27.

in this game. Tetris is also used as an experimental domain inprevious MDP and reinforcement
learning research (Bertsekas & Tsitsiklis, 1996; Driessens et al., 2006). A set of human-selected
features is described in (Bertsekas & Tsitsiklis, 1996) that yields very good performance when used
in weighted linearly approximated value functions. We cannot fairly compare our performance in
this domain to probabilistic planners requiring PPDDL input because we have found no natural
PPDDL definition for Tetris.

Our performance metric forTetris is the number of rows erased averaged over 10,000 trial
games. The reward-scaling parameterrscale is selected to be 1.

Tetris relational feature learning results We represent theTetris grid using rows and columns as
objects. We use three primitive predicates:fill (c, r), meaning that the square on columnc, row r is
occupied;below(r1, r2), meaning that rowr1 is directly below rowr2; andbeside(c1, c2), meaning
that columnc1 is directly to the left of columnc2. While our representation here uses only these
primitive domain predicates, the RRL result we compare to uses human-specified Tetris-specific
functions in the representation such as “number of holes” (Driessens et al., 2006). The quantifiers
used in our relational Tetris hypothesis space are typed using the types “row” and “column”.

There are also state predicates representing the piece about to drop; however, for efficiency
reasons our planner computes state value as a function only of the grid, not the next piece. This
limitation in value-function expressiveness allows a significantly cheaper Bellman-backup compu-
tation. The one-step lookahead in greedy policy execution provides implicit reasoning about the
piece being dropped, as that piece will be in the grid in all the next states.

We conduct our relationalTetris experiments on a 10-column,n-row board, withn initially set
to 5 rows. Our threshold for increasing problem difficulty byadding one row is a score of at least
15 + 20(n − 5) rows erased. The target problem size for these experiments is 20 rows. The results
for the relational Tetris experiments are given in Figures 5and 6 and are discussed below.

Tetris propositional feature learning results For the propositional learner, we describe the
Tetris state with 7 binary attributes that represent which of the 7 pieces is currently being dropped,

28

Tetris, Relational, Trial 1

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18
Number of Features

A
ve

ra
g

e
R

o
w

s
E

ra
se

d

10×5 10×5

10×610×6

10×9

10×8

10×7

Figure 6: Plot of the average number of lines erased over 10,000Tetris games after each run of AVI training
during the learning of relational features (trial 1). Vertical lines indicate difficulty increases (in the number of
rows), as labeled along the plot.

Tetris, Propositional

0
2
4
6
8

10
12
14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Features

A
ve

ra
g

e
R

o
w

s
E

ra
se

d

10×5 10×7 10×9 10×20

Figure 7: Plot of the average number of lines erased in 10,000Tetris games after each iteration of AVI
training during the learning of propositional features, averaged over two trials.

29

Tetris, Propositional

0
20
40
60
80

100
120
140
160

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Features

A
cc

u
m

u
la

te
d

 T
im

e
(H

r.
)

10×5 10×7 10×9 10×20

Figure 8: Plot of the accumulated time required to reach eachpoint in Figure 7, averaged over two trials.

along with one additional binary attribute for each grid square representing whether that square is
occupied. The adjacency relationships between the grid squares are represented only through the
procedurally coded action dynamics. Note that the number ofstate attributes depends on the size of
the Tetris grid, and learned features will only apply to problems of the same grid size. As a result,
we show separate results for selected problem sizes.

We evaluate propositional feature learning in 10-columnTetris grids of four different sizes: 5
rows, 7 rows, 9 rows, and 20 rows. Results from these four trials are shown together in Figure 7 and
the average accumulated time required to reach each point onFigure 7 is shown in Figure 8.

Evaluating random features in Tetris In Tetris, we compare the results of both our learning
approaches against selecting features randomly to demonstrate that indeed using statewise Bellman
error as the criterion to select features is essential to thesuccess of our feature learning approaches.
The only difference between constructing learned featuresand random features is we replace the
target value in our feature training set with a random numberfrom -1 to 1. We use the same
approach to generate random features later in the planning domains. Again, in our propositional
approach we only show results from using 200,000 states in random feature training sets.

In Figure 9 we show the results for random features inTetris. For random features using our
relational representation, we use the same schedule used for the learned relational features in Tetris
by starting with the10×5 problem size. However, the performance of random features is never good
enough to increase the problem size. For the propositional approach we show the same problem
sizes as in the learned propositional features.

Evaluating human features in Tetris In addition to evaluating our relational and propositional
feature learning approach, we also evaluate how the human-selected features described in (Bert-
sekas & Tsitsiklis, 1996) perform in selected problem sizes. For each problem size, we start from
all weights zero and use the AVI process described in Section2.5 to train the weights for all 21
features until the performance appears to converge. We change the learning rateα from 3

1+k/100 to
30

1+k/100 as human features require a larger step-size to converge rapidly. The human features are
normalized to a value between 0 and 1 here in our experiments.We run two independent trials for

30

Random Features

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of Features

A
ve

ra
g

e
R

o
w

s
E

ra
se

d

Relational Propositional 10×5 Propositional 10×7

Propositional 10×9 Propositional 10×20

Figure 9: Plot of the average number of lines erased in 10,000Tetris games using for randomly generated
features. The relational trial starts with the10× 5 problem size and never achieves sufficient performance to
increase that size.

each problem size and report the performance of the best-performing weight vector found in each
trial, in Figure 10.

10× 5 10× 7 10× 9 10× 20

Average rows erased, Trial 1 19 86 267 17,054
Average rows erased, Trial 2 19 86 266 18,125

Figure 10: The average number of lines erased in 10,000Tetris games for the best weighted combination of
human feature found in each of two trials of AVI and four problem sizes.

Performance comparison between different approaches to Tetris Several general trends
emerge from the results onTetris. First of all, the addition of new learned features is almostalways
increasing the performance of the resulting tuned policy (on the current size and on the target size),
until a best performance point is reached. This suggests we are in fact selecting useful features. We
also find clear evidence of the ability of the relational representation to usefully generalize between
problem sizes: substantial performance is developed on thetarget problem size without ever training
directly in that size.

In our two relational learning trials the best target size performances were 261 and 171 rows
erased, respectively. For comparison, the best RRL result reported in (Driessens et al., 2006) was
around 55 rows erased (as we estimate from reading the published plot). Our relational approach
thus produces performance far superior to the policy learned by RRL, even though RRL is us-
ing human-engineered Tetris-specific features much more sophisticated than those in the primitive
domain description. The setting for the RRL work is substantially different in access to the world
model from our setting in that RRL leverages only the abilityto execute actions, whereas our learner
requires the ability to compute Bellman backups. It is a suitable topic for future research to design
an approximate Q-learning version of our methods that wouldrequire only action execution for

31

Relational Prop.10× 5 Prop.10× 7 Prop.10× 9 Prop.10× 20

Average feature learning time (Min.) 112 44 52 60 44

Figure 11: Table for the average feature learning time for relational and propositional approaches.

training. What we can conclude here is that our learner is able to exploit this simple additional
model access to much more than compensate for the lack of any human input regarding feature
selection.

We find that the best performance of learned propositional features is much lower than that of
learned relational features in all problem sizes shown here, even though a larger feature training set
size and many more learned features are used for the propositional approach. This suggests that
the rich relational representation indeed is able to bettercapture the dynamics in Tetris than the
propositional representation.

We find that the performance of using random features inTetris is significantly worse than that
of using learned features, demonstrating the our performance improvements in feature learning are
due to useful feature selection (using Bellman error), not simply due to increasing the number of
features.

Our learned relational feature performance in10 × 20 Tetris is far worse than that obtained by
using the human-selected features with AVI here. However, in 10 × 5 Tetris the relational feature
performance is close to that of the human features. The humanfeatures are engineered to perform
well in the10×20 Tetris hence some concepts that are useful in performing well in smaller problem
sizes may not exist in these features.

Our feature learner has definitely not replaced the value of human engineering in selecting
features in this domain, though it does produce the best machine-learned policy known to date that
is found without exploiting human engineering of the feature set. We suggest that humans use
sophisticated reasoning about the domain model as well as a richer feature representation in order
to develop more useful features than our technique can.

