Automatic Induction of Bellman-Error Features
for Probabilistic Planning

Jia-Hong Wu JW@PURDUE.EDU
Robert Givan GIVAN @PURDUE.EDU
Electrical and Computer Engineering,

Purdue University, W. Lafayette, IN 47907

Abstract

Domain-specific features are important in representinglpro structure throughout machine
learning and decision-theoretic planning. In planning;estate features are provided, domain-
independent algorithms such as approximate value iteratm learn weighted combinations of
those features that often perform well as heuristic esémaf state value (e.g., distance to the
goal). Successful applications in real-world domainsrofexquire features crafted by human ex-
perts. Here, we propose automatic processes for learnafglidomain-specific feature sets with
little or no human intervention. Our methods select and adtlires that describe state-space re-
gions of high inconsistency in the Bellman equation (st&evBellman error) during approximate
value iteration. Our method can be applied using any relaledafeature hypothesis space and
corresponding learning method for selecting features fi@iming sets of state-value pairs. We
evaluate the method with hypothesis spaces defined by biattioreal and propositional feature
languages, using nine probabilistic planning domains. kéevsthat approximate value iteration
using a relational feature space performs at the statheshtt in domain-independent stochastic
relational planning.

1. Introduction

There is a substantial gap in performance between domdependent planners and domain-
specific planners. Domain-specific human input is able talyce very effective planners in all
competition planning domains as well as many game appicatuch as backgammon, chess, and
Tetris. In deterministic planning, work on TLPLAN (Bacch&sKabanza, 2000) has shown that
simple depth-first search with domain-specific human inipuhe form of temporal logic formulas
describing acceptable paths, yields an effective plarmrea fvide variety of competition domains.
In stochastic planning, feature-based value-functiomesgntations have been used with human-
selected features with great success in applications suttaekgammon (Sutton & Barto, 1998;
Tesauro, 1995) and Tetris (Bertsekas & Tsitsiklis, 1996he Tisage of features provided by hu-
man experts is often critical to the success of systems wgioh value-function approximations.
Here, we consider the problem of automating the transitiomfdomain-independent planning to
domain-specific performance, replacing the human input aittomatically learned domain prop-
erties. We thus study a style of planner that learns from @meoing problem instances to improve
performance on subsequently encountered problem instdrma the same domain.

We focus on stochastic planning using machine-learnedevainctions represented as linear
combinations of state-space features. Our goal then isgmant the state-space representation
during planning with new machine-discovered featuresfmlitate accurate representation of the

value function. The resulting learned features can be usedgresenting the value function for
other problem instances from the same domain, allowing timation of the learning costs across
solution of multiple problem instances. Note that this by is in contrast to most competition
planners, especially in deterministic planning, whickaietno useful information between prob-
lem instances. Thus, our approach to solving planning problcan be regarded as automatically
constructing domain-specific planners, using domainpedédent techniques.

We learn features that correlate well to the statewise Beilerror of value functions encoun-
tered during planning, using any provided feature languaige corresponding learner to select
features from the space. We evaluate this approach usitgrélational and propositional feature
spaces. There are other recent approaches to acquiringeean stochastic planning with sub-
stantial differences from our approach which we discussetaitlin Section 5 (Patrascu, Poupart,
Schuurmans, Boutilier, & Guestrin, 2002; Gretton & Thiéka2004; Sanner & Boutilier, 2006;
Keller, Mannor, & Precup, 2006; Parr, Painter-Wakefield,& Littman, 2007). No previous work
has evaluated the selection of relational features by letioa to statewise Bellman error. Recent
theoretical results (Parr et al., 2007) for uncontrolledkda processes show that exactly capturing
statewise Bellman error in new features, repeatedly, widlto convergence to the uncontrolled
optimal value for the value function selected by lineardimint methods for weight training.
Unfortunately for machine-learning approaches to seigcteatures, these results have not been
transferred to approximations of statewise Bellman-eeatures: for this case, the results in (Parr
et al., 2007) are weaker and do not imply convergence. Alsperof this theory has been trans-
ferred to the controlled case of interest here, where thé/sisas much more difficult because
the effective (greedy) policy under consideration duridue-function training is changing. We
consider the controlled case, where no known theoreticaeasties similar to those of (Parr et al.,
2007) have been shown. Our purpose is to demonstrate thbiligpaf statewise Bellman error
features empirically, and with rich representations tle@fuire machine learning techniques that
lack approximation guarantees. Next, we give an overviewusfapproach, introducing Markov
decision processes, value functions, Bellman error, fedtypothesis languages and our feature
learning methods.