Time to learn each feature In Figure 11 we show the average time required to learn a relational
feature or a propositional feature inTetris.

The time required to learn a relational feature is significantly longer than that required to learn
a propositional feature, even though for the propositionalapproach a larger feature training set size
is being used.

Key Factors to Finding Human Tetris Features Automatically Here we discuss key factors
that may need to be addressed to be able to automatically construct features similar to the human-
selected ones inTetris. Of course, the rich knowledge representation used by humanengineers is a
critical factor. The human feature set we evaluate in this paper contains features defined with flexible
usage of defined concepts such as “column height,” “difference in height of adjacent columns,”
and “maximum height of all columns.” One can imagine searching a feature hypothesis language
automatically containing such richer constructs, but control of such richness to avoid unacceptable
runtime cost could possibly become a major issue. Generally, we suggest careful enrichment of the
knowledge representation in the direction of capturing distinguished quantified concepts concisely
as defined concepts using few or no explicit quantifiers as a fruitful direction for future research.

32

The human feature set contains many features defined once foreach column. This suggest
considering type-based feature discovery so that a new feature would be added for each object of
the same type. Nothing like this is done by our current methods.

The human feature set also contains a feature counting the number of covered up “holes” in the
board. This feature is likely derived by reasoning about therules of the game and realizing that such
holes are difficult to fill. Bellman error evaluation could play a role in such reasoning. The state
of the art in planning, learning, and reasoning is far short of finding such a feature via reasoning
without also doing an unmanageable amount of other, uselessreasoning. Nonetheless, using some
form of targeted reasoning from the rules to define an enriched feature-description space is a feasible
direction for future research.

7.3 Probabilistic Planning Competition Domains

Throughout the evaluations of our learners in planning domains, we use a lower plan-length cutoff of
1000 steps when evaluating success ratio during the iterative learning of features, to speed learning.
We use a longer cutoff of 2000 steps for the final evaluation ofpolicies for comparison with other
planners and for all evaluations on the target problem size.The reward-scaling parameterrscale is
selected to be 1 throughout the planning domains.

For domains with multi-dimensional problem sizes, it remains an open research problem on how
to change problem size in different dimensions automatically to increase difficulty during learning.
Here, inConjunctive-Boxworld andZenotravel, we hand-design the sequence of increasing prob-
lem sizes.

Blocksworld In the probabilistic, non-reward version ofBlocksworld from the first IPPC, the
actionspickup andputdown have a small probability of placing the handled block on the table
object instead of on the selected destination.

For our relational learner, we start with 3 blocks problems.We increase fromn blocks ton + 1
blocks whenever the success ratio exceeds0.9 and the average successful plan length is less than
30(n − 2). The target problem size is 20 blocks. Results are shown in Figures 12 and 13.

For our propositional learner, results for problem sizes of3, 4, 5, and 10 blocks are shown in
Figure 14, with accumulated time taken shown in Figure 15.

Our relational learner consistently finds value functions with perfect or near-perfect success
ratio up to 15 blocks. This performance compares very favorably to the recent RRL (Driessens
et al., 2006) results in the deterministic blocksworld, where goals are severely restricted to, for
instance, singleON atoms, and the success ratio performance of around 0.9 for three to ten blocks
(for the singleON goal) is still lower than that achieved here. Our results in blocksworld show
the average plan length is far from optimal. We have observedlarge plateaus in the induced value
function: state regions where all states are given the same value so that the greedy policy wanders.
This is a problem that merits further study to understand whyfeature-induction does not break such
plateaus. Separately, we have studied the ability of local search to break out of such plateaus (Wu,
Kalyanam, & Givan, 2008).

The performance on the target size clearly demonstrates successful generalization between sizes
for the relational representation.

The propositional results demonstrate the limitations of the propositional learner regarding lack
of generalization between sizes. While very good value functions can be induced for the small
problem sizes (3 and 4 blocks), slightly larger sizes of 5 or 10 blocks render the method ineffective.

33

Trial #1

of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 1.00 1 1 0.95 1 1 1 0.97
Plan length 89 45 20 133 19 33 173 395
Accumulated time (Hr.) 0.5 1.0 1.5 2.2 3.3 3.9 10 36
Target size SR 0 0 0 0 0.98 0.96 0.98 0.97
Target size Slen. – – – – 761 724 754 745

Trial #2

of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 1 1 1 0.94 1 1 1 0.96
Plan length 80 48 19 125 17 34 167 386
Accumulated time (Hr.) 0.5 1.0 1.4 2.0 3.3 3.8 9.4 33
Target size SR 0 0 0 0 0.97 0.98 0.98 0.98
Target size Slen. – – – – 768 750 770 741

Figure 12:Blocksworld performance (averaged over 600 problems) for relational learner. We add one feature
per column until success ratio exceeds0.9 and average successful plan length is less than30(n − 2), for n
blocks, and then increase problem difficulty for the next column. Plan lengths shown are successful trials
only. Problem difficulties are measured in number of blocks,with a target problem size of 20 blocks. Some
columns are omitted as discussed on page 27.

In 10 block problems, the initial random greedy policy cannot be improved because it never finds
the goal. In addition, these results demonstrate that learning additional features once a good policy
is found can degrade performance, possibly because AVI performs worse in the higher dimensional
weight space that results.

Conjunctive-Boxworld The probabilistic, non-reward version ofBoxworld from the first IPPC
is similar to the more familiarLogisticsdomain used in deterministic planning competitions, except
that an explicit connectivity graph for the cities is defined. In Logistics, airports and aircraft play an
important role since it is not possible to move trucks from one airport (and the locations adjacent
to it) to another airport (and the locations adjacent to it).In Boxworld, it is possible to move all
the boxes without using the aircraft since the cities may allbe connected with truck routes. The
stochastic element introduced into this domain is that whena truck is being moved from one city to
another, there is a small chance of ending up in an unintendedcity. As described in Section 6.1, we
useConjunctive-Boxworld, a modified version of Boxworld, in our experiments.

We start with 1-box problems in our relational learner and increase fromn boxes ton+1 boxes
whenever the success ratio exceeds 0.9 and the average successful plan length is better than30n.
All feature-learning problem difficulties use 5 cities. We use two target problem sizes: 15 boxes and
5 cities, and 10 boxes and 10 cities. Relational learning results are shown in Figures 16 and 17, and
results for the propositional learner on 5 cities with 1, 2, or 3 boxes are shown in Figures 18 and 19.

In interpreting theConjunctive-Boxworld results, it is important to focus on the average suc-
cessful plan-length metric. In Conjunctive-Boxworld problems, random walk is able to solve the

34

Blocksworld, Trial 1

0.8

0.85

0.9

0.95

1

0 1 2 3
Number of Features

S
u

cc
es

s
R

at
io

3 blocks 3 blocks 3 blocks

4 blocks

4, 5, 10 blocks

15 blocks

0

Blocksworld, Trial 1

0

100

200

300

400

0 1 2 3

Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

3 blocks
3 blocks

3 blocks

4 blocks

4 blocks
5 blocks

10 blocks

15 blocks

Figure 13:Blocksworld success ratio and average successful plan length (averagedover 600 problems) for
the first trial from Figure 12 using our relational learner.

problem nearly always, but often with very long plans8. The learned features enable more direct
solutions as reflected in the average plan-length metric.

Only two relational features are required for significantlyimproved performance in the problems
we have tested. Unlike the other domains we evaluate, for theConjunctive-Boxworld domain the
learned features are straightforwardly describable in English. The first feature counts how many
boxes are correctly at their target city. The second featurecounts how many boxes are on trucks.

We note the lack of any features rewarding trucks for being inthe “right” place (resulting in
longer plan lengths due to wandering on value-function plateaus). Such features can easily be writ-
ten in our knowledge representation (e.g. count the trucks located at cities that are the destinations
for some package on the truck), but require quantification over both cities and packages. The severe
limitation on quantification currently in our method for efficiency reasons prevents consideration of
these features at this point. It is also worth noting that regression-based feature discovery, as studied
in (Sanner & Boutilier, 2006; Gretton & Thiébaux, 2004), can be expected to identify such features

8. We note that, oddly, the IPPC competition domain used herehas action preconditions prohibiting moving a box away
from its destination. These preconditions bias the random walk automatically towards the goal. For consistency with
the competition results, we retain these odd preconditions, although these preconditions are not necessary for good
performance for our algorithm.

35

Blocksworld Success Ratio

0.00

0.20

0.40

0.60

0.80

1.00

0 2 4 6 8 10

Number of Features

S
u

cc
es

s
R

at
io

3 blocks 4 blocks 5 blocks 10 blocks

Blocksworld Successful Plan Length

0
50

100
150
200
250
300
350
400
450

0 2 4 6 8 10

Number of Features

P
la

n
 L

en
g

th

3 blocks 4 blocks 5 blocks

Figure 14:Blocksworld performance success ratio and average successful plan length (averaged over 600
problems) for our propositional learner, averaged over twotrials.

36

Blocksworld Accumulated Time

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

Number of Features

A
cc

u
m

u
la

te
d

 T
im

e
(H

r.
)

3 blocks 4 blocks 5 blocks 10 blocks

Figure 15: Accumulated run-time inBlocksworld for our propositional learner, averaged over two trials.

regarding trucks by regressing the goal through the action of unloading a package at the destination.
Combining our Bellman-error-based method with regression-based methods is a promising future
direction.

Nevertheless, our relational learner discovers two concise and useful features that dramatically
reduce plan length relative to the initial policy of random walk. This is a significant success for
automated domain-independent induction of problem features.

One trial of the relational feature learner inConjunctive-Boxworld takes several days, even
though we have fixed the number of cities for the training problems at five cities. New techniques are
required for improving the efficiency of feature learning before we can provide results for training in
larger numbers of cities. Our results here demonstrate thatthe current representation and learning
methods adequately manage small city graphs even with larger and larger numbers of boxes to
deliver, and that the resulting value functions successfully generalize to 10-city problems.

In this domain, a well known weakness of AVI is apparent. While AVI often works in practice,
there is no theoretical guarantee on the quality of the weight vector found by AVI training. (Al-
ternatively, an approximate linear programming step couldreplace AVI training to provide a more
expensive but perhaps more robust weight selection.) In theConjunctive-Boxworld results, AVI
training goes astray when selecting weights in the 12 box domain size in Trial 1. As a result, the
selected weights overemphasize the first feature, neglecting the second feature. This is revealed in
the data shown because the plan-length performance degrades significantly for that one column of
data. When AVI is repeated at the next problem size (13 boxes), good performance is restored. A
similar one-column degradation of plan length occurs in trial 2 at the 10-box and 12-box sizes.

For our propositional experiments in theConjunctive-Boxworld, we note that, generally,
adding learned propositional features degrades the success-rate performance relative to the initial
random walk policy by introducing ineffective loops into the greedy policy. The resulting greedy
policies find the goal in fewer steps than random walk, but generally pay an unacceptable drop in

37

Trial #1

of features 0 1 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 10 11 12 13 15
Success ratio 0.97 1 1 1 1 1 1 1 1 1 1
Plan length 226 84 23 37 44 54 77 80 313 87 92
Accumulated time (Hr.) 7.2 10 13 14 16 21 42 49 57 65 84
Target size #1 SR 0.98 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. 1056 359 93 91 90 92 90 92 355 90 91
Target size #2 SR 0.16 0.90 0.97 0.97 0.96 0.98 0.96 0.98 0.90 0.98 0.96
Target size #2 Slen. 1583 996 238 230 233 244 240 238 1024 240 239

Trial #2

of features 0 1 2 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 9 10 11 12 13 15
Success ratio 0.97 1 1 1 1 1 1 1 1 1.00 1 1
Plan length 235 85 24 34 43 54 72 299 80 310 84 91
Accumulated time (Hr.) 7.3 11 14 16 18 23 39 45 51 60 68 86
Target size #1 SR 0.96 1 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. 1019 365 90 91 91 92 89 359 89 363 90 90
Target size #2 SR 0.19 0.9 0.97 0.97 0.98 0.98 0.97 0.92 0.98 0.91 0.97 0.96
Target size #2 Slen. 1574 982 226 230 233 233 242 1006 231 1026 240 233

Figure 16: Conjunctive-Boxworld performance (averaged over 600 problems). We add one feature per
column until success ratio is greater than> 0.9 and average successful plan length is less than30n, for n
boxes, and then increase problem difficulty for the next column. Problem difficulty is shown in number of
boxes. Throughout the learning process the number of citiesis 5. Plan lengths shown are successful trials
only. Two target problem sizes are used. Target problem size#1 has 15 boxes and 5 cities. Target problem
size #2 has 10 boxes and 10 cities. Some columns are omitted asdiscussed on page 27.

success ratio to do so. The one exception is the policy found for one-box problems using just two
propositional features, which significantly reduces plan length while preserving success ratio. Still,
this result is much weaker than that for our relational feature language.

These problems get more severe as problem size increases, with 3-box problems suffering severe
degradation in success rate with only modest gains in successful plan length. Also please note
that accumulated runtime for these experiments is very large, especially for 3-box problems. AVI
training is very expensive for policies that do not find the goal. Computing the greedy policy at each
state in a long trajectory requires considering each action, and the number of available actions can
be quite large in this domain. For these reasons, the propositional technique is not evaluate at sizes
larger than three boxes.

Tireworld We use theTireworld domain from the second IPPC. The agent needs to drive a ve-
hicle through a graph from the start node to the goal node. When moving from one node to an
adjacent node, the vehicle has a certain chance of sufferinga flat tire (while still arriving at the adja-
cent node). The flat tire can be replaced by a spare tire, but only if there is such a spare tire present
in the node containing the vehicle, or if the vehicle is carrying a spare tire. The vehicle can pick up
a spare tire if it is not already carrying one and there is one present in the node containing the vehi-
cle. The default setting for the second-IPPC problem generator for this domain defines a problem
distribution that includes problems for which there is no policy achieving the goal with probability
one. Such problems create a tradeoff between goal-achievement probability and expected number

38

Boxworld, 5 Cities, Trial 1

0.9

0.95

1

0 1 2
Number of Features

S
u

cc
es

s
R

at
io

1 box

1 box 1, 2, 3, 5, 10, and 15 boxes

0

Boxworld, 5 Cities, Trial 1

1 box

1 box

1 box
2 boxes3 boxes

5 boxes

10 boxes
15 boxes

0

50

100

150

200

250

0 1 2
Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

Figure 17: Conjunctive-Boxworld success ratio and average successful plan length (averagedover 600
problems) for the first trial using our relational learner.

of steps to the goal. How strongly our planner favors goal achievement versus short trajectories to
the goal is determined by the choice of the discount factor made in Section 6.1.

We start with 4-node problems in our relational learner and increase fromn nodes ton + 1
nodes whenever the success ratio exceeds 0.85 and the average successful plan length is better than
4n steps. The target problem size is 30 nodes. The results are shown in Figures 20 and 21.

In Tireworld , our relational learner again is able to find features that generalize well to large
problems. Our learner achieves a success ratio of about 0.9 on 30 node problems. It is unknown
whether any policy can exceed this success ratio on this problem distribution; however, neither
comparison planner, FOALP nor FF-Replan, finds a higher success-rate policy.

We note that some improvements in success rate in this domainwill necessarily be associated
with increases in plan length because success-rate improvements may be due to path deviations to
acquire spare tires.

39

Boxworld Success Ratio

0.00

0.20

0.40

0.60

0.80

1.00

0 2 4 6 8 10

Number of Features

S
u

cc
es

s
R

at
io

1 box 2 box 3 box

Boxworld Successful Plan Length

0

100

200

300

400

500

0 2 4 6 8 10

Number of Features

P
la

n
 L

en
g

th

1 box 2 box 3 box

Figure 18: Conjunctive-Boxworld performance (averaged over 600 problems) for propositional learner,
averaged over two trials. Throughout the learning process the number of cities is 5.