We use Markov decision processes (MDPs) to model stochalatining problems. An MDP is
a formal model of a single agent facing a sequence of actioiceb from a pre-defined action space,
and transitioning within a pre-defined state space. We asdhere is an underlying stationary
stochastic transition model for each available action fvamch state transitions occur according to
the agent’s action choices. The agent receives rewardesftdr action choice according to the state
visited (and possibly the action chosen), and has the ageot accumulating as much reward as
possible (possibly favoring reward received sooner, udisgounting, or averaging over time, or
requiring that the reward be received by a finite horizon).

MDP solutions can be represented as state-value functgsigreng real numbers to states. In-
formally, in MDP solution techniques, we desire a value figrcthat respects the action transitions
in that “good” states will either have large immediate redgaor have actions available that lead to
other “good” states; this well-known property is formatize Bellman equationshat recursively
characterize the optimal value function (see Section 2§ dédgree to which a given value function
fails to respect action transitions in this way, to be foiimed in the next section, is referred to as
the Bellman errorof that value function, and can be computed at each state.

Intuitively, statewise Bellman error has high magnituderégions of the state space which
appear to be undervalued (or overvalued) relative to therachoices available. A state with high

2

Bellman error has a locally inconsistent value functiom;ehoample, a state is inconsistently labeled
with a low value if it has an action available that leads onlfigh-value states. Our approach is to
use machine learning to fit new features to such regions af lnconsistency in the current value
function. If the fit is perfect, the new features guaranteecese represent the “Bellman update”
of the current value function. Repeated Bellman updatdiedcavalue iteration”, are known to
converge to the optimal value function. We add the learnatlifes to our representation and then
train an improved value function, adding the new featurdhacavailable feature set.

Our method for learning new features and using them to afipaie the value function here
can be regarded astwosting-styldearning approach. A linear combination of features can be
viewed as a weighted combination of an ensemble of simplethgses. Each new feature learned
can be viewed as a simple hypothesis selected to match agalistribution focused on regions
that the previous ensemble is getting wrong (as reflectedjmgtatewise Bellman error throughout
the region). Growth of an ensemble by sequentially addingpl hypotheses selected to correct
the error of the ensemble so far is what we refer to as "bogstiyle” learning.

Our approach can be considered for selecting features ifieatyre-description language for
which a learning method exists to effectively select feaduthat match state-value training data.
We consider two very different feature languages in our ecglievaluation. Human-constructed
features are typically compactly described using a refatitanguage (such as English) wherein the
feature value is determined by the relations between abjadhe domain. Likewise, we consider
a relational feature language, based on domain predicatesthe basic domain description. (The
domain description may be written, for example, in a stamgdanning language such as PPDDL
(Younes, Littman, Weissman, & Asmuth, 2005).) Here, we tag&al formulas of one free variable
to represent features that count the number of true instéoris of the formula in the state being
evaluated. For example, the “number of holes” feature thatsied in many Tetris experiments
(Bertsekas & Tsitsiklis, 1996; Driessens, Ramon, & Gartde06) can be interpreted as counting
the number of empty squares on the board that have some dtbérsfiuares above them. Such
numeric features provide a mapping from states to naturabeus.

In addition to this relational feature language, we consiggng a propositional feature rep-
resentation in our learning structure. Although a propmsitl representation is less expressive
than a relational one, there exist very effective off-thelslearning packages that utilize propo-
sitional representations. Indeed, we show that we canmeflate our feature learning task as a
related classification problem, and use a standard clagsifictool, the decision-tree learner C4.5
(Quinlan, 1993), to create binary-valued features. Ouorredilation to classification considers
only the sign, not the magnitude, of the statewise Bellmaoreattempting to learn features that
characterize the positive-sign regions of the state sparckkéwise the negative-sign regions). A
standard supervised classification problem is thus fortredland C4.5 is then applied to generate
a decision-tree feature, which we use as a new feature inauesfunction representation. This
propositional approach is easier to implement and may be mtiractive than the relational one
when there is no obvious advantage in using relational septation, or when computing the exact
statewise Bellman error for each state is significantly neqeensive than estimating its sign. In
our experiments, however, we find that our relational apgrgaroduces superior results than our
propositional learner. The relational approach also destnates the ability to generalize features
to larger problems from the same domain, an asset of refdti@presentation that is not readily
available in propositional representations.

We present experiments in nine domains. Each experimens stéh a single, constant fea-
ture, mapping all states to the same number, forcing alsmsta&ot value function that makes no
distinctions between states. We then learn domain-spéed#tares and weights from automatically
generated sampled state trajectories, adjusting the tee@jter each new feature is added. We
evaluate the performance of policies that select theipastgreedily relative to the learned value
functions. We evaluate our learners using the stochastigpater-gameTetris and seven plan-
ning domains from the two international probabilistic plany competitions (Younes et al., 2005;
Bonet & Givan, 2006). We demonstrate that our relationaineagenerates superior performance
in Tetris as compared to the best previous domain-indepdrsiestem (called “Relational Rein-
forcement Learning”, or RRL (Driessens et al., 2006)). QGalational learner also demonstrates
superior success ratio in the probabilistic planning-cetitipn domains as compared both to our
propositional approach and to the probabilistic planndtsRieplan (Yoon, Fern, & Givan, 2007)
and FOALP (Sanner & Boutilier, 2006). Additionally, we shélat our propositional learner out-
performs a previous method of Patrascu et al. (Patrascy 208P) on the sam®8ysAdmindomain
used for evaluation there.

2. Background
2.1 Markov Decision Process

We define here our terminology for Markov decision proces$es a more thorough discussion
of Markov decision processes, see (Bertsekas & TsitsikB96) and (Sutton & Barto, 1998). A
Markov decision process (MDRY is a tuple(S, A, R, T, sg). Here,S is a finite state space con-
taining initial statesy, and A selects a non-empty finite available action 4ét) for each state in

S. The reward functiorz assigns a real reward to each state-action-state {riple s') where ac-
tion a is enabled in state, i.e.,a is in A(s). The transition probability functiofi’ maps state-action
pairs(s, a) to probability distributions ovef, P(S), wherea is in A(s).

Given discount factob < ~ < 1 andpolicy # mapping each statec S to an action inA(s), the
value functionV' ™ (s) gives the expected discounted reward obtained from sta&decting action
m(s) at each state encountered and discounting future rewardgamfor ofy per time step. There
is at least one optimal policy* for which V™" (s), abbreviated*(s), is no less thari’™(s) at
every states, for any policyr. The following “Q) function” evaluates an actiamwith respect to a
future-value functior?/,

Q(s,a,V) = Z T(s,a,s)[R(s,a,s") +~vV(s')].
s'eS
Recursive Bellman equations ugg) to describeV* and V™ as follows. First,V7(s) =
Q(s,m(s), V™). Then,V*(s) = max,ca(s) Q(s,a,V*). Also usingQ(), we can select an ac-
tion greedily relative to any value function. The policy @dg(1") selects, at any state the action
arg maxqeA(s) Q(s,a, V).
Value iteratioriterates the operation

updateV')(s) = max, T(s,a,s")[R(s,a,s") +V(s')],
acA(s
s'es

computing the “ Bellman update” upd&ié) from V, producing a sequence of value functions
converging in the sup-norm 3*, regardless of the initidl” used.