Zenotravel We use theZenotravel domain from the second IPPC. The goal of this domain is to
fly all travelers from their original location to their destination. Planes have (finite-range, discrete)
fuel levels, and need to be re-fuelled when the fuel level reaches zero to continue flying. Each
available activity (boarding, debarking, flying, zooming,or refueling) is divided into two stages,
so that an activity X is modelled as two actions start-X and finish-X. Each finish-X activity has
a (high) probability of doing nothing. Once a “start” actionis taken, the corresponding “finish”
action must be taken (repeatedly) until it succeeds before any conflicting action can be started. This
structure allows the failure rates on the “finish” actions tosimulate action costs (which were not
used explicitly in the problem representation for the competition). A plane can be moved between

40

Boxworld Accumulated Time, 5 Cities

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10

Number of Features

A
cc

u
m

u
la

te
d

 T
im

e
(H

r.
)

1 box 2 box 3 box

Figure 19:Conjunctive-Boxworld accumulated time (averaged over 600 problems) for propositional learner,
averaged over two trials.

Trial #1

of features 0 1 2 3 3 3 4 4 5 5 5 5
Problem difficulty 4 4 4 4 5 6 6 9 9 10 20 30
Success ratio 0.52 0.81 0.84 0.86 0.86 0.84 0.88 0.85 0.86 0.86 0.91 0.91
Plan length 4 3 4 2 2 2 3 3 4 4 5 5
Accumulated time (Hr.) 0.3 3.1 12 17 18 18 19 21 22 23 29 36
Target size SR 0.17 0.53 0.81 0.83 0.83 0.82 0.90 0.91 0.91 0.91 0.92 0.92
Target size Slen. 5 4 9 5 4 4 6 6 6 6 5 6

Trial #2

of features 0 1 2 3 3 3 4 4 4 4
Problem difficulty 4 4 4 4 5 6 6 10 20 30
Success ratio 0.52 0.81 0.85 0.86 0.93 0.81 0.89 0.85 0.86 0.88
Plan length 4 3 3 2 3 2 3 4 4 5
Accumulated time (Hr.) 0.5 3.7 6.9 10 11 11 12 14 18 24
Target size SR 0.19 0.49 0.80 0.82 0.91 0.62 0.92 0.91 0.90 0.88
Target size Slen. 7 3 9 4 5 2 5 5 6 6

Figure 20:Tireworld performance (averaged over 600 problems) for relational learner. We add one feature
per column until success ratio exceeds0.85 and average successful plan length is less than4n, for n nodes,
and then increase problem difficulty for the next column. Plan lengths shown are successful trials only.
Problem difficulties are measured in number of nodes, with a target problem size of 30 nodes. Some columns
are omitted as discussed on page 27.

41

Tireworld, Trial 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5
Number of Features

S
u

cc
es

s
R

at
io

20, 30 nodes6 nodes4, 5 nodes

4 nodes

4 nodes 4 nodes

6 nodes 9 nodes 9, 10 nodes

0

Tireworld, Trial 1

0

1

2

3

4

5

6

0 1 2 3 4 5
Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

4 nodes
4 nodes

4 nodes

4, 5, 6 nodes

6, 9 nodes

20, 30 nodes

9, 10 nodes

Figure 21:Tireworld success ratio and average successful plan length (averagedover 600 problems) for the
first trial using our relational learner.

42

Trial #1

of features 0 1 1 2 3 4 5 6 7 8 9
Problem difficulty 3,1,1 3,1,1 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2
Success ratio 0.79 0.8 0.59 0.52 0.54 0.55 0.54 0.52 0.56 0.53 0.55
Plan length 253 255 413 440 437 450 411 440 426 428 451
Accumulated time (Hr.) 0.75 1.7 3.4 7.1 11 15 19 25 30 36 41
Target size SR 0.06 0.08 0.09 0.09 0.12 0.11 0.10 0.08 0.11 0.08 0.12
Target size Slen. 916 1024 1064 1114 1050 1125 1111 1115 1061 1174 1195

Trial #2

of features 0 1 2 2 3 4 5 6 7 8 9
Problem difficulty 3,1,1 3,1,1 3,1,1 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2
Success ratio 0.77 0.79 0.80 0.55 0.55 0.50 0.53 0.12 0.12 0.12 0.10
Plan length 262 254 233 391 425 415 422 0 0 0 0
Accumulated time (Hr.) 1.3 2.3 3.3 5.3 8.9 13 17 22 29 36 43
Target size SR 0.05 0.10 0.10 0.09 0.09 0.08 0.10 0.02 0.02 0.02 0.01
Target size Slen. 814 1008 1007 1067 1088 1014 1078 0 0 0 0

Figure 22:Zenotravel performance (averaged over 600 problems) for relational learner. The problem diffi-
culty shown in this table lists the numbers of cities, travelers, and aircraft, with a target problem size of 10
cities, 2 travelers, and 2 aircraft. We add one feature per column until success ratio exceeds0.8, and then
increase problem difficulty for the next column. Plan lengths shown are successful trials only.

locations by flying or zooming. Zooming uses more fuel than flying, but has a higher success
probability.

We start with a problem difficulty of 3 cities, 1 traveler, and1 aircraft using our relational feature
learner. Whenever the success ratio exceeds0.8, we increase the numbern of travelers and aircraft
by 1 if the number of cities is no less than5n−2, and increase the number of cities by one otherwise.
The target problem size is 10 cities, 2 travelers, and 2 aircraft. Zenotravel results for the relational
learner are shown in Figures 22 and 23.

The relational learner is unable to find features that enableAVI to achieve the threshold success
rate (0.8) for 3 cities, 2 travelers, and 2 aircraft, although 9 relational features are learned. The trials
were stopped because no improvement in performance was achieved for several iterations of feature
addition. Using a broader search (W = 160, q = 3, andd = 3) we are able to find better features
and extend the solvable size to several cities with success rate 0.9 (not shown here as all results in
this paper use the same search parameters, but reported in (Wu & Givan, 2007)), but the runtime also
increases dramatically, to weeks. We believe the speed and effectiveness of the relational learning
needs to be improved to excel in this domain, and a likely major factor is improved knowledge
representation for features so that key concepts forZenotravel are easily represented.

Trial two in Figure 22 shows a striking event where adding a single new feature to a useful value
function results in a value function for which the greedy policy cannot find the goal at all, so that
the success ratio degrades dramatically immediately. Notethat in this small problem size, about
ten percent of the problems are trivial, in that the initial state satisfies the goal. After the addition
of the sixth feature in trial two, these are the only problemsthe policy can solve. This reflects the
unreliability of the AVI weight-selection technique more than any aspect of our feature discovery:
after all, AVI is free to assign a zero weight to this new feature, but does not. Additional study of

43

Zenotravel, Trial 1

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
Number of Features

S
u

cc
es

s
R

at
io 3 cities, 1 person, 1 aircraft

3 cities, 2 people, 2 aircraft 3 cities, 2 people, 2 aircraft

0

Zenotravel, Trial 1

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9
Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

3 cities, 1 person, 1 aircraft

3 cities, 2 people, 2 aircraft 3 cities, 2 people, 2 aircraft

Figure 23:Zenotravel success ratio and average successful plan length (averagedover 600 problems) for the
first trial using our relational learner.

44

Trial #1

of features 0 1 2 3 4 5 6 7 7 8 9
Problem difficulty 3 3 3 3 3 3 3 3 4 4 4
Success ratio 0.56 0.58 0.56 0.63 0.56 0.68 0.62 0.71 0.4 0.45 0.43
Plan length 1 2 1 2 1 1 2 2 4 5 4
Accumulated time (Hr.) 0.6 1.4 2.2 3.1 4.2 5.9 8.7 11 12 20 28
Target size #1 SR 0.12 0.12 0.14 0.22 0.20 0.31 0.16 0.34 0.33 0.31 0.31
Target size #1 Slen. 3 3 3 5 4 6 9 6 6 5 5
Target size #2 SR 0 0 0 0.00 0.00 0.03 0 0.02 0.03 0.02 0.02
Target size #2 Slen. – – – 10 4 24 – 19 26 23 22

Trial #2

of features 0 1 2 3 4 5 5 6 7 8 9
Problem difficulty 3 3 3 3 3 3 4 4 4 4 4
Success ratio 0.56 0.56 0.55 0.63 0.55 0.75 0.45 0.45 0.43 0.42 0.36
Plan length 1 2 1 2 1 2 4 5 5 4 4
Accumulated time (Hr.) 0.6 1.3 2.1 2.9 3.7 4.6 5.3 14 22 31 39
Target size #1 SR 0.14 0.15 0.12 0.18 0.17 0.33 0.31 0.32 0.31 0.28 0.30
Target size #1 Slen. 4 3 4 6 4 6 6 6 6 5 5
Target size #2 SR 0 0 0 0.01 0.00 0.02 0.01 0.01 0.02 0.01 0.01
Target size #2 Slen. – – – 19 18 26 27 15 21 15 18

Figure 24:Exploding Blocksworld performance (averaged over 600 problems) for relational learner. Prob-
lem difficulties are measured in number of blocks. We add one feature per column until success ratio exceeds
0.7, and then increase problem difficulty for the next column. Plan lengths shown are successful trials only.
Target problem size #1 has 5 blocks, and target problem size #2 has 10 blocks.

the control of AVI and/or replacement of AVI by linear programming methods is indicated by this
phenomenon; however, this is a rare event in our extensive experiments.

Exploding Blocksworld We also useExploding Blocksworld from the second IPPC to evaluate
our relational planner. This domain differs from the normalBlocksworld largely due to the blocks
having certain probability of being “detonated” when they are being put down, destroying objects
beneath (but not the detonating block). Blocks that are already detonated once will not be detonated
again. The goal state in this domain is described in tower fragments, where the fragments are not
generally required to be on the table. Destroyed objects cannot be picked up, and blocks cannot be
put down on destroyed objects (but a destroyed object can still be part of the goal if the necessary
relationships were established before or just as it was destroyed).

We start with 3-block problems using our relational learnerand increase fromn blocks ton + 1
blocks whenever the success ratio exceeds 0.7. The target problem sizes are 5 and 10 blocks.
Exploding Blocksworld results for the relational learner are shown in Figures 24 and 25. The
results in Exploding Blocksworld are not good enough for theplanner to increase the difficulty
beyond 4-block problems, and while the results show limitedgeneralization to 5-block problems,
there is very little generalization to 10-block problems.

Our performance in this domain is quite weak. We believe thisis due to the presence of many
dead-end states that are reachable with high probability. These are the states where either the table
or one of the blocks needed in the goal has been destroyed, before the object in question achieved the
required properties. Our planner can find meaningful and relevant features: the planner discovers

45

Exploding Blocksworld, Trial 1

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
Number of Features

S
u

cc
es

s
R

at
io

3 blocks 3 blocks
3 blocks 3 blocks

4 blocks

4 blocks

0

Exploding Blocksworld, Trial 1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

3 blocks 3 blocks

3 blocks

3 blocks

4 blocks

4 blocks

Figure 25: Exploding Blocksworld success ratio and average successful plan length (averagedover 600
problems) for the first trial using our relational learner.

that it is undesirable to destroy the table, for instance. However, the resulting partial understand-
ing of the domain cannot be augmented by random walk (as it is in some other domains such as
Blocksworld and Conjunctive-Boxworld) to enable steady improvement in value, leading to the
goal; random walk in this domain invariably lands the agent in a dead end. Very short successful
plan length, low probability of reaching the goal, and (not shown here) very high unsuccessful plan
length (caused by wandering in a dead end region) suggest theneed for new techniques aimed at
handling dead-end regions to handle this domain. These results demonstrate that our technique re-
lies on random walk (or some other form of search) so that the learned features need not completely
describe the desired policy.

Towers of Hanoi We use the domainTowers of Hanoi from the first IPPC. In this probabilistic
version of the well-known problem, the agent can move one or two discs simultaneously, but there
is a small probability of going to a dead-end state on each move, and this probability depends on
whether the largest disc has been moved and which type of discmove (one or two at a time) is being
used. We note that there is only one planning problem in each problem size here.

It is important to note that 100% success rate is generally unachievable in this domain due to
the unavoidable dead-end states.

46

Trial #1

of features 0 1 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 2 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.70 0.75 0.11 0.44 0.73 0 0 0 0 0 0.51 0 0 0
Plan length 4 2 43 26 4 – – – – – 4 – – –
Accumulated time (Hr.) 0.0 0.0 0.1 0.2 0.3 0.4 0.5 1.1 1.2 2.1 2.2 2.3 18 53
Target size #1 SR 0.07 0.15 0.01 0.08 0.03 0 0 0 0 0 0.52 0.53 0 0.43
Target size #1 Slen. 13 9 90 95 37 – – – – – 4 4 – 4
Target size #2 SR 0.00 0 0 0 0.00 0 0 0 0 0 0 0 0 0
Target size #2 Slen. 11 – – – 107 – – – – – – – – –

Trial #2

of features 0 0 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 3 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.71 0.23 0.14 0.42 0.75 0 0 0 0 0 0.53 0 0 0
Plan length 4 12 37 25 4 – – – – – 4 – – –
Accumulated time (Hr.) 0.0 0.0 0.2 0.3 0.3 0.4 0.5 1.1 1.9 2.3 2.6 2.7 6 16
Target size #1 SR 0.1 0.09 0.0 0.09 0.03 0 0 0 0 0 0.49 0 0 0
Target size #1 Slen. 14 11 105 95 41 – – – – – 4 – – –
Target size #2 SR 0.00 0.1 0 0 0.00 0 0 0 0 0 0 0 0 0
Target size #2 Slen. 16 29 – – 107 – – – – – – – – –

Figure 26:Towers of Hanoi performance (averaged over 600 problems) for relational learner. We add one
feature per column until success ratio exceeds0.7n−1 for n discs, and then increase problem difficulty for the
next column. Plan lengths shown are successful trials only.Problem difficulties are measured in number of
discs, with a target problem size #1 of 4 discs and size #2 of 5 discs.

We start with the 2-disc problem in our relational learner and increase the problem difficulty
from n discs ton+1 discs whenever the success ratio exceeds0.7n−1. The target problem sizes are
4 and 5 discs.Towers of Hanoi results for the relational learner are shown in Figures 26 and 27.

The learner is clearly able to adapt to three- and four-disc problems, achieving around 50%
success rate on the four disc problem in both trials. The optimal solution for the four disc problem
has success rate 75%. This policy uses single disc moves until the large disc is moved and then
uses double disc moves. Policies that use only single disc moves or only double disc moves can
achieve success rates of 64% and 58%, respectively, on the four disc problem. The learned solution
occasionally moves a disc in a way that doesn’t get closer to the goal, reducing its success.

Unfortunately, the trials show that an increasing number ofnew features are needed to adapt
to each larger problem size, and in our trials even 38 total features are not enough to adapt to the
five-disc problem. Thus, we do not know if this approach can extend even to five discs. Moreover,
the results indicate poor generalization between problem sizes.

We believe it is difficult for our learner (and for humans) to represent a good value function
across problem sizes. Humans deal with this domain by formulating a good recursive policy, not by
establishing any direct idea of the value of a state. Findingsuch a recursive policy automatically is
an interesting open research question outside the scope of this paper.

Lifted-Fileworld3 As described in Section 6.1, we use the domainLifted-Fileworld3 , which is a
straightforwardly lifted form ofFileworld from the first IPPC, restricted to three folders. To reach
the goal of filing all files, an action needs to be taken for eachfile to randomly determine which

47

Tower of Hanoi, Trial 1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10
Number of Features

S
u

cc
es

s
R

at
io 2 discs

3 discs

4 discs

4 discs 5 discs

20 38

Tower of Hanoi, Trial 1

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8
Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

2 discs

3 discs

4 discs

Figure 27:Towers of Hanoisuccess ratio and average successful plan length (averagedover 600 problems)
for the first trial using our relational learner.

folder that file should go into. There are actions for taking out a folder, putting a file in that folder,
and returning the folder to the cabinet. The goal is reached when all files are correctly filed in the
targeted folders.

We note that bothFileworld andLifted-Fileworld3 are very benign domains. There are no
reachable dead ends and very few non-optimal actions, each of which is directly reversible. Random
walk solves this domain with success rate one even for thirtyfiles. The technical challenge posed
then is to minimize unnecessary steps so as to minimize plan length. The optimal policy solves the
n-file problem with between2n+1 and2n+5 steps, depending on the random file types generated.

Rather than preset a plan-length threshold for increasing difficulty (as a function ofn), here we
adopt a policy of increasing difficulty whenever the method fails to improve plan length by adding
features. Specifically, if the success ratio exceeds 0.9 andone feature is added without improving
plan length, we remove that feature and increase problem difficulty instead.9

9. It is possible to specify a plan-length threshold function for triggering increase in difficulty in this domain, as we
have done in other domains. We find that this domain is quite sensitive to the choice of that function, and in the end
it must be chosen to trigger difficulty increase only when further feature addition is fruitless at the current difficulty.
So, we have directly implemented that automatic method for triggering difficulty increase.

48

Trial #1

of features 0 1 2 3 3 4 4 4 4 4 4 4 4 4 5 5 5 6 7 7 7 7
Problem difficulty 1 1 1 1 2 2 3 4 8 10 11 12 13 14 14 15 16 16 16 18 19 20
Success ratio 1
Plan length 14 8 4 3 7 6 9 11 21 25 30 29 31 49 37 35 55 37 37 41 43 45
Accumulated time (Hr.) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 2.4 3.8 4.8 5.9 7.3 8.9 10 13 15 17 19 37 49 62
Target size SR 1 1 1 0 0 0 0 1.00 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1
Target size Slen. 251 134 87 – – – – 87 82 91 88 93 65 90 91 65 91 65 65 65 111 65

Trial #2

of features 0 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Problem difficulty 1 1 1 1 2 2 3 4 5 8 9 10 14 15 16 17 18 19 20 23 24 25
Success ratio 1
Plan length 14 8 4 3 7 6 9 12 14 21 23 25 33 35 62 65 41 43 49 91 53 55
Accumulated time (Hr.) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.6 2.5 3.1 3.9 9.0 11 13 19 27 30 3450 66 74
Target size SR 1 1 1 0 0 0 0 0.96 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Target size Slen. 251 135 88 – – – – 85 88 82 82 91 96 87 91 93 97 65 65 107 82 65

Figure 28:Lifted-Fileworld3 performance (averaged over 600 problems) for relational learner. We add one
feature per column until success ratio exceeds 0.9 and adding one extra feature does not improve plan length,
and then increase problem difficulty for the next column (after removing the extra feature). Plan lengths
shown are successful trials only. Problem difficulties are measured in number of files, with a target problem
size of 30 files. Some columns are omitted as discussed on page27.

We start with 1 file problems in our relational learner and increase fromn files ton + 1 files
whenever the performance does not improve upon feature addition. The target problem size is 30
files. Lifted-Fileworld3 results for the relational learner are shown in Figures 28 and 29.

The results show that our planner acquires an optimal policyfor the 30-file target size problem
after learning four features, in each of the two trials. The results in this domain again reveal the
weakness of the AVI weight-selection method. Although fourfeatures are enough to define an opti-
mal policy, as problem difficulty increases, AVI often failsto find the weight assignment producing
such a policy. When this happens, further feature addition can be triggered, as in trial 1. In this
domain, the results show that such extra features do not prevent AVI from finding good weights on
subsequent iterations, as the optimal policy is recovered again with the larger feature set. Nonethe-
less, here is another indication that improved performancemay be available via work on alternative
weight-selection approaches, orthogonal to the topic of feature selection.

Random Features In order to show that our performance is not simply due to the number of
features, but to the feature-selection criterion, we generate two greedy policies in each domain using
random feature selection within our relational representation, alternating AVI training, difficulty
increase, and feature generation as in the experiments reported above. For each domain, we select
the best performing policy generated in this manner, running the algorithm until there are nine
random features selected or until the target problem difficulty is reached. We evaluate each greedy
policy acquired in this manner, measuring the average target-problem-size performance in each
domain using the target problem sizes shown for each domain above. The results are shown in
Figure 30. In no domain does random-feature generation perform comparably to our relational
feature learner, with the exception of three domain/size combinations where both learners perform
very poorly (Zenotravel, 10-block Exploding Blocksworld,and 5-disc Towers of Hanoi).

49

Lifted-Fileworld3, Trial 1

0.9

0.95

1

0 1 2 3 4 5 6 7
Number of Features

S
u

cc
es

s
R

at
io 1 file

2 to 14 files

0

1 file 1 file 1 and 2 files 14 to 16 files 16 files

16 to 20 files

Lifted-Fileworld3, Trial 1

2 files

10 files

16 files

1 file
1 file

1 file
1 file

2 files 3 files4 files

11 files 12 files
13 files

14 files

14 files
15 files 16 files 16 files

20 files

0

20

40

60

0 1 2 3 4 5 6 7
Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

Figure 29:Lifted-Fileworld3 success ratio and average successful plan length (averagedover 600 problems)
for the first trial using our relational learner.

Domain BW Box Box Tire Zeno EX-BW EX-BW TOH TOH File
Size 20 (15,5) (10,10) 30 (10,2,2) 5 10 4 5 30

Random features SR 0 0.99 0.21 0.67 0.05 0.26 0.01 0.24 0.03 1
Random features SLen. – 946 1582 6 910 7 12 13 26 215

Learned features SR 0.98 1 0.98 0.92 0.11 0.34 0.03 0.51 0.00 1
Learned features SLen. 748 90 235 5 1137 6 23 4 14 65

Random walk SR 0 0.97 0.18 0.18 0.06 0.13 0 0.09 0.00 1
Random walk SLen. – 1038 1579 6 865 4 – 14 14 251

Figure 30: Target-problem-size performance (averaged over 600 problems) of random relational features,
learned relational features, and random walk, averaged over the best results of two independent trials for each
target problem size.

Comparison to FF-Replan and FOALP We compare the performance of our learned policies to
FF-Replan and FOALP on each of the PPDDL evaluation domains used above. We use the problem
generators provided by the planning competitions to generate 30 problems for each tested problem
size except forTowers of Hanoi and Lifted Fileworld3 , where there is one fixed problem for

50

15 blocks BW 20 blocks BW 25 blocks BW 30 blocks BW

RFAVI #1 1 (483) 1 (584) 0.85 (1098) 0.75 (1243)
RFAVI #2 1.00 (463) 1.00 (578) 0.85 (1099) 0.77 (1227)
FF-Replan 0.93 (52) 0.91 (71) 0.7 (96) 0.23 (118)
FOALP 1 (56) 0.73 (73) 0.2 (96) 0.07 (119)

(10BX,5CI)Box (10BX,10CI)Box (10BX,15CI)Box (15BX,5CI)Box (20BX,20CI)Box

RFAVI #1 1 (76) 0.97 (225) 0.93 (459) 1 (90) 0.82 (959)
RFAVI #2 1 (75) 0.97 (223) 0.93 (454) 1 (90) 0.82 (989)
FF-Replan 1 (70) 0.98 (256) 0.93 (507) 1 (88) 0.35 (1069)
FOALP 1 (35) 0.70 (257) 0.28 (395) 0.99 (56) 0.0 (711)

20 nodes Tire 30 nodes Tire 40 nodes Tire (10CI,2PR,2AT)Zeno

RFAVI #1 0.87 (5) 0.85 (7) 0.98 (6) 0.06 (1240)
RFAVI #2 0.85 (4) 0.84 (7) 0.97 (6) 0.07 (1252)
FF-Replan 0.76 (2) 0.73 (3) 0.83 (3) 1 (99)
FOALP 0.92 (4) 0.90 (5) 0.91 (5) N/A

5 blocks EX-BW 10 blocks EX-BW 4 discs TOH 5 discs TOH 30 files Lifted-File

RFAVI #1 0.25 (8) 0.02 (30) 0.43 (4) 0 (–) 1 (65)
RFAVI #2 0.25 (8) 0.01 (35) 0.47 (4) 0 (–) 1 (65)
FF-Replan 0.91 (7) 0.45 (20) 0.57 (3) 0.37 (7) 1 (66)
FOALP N/A N/A N/A N/A N/A

Figure 31: Comparison of our planner (RFAVI) against FF-Replan and FOALP. Success ratio for a total of
900 attempts (30 attempts forTowers of Hanoi andLifted Fileworld3) for each problem size is reported,
followed by the average successful plan length in parentheses. The two rows for RFAVI map to two learning
trials shown in the paper.

30 BW (20,20) BX 40 Tire (10,2,2) Zeno10 EX-BW 5 TOH 30 Files

RFAVI #1 106s 83s 1s 51s 2s – 1s
RFAVI #2 105s 86s 0s 51s 3s – 1s
FF-Replan 872s 739s 0s 1s 8s 3s 10s
FOALP 16s 173s 24s N/A N/A N/A N/A

Figure 32: Average runtime of the successful attempts, fromthe results shown in Figure 31, on the largest
problem size for each domain.

each problem size. We evaluate the performance of each planner 30 times for each problem, and
report in Fig. 31 the success ratio of each planner in each problem size (averaged over all attempts).
Our policies, learned from the two independent trials shownabove, are indicated as RFAVI #1 and
RFAVI #2. Each planner has a 30-minute time limit for each attempt. The average time required to
finish a successful attempt for the largest problem size in each domain is reported in Figure 32.

For each of the two trials of our learner in each domain, we evaluate here the policy that per-
formed the best in the trial on the (first) target problem size. (Here, a “policy” is a set of features
and a corresponding weight vector learned by AVI during the trial.) Performance is measured by
success rate, with ties broken by plan length. Any remainingties are broken by taking the later
policy in the trial from those that are tied. In each case, we consider that policy to be the “policy
learned from the trial.”

51

The results show that our planner’s performance is incomparable with that of FF-Replan (win-
ning in some domains, losing in others) and generally dominates that of FOALP.

RFAVI performs the best of the planners in largerBlocksworld, Conjunctive-Boxworld, and
Tireworld problems. RFAVI is essentially tied with FF-Replan in performance in Lifted-
Fileworld3. RFAVI loses to FF-Replan in the remaining three domains,Exploding Blocksworld,
Zenotravel, andTowers of Hanoi. Reasons for the difficulties in the last three domains are dis-
cussed above in the sections presenting results for those domains. We note that FOALP does
not have a learned policy in Zenotravel, Exploding Blocksworld, Towers of Hanoi, and Lifted-
Fileworld3.

RFAVI relies on random walk to explore plateaus of states notdifferentiated by the selected
features. This reliance frequently results in long plan lengths and at times results in failure. We
have recently reported elsewhere on early results from ongoing work remedying this problem by
using search in place of random walk (Wu et al., 2008).

The RFAVI learning approach is very different from the non-learning online replanning used
by FF-Replan, where the problem is determinized, dropping all probability parameters. It is an
important topic for future research to try to combine the benefits obtained by these very different
planners across all domains.

The dominance of RFAVI over FOALP in these results implies that RFAVI is at the state of the
art among first-order techniques — those that work with the problem in lifted form and use lifted
generalization. Although FOALP uses first-order structurein feature representation, the learned
features are aimed at satisfying goal predicates individually, not as a whole. We believe that the
goal-decomposition technique can sometimes work well in small problems but does not scale well
to large problems.

In these comparisons, it should also be noted that FOALP doesnot read PPDDL domain descrip-
tions directly, but requires human-written domain axioms for its learning, unlike our completely
automatic technique (requiring only a few numeric parameters characterizing the domain). This
requirement for human-written domain axioms is one of the reasons why FOALP did not compete
in some of the competition domains and does not have a learnedpolicy for some of the domains
tested here.

In Conjunctive-Boxworld10, we note that FF-Replan uses an “all outcomes” problem deter-
minization that does not discriminate between likely and unlikely outcomes of truck-movement
actions. As a result, plans are frequently selected that rely on unlikely outcomes (perhaps choosing
to move a truck to an undesired location, relying on the unlikely outcome of “accidentally” moving
to the desired location). These plans will usually fail, resulting in repeated replanning until FF luck-
ily selects the high-likelihood outcome or plan execution happens to get the desired low-likelihood
outcome. This behavior is in effect similar to the behavior our learned value function exhibits be-
cause, as discussed on page 35, our learner failed to find any feature rewarding appropriate truck
moves. Both planners result in long plan lengths due to many unhelpful truck moves. However, our
learned policy conducts the random walk of trucks much more efficiently (and thus more success-
fully) than the online replanning of FF-Replan, especiallyin the larger problem sizes. We believe
even more dramatic improvements will be available with improved knowledge representation for
features.

10. We hand-convert the nested universal quantifiers and conditional effects in the original boxworld domain definition
to an equivalent form without universal quantifiers and conditional effects to allow FF-Replan to read the domain.

52

7.4 SysAdmin

A full description of theSysAdmindomain is provided in (Guestrin, Koller, & Parr, 2001). Here, we
summarize that description. In the SysAdmin domain, machines are connected in different topolo-
gies. Each machine might fail at each step, and the failure probability depends on the number of
failed machines connected to it. The agent works toward minimizing the number of failed machines
by rebooting machines, with one machine rebooted at each time step. For a problem withn ma-
chines and a fixed topology, the dynamic state space can be sufficiently described byn propositional
variables, each representing the on/off status of a certainmachine.

We test this domain for the purpose of direct comparison of the performance of our propositional
techniques to the published results in (Patrascu et al., 2002). We test exactly the topologies evaluated
there and measure the performance measure reported there, sup-norm Bellman error.

We evaluate our method on the exact same problems (same MDPs)used for evaluation in (Pa-
trascu et al., 2002) for testing this domain. Two different kinds of topologies are tested: 3-legs and
cycle. The “3-legs” topology has three three-node legs (each a linear sequence of three connected
nodes) each connected to a single central node at one end. The“cycle” topology arranges the ten
nodes in one large cycle. There are 10 nodes in each topology.The target of learning in this domain
is to keep as many machines operational as possible, so the number of operating machines directly
determines the reward for each step. Since there are only 10 nodes and the basic features are just
the on/off statuses of the nodes, there are a total of 1024 states. The reward-scaling parameterrscale

is selected to be 10.

(Patrascu et al., 2002) usesLinf (sup norm) Bellman error as the performance measurement in
SysAdmin. Our technique, as described above, seeks to reduce mean Bellman error more directly
thanLinf Bellman error. In particular, because we allow duplicated states in our AVI training sets,
our weight selection prefers weights that have low mean Bellman error, even if the largest Bellman
error encountered is larger for such weights. For this reason, we here evaluate two versions of
our technique: that described and evaluated above, and a variation which is identical except that
duplicate states are removed from AVI training sets. We report the Linf Bellman error, averaged
over two trials, on both versions in Figure 33.

Also included in Figure 33 are the results shown in (Patrascuet al., 2002). We select the best re-
sult shown there (from various algorithmic approaches) from the 3-legs and cycle topologies shown
in their paper. These correspond to the “d-o-s” setting for the cycle topology and the “d-x-n setting”
for the 3-legs topology, in the terminology of that paper.

Both topologies show that both variants of our algorithm reduces theLinf Bellman error more
effectively per feature as well as more effectively overallthan the experiments previously reported
in (Patrascu et al., 2002). Both topologies also show that leaving duplicate states in the AVI training
sets eventually encourages value functions that with highLinf Bellman error after an initial substan-
tial success in reducing that Bellman error. The method allowing duplicate states can still achieve
low Bellman error by remembering and restoring the best-performing weighted feature set once
weakened performance is detected.

8. Discussion and future research

We have presented a general framework for automatically learning state-value functions by feature-
discovery and gradient-based weight training. In this framework, we greedily select features from

53

SysAdmin, 3-Legs Topology

0

1

2

3

4
5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Features

B
el

lm
an

 E
rr

o
r

3-legs, dup 3-legs, nodup 3-legs, Patrascu

32.7 11.6

SysAdmin, Cycle Topology

0

1

2

3

4
5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Features

B
el

lm
an

 E
rr

o
r

Cycle, dup Cycle, nodup Cycle, Patrascu

25.0 41.8

Figure 33: L inf Bellman error for theSysAdmin domain (10 nodes) for two topologies. Values for the
results from (Patrascu et al., 2002) are taken from Figure 2 and 3 of (Patrascu et al., 2002). The labelnodup
represents trials of a variant of our method for which the AVIweight training sets have duplicate states
removed.

a provided hypothesis space (which is a parameter of the method) to best correlate with Bellman
error features, and use AVI to find weights to associate with these features.

We have proposed two different candidate hypothesis spacesfor features. One of these two
spaces is a relational one where features are first-order formulas with one free-variable, and a beam-

54

search process is used to greedily select a hypothesis. The other hypothesis space we have consid-
ered is a propositional feature representation where features are decision trees. For this hypothesis
space, we use a standard classification algorithm C4.5 (Quinlan, 1993) to build a feature that best
correlates with the sign of the statewise Bellman error, instead of using both the sign and magnitude.

The performance of our feature-learning planners is evaluated using both reward-oriented and
goal-oriented planning domains. We have demonstrated thatour relational planner represents the
state-of-the-art for feature-discovering probabilisticplanning techniques. Our propositional planner
does not perform as well as our relational planner, and cannot generalize between problem instances,
suggesting that knowledge representation is indeed critical to the success of feature-discovering
planners.

Bellman-error reduction is of course just one source of guidance that might be followed in
feature discovery. During our experiments in the IPPC planning domains, we find that in many
domains the successful plan length achieved is much longer than optimal, as we discussed above on
page 52. A possible remedy other then our work (deploying search) in (Wu et al., 2008) is to learn
features targeting the dynamics inside the plateaus, and use these features in decision-making when
plateaus are encountered.

References

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge for
planning.Artificial Intelligence, 116, 123–191.

Bertsekas, D. P. (1995).Dynamic programming and optimal control. Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996).Neuro-Dynamic Programming. Athena Scientific.

Bonet, B., & Givan, R. (2006). Non-deterministic planning track of the 2006 international planning
competition. Website. http://www.ldc.usb.ve/ bonet/ipc5/.

Darken, C., & Moody, J. (1992). Towards faster stochastic gradient search. InProceedings of the
4th Conference on Advances in Neural Information Processing.

Davis, R., & Lenat, D. (1982).Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill,
New York.

Driessens, K., & Džeroski, S. (2004). Integrating guidance into relational reinforcement learning.
Machine Learning, 57, 271–304.

Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and gaussian processes for relational
reinforcement learning.Machine Learning, 64, 91–119.

Džeroski, S., DeRaedt, L., & Driessens, K. (2001). Relational reinforcement learning.Machine
Learning, 43, 7–52.

Estlin, T. A., & Mooney, R. J. (1997). Learning to improve both efficiency and quality of planning.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1227–
1232.

Fawcett, T. (1996). Knowledge-based feature discovery forevaluation functions.Computational
Intelligence, 12(1), 42–64.

55

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language bias:
Solving relational markov decision processes.Journal of Artificial Intelligence Research, 25,
75–118.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM.Journal of Artificial
Intelligence Research, 9, 367–421.

Gerevini, A., & Schubert, L. (1998). Inferring state constraints for domain-independent planning.
In Proceedings of the 15th National Conference on Artificial Intelligence, pp. 905–912.

Gretton, C., & Thiébaux, S. (2004). Exploiting first-orderregression in inductive policy selection.
In 20th Conference on Uncertainty in Artificial Intelligence (UAI-04).

Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections for factored MDPs. InProceed-
ings of the 17th International Joint Conference on Artificial Intelligence, pp. 673–680.

Harris, R., Chabries, D., & Bishop, F. (1986). A variable step (vs) adaptive filter algorithm.IEEE
transactions on acoustics, speech, and signal processing, 34(2), 309– 316.

Jacobs, R. (1988). Increased rates of convergence through learning rate adaptation.Neural Net-
works, 1, 295–307.

Kambhampati, S., Katukam, S., & Qu, Y. (1996). Failure driven dynamic search control for partial
order planners: an explanation based approach.Artificial Intelligence, 88(1-2), 253–315.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic basisfunction construction for approximate
dynamic programming and reinforcement learning. InProceedings of the 23th International
Conference on Machine Learning.

Khardon, R. (1999). Learning action strategies for planning domains.Artificial Intelligence, 113(1-
2), 125–148.

Kwong, R., & Johnston, E. (1992). A variable step size lms algorithm. IEEE Transactions on Signal
Processing, 40(7), 1633–1642.

Martin, M., & Geffner, H. (2004). Learning generalized policies from planning examples using
concept languages.Applied Intelligence, 20, 9–19.

Mathews, V., & Xie, Z. (1993). A stochastic gradient adaptive filter with gradient adaptive step size.
IEEE Transactions on Signal Processing, 41(6), 2075–2087.

Mitchell, T. M. (1997).Machine Learning. McGraw-Hill.

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (2007). Analyzing feature generation for value-
function approximation. InProceedings of the 24th International Conference on Machine
Learning.

Patrascu, R., Poupart, P., Schuurmans, D., Boutilier, C., &Guestrin, C. (2002). Greedy linear value-
approximation for factored markov decision processes. InIn Proceedings of the 18th National
Conference on Artificial Intelligence, pp. 285–291.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann.

Sanner, S., & Boutilier, C. (2006). Practical linear value-approximation techniques for first-order
mdps. InProceedings of the 22nd Conference on Uncertainty in Artificial Intelligence.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.Machine Learning,
3, 9–44.

56

Sutton, R. S., & Barto, A. G. (1998).Reinforcement Learning: An Introduction. MIT Press.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications of the ACM,
38(3), 58–68.

Tsitsiklis, J., & Roy, B. V. (1997). An analysis of temporal-difference learning with function ap-
proximation. IEEE Transactions on Automatic Control, 42(5), 674–690.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E.,& Blythe, J. (1995). Integrating planning
and learning: The PRODIGY architecture.Journal of Experimental and Theoretical AI, 7(1).

Widrow, B., & Hoff, Jr, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention
Record, 96–104.

Williams, R. J., & Baird, L. C. (1993). Tight performance bounds on greedy policies based on
imperfect value functions. Tech. rep., Northeastern University.

Wu, J., & Givan, R. (2007). Discovering relational domain features for probabilistic planning.
In Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pp. 344–351.

Wu, J., Kalyanam, R., & Givan, R. (2008). Stochastic enforced hill-climbing. In Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling, pp. 396–403.

Wu, J., & Givan, R. (2005). Feature-discovering approximate value iteration methods. InProceed-
ings of the Symposium on Abstraction, Reformulation, and Approximation, pp. 321–331.

Yoon, S., Fern, A., & Givan, R. (2002). Inductive policy selection for first-order MDPs. InPro-
ceedings of the 18th Conference on Uncertainty in ArtificialIntelligence.

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baselinefor probabilistic planning. InPro-
ceedings of the Seventeenth International Conference on Automated Planning and Schedul-
ing, pp. 352–358.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first probabilistic track of the
international planning competition.Journal of Artificial Intelligence Research, 24, 851–887.

APPENDIX

A-1. PPDDL Source for Lifted-Fileworld3

The PPDDL source forLifted-Fileworld3 with a problem size of 10 files.

(define (domain file-world)
(:requirements :typing

:disjunctive-preconditions
:negative-preconditions
:conditional-effects
:probabilistic-effects
:universal-preconditions)

(:types file folder)

57

(:predicates (has-type ?p - file)
(goes-in ?p - file ?f - folder)
(filed ?p - file)
(have ?f - folder))

(:constants F0 F1 F2 - folder)

(:action get-type
:parameters (?p - file)
:precondition (and (not (has-type ?p)))
:effect (and (has-type ?p)

(probabilistic
0.333 (goes-in ?p F0)
0.333 (goes-in ?p F1)
0.334 (goes-in ?p F2))))

(:action get-folder
:parameters (?f - folder)
:precondition (and (forall (?x -folder) (not (have ?x))))
:effect (have ?f))

(:action file-F
:parameters (?p - file ?f - folder)
:precondition (and (have ?f) (has-type ?p)

(goes-in ?p ?f))
:effect (filed ?p))

(:action return-folder
:parameters (?f - folder)
:precondition (have ?f)
:effect (not (have ?f)))

)

(define (problem file-prob)
(:domain file-world)
(:objects p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)
(:goal (and (filed p0) (filed p1) (filed p2) (filed p3)

(filed p4) (filed p5) (filed p6) (filed p7)
(filed p8) (filed p9)))

)

58