4

We define the statewise Bellman errB(V, s) for a value functionV at a states to be
updatéV’)(s) — V(s). We will be inducing new features based on their correlatmithe state-
wise Bellman error, or based on the sign of the statewisenellerror. The sup-norm distance
of a value functionl” from the optimal value functio* can be bounded using the Bellman error
magnitude, which is defined asaxscs |B(V, s)| (e.g., see (Williams & Baird, 1993)).

We note that computing updai€), and thus statewise Bellman error, can involve a summation
over the entire state space, whereas our fundamental matisaequire avoiding such summations.
In many MDP problems of interest, the transition matffixis sparse in a way that set of states
reachable in one step with non-zero probability is smal,afiy current state. In such problems,
statewise Bellman error can be computed effectively usimapgropriate representation’tf More
generally, wher{ is not sparse in this manner, the sum can be effectively appetely evaluated
by sampling next states according to the distribution regmeed byr".

2.2 Modeling Goal-oriented Problems

Stochastic planning problems can be goal-oriented, wher@lbjective of solving the problem is
to guide the agent toward a designated state region (ieegdhl region). We model such problems
by structuring the reward and transition functioRsandT" so that any action in a goal state leads
with positive reward to a zero-reward absorbing state, @&wehrd is zero everywhere else. We
retain discounting to represent our preference for shqréghs to the goal. Alternatively, such
problems can be modeled as stochastic shortest path MDRsuwidiscounting (Bertsekas, 1995).
Our techniques can easily be generalized to formalismshadiliow varying action costs as well,
but we do not model such variation in this work.

More formally, we define a goal-oriented MDP to be any MDP rimgethe following con-
straints. Here, we use the variableands’ for states inS anda for actions inA(s). We require that
S contain a zero-reward absorbing statei.e., such thaR(L,a,s) = 0andT(L,a, L) = 1forall
s anda. The transition functiod” must assign either one or zero to trip(@sa, L), and we call the
region of states for which T'(s, a, L) is onethe goal region. The reward function is constrained
so thatR(s, a, ') is zero unless’ = L. In constructing goal-oriented MDPs from other problem
representations, we may introduce dummy actions to catrgheuransitions involvingL described
here.

2.3 Compactly Represented MDPs

In this work, we consider both propositional and relatiostate representations.

In relational MDPs, the space$ and A(s) for eachs are relationally represented, i.e., there
is a finite set of object®), state predicate®, and action name#’ used to define these spaces as
follows. A state facts an applicatiorp(oy, ..., 0,) Of ann-argument state predicateto object
argumentsy;. A state is any set of state facts, representing exactlyrtieefacts in that state. An
action instance (o1, ..., 0,) is an application of am-argument action name to objectso;. The
action spacel = [J,. 4 A(s) is the set of all action instances.

In propositional problems (which can be derived automiyidaom relational problems by
grounding), the action space is explicitly specified anddfade space is compactly specified by
providing a finite sequence of basic state properties callete attributesvith Boolean, integer, or
real values. A propositional state is then any vector ofeslior the state attributes.

5

2.4 Representing PPDDL Planning Problems using MDPs

We discuss how to represent goal-oriented stochastic jplgrproblems defined in standardized
planning language such as PPDDL (Younes et al., 2005) asogieaited MDPs. We limit our focus
to problems in which the goal regions can be described agujociive) sets of state facts. We
reference and follow the approach used in (Fern, Yoon, & Gi2®06) here regarding converting
from planning problems to compactly represented MDPs in amaathat facilitates generalization
between problem instances.

A PPDDL problem definition defines a planning problem insgané planning domairis a
distribution over problem instances sharing the same pt&icatesP;,, same action hamey¥’
and corresponding action definitions. Each problem ingtandhe domain will provide a finite
object setO, initial states; and goal conditiorG. The initial state is given as a set of state facts
and the goal condition is given as a conjunction of statesfaech constructed from the predicates
in Pyy. Actions can take objects as parameters, and are definedihbyg giscrete finite probability
distributions over action outcomes, each of which is spatifising add and delete lists of state
facts about the action parameters. Conditional effectgjaadtified preconditions are allowed. For
details of PPDDL, please see (Younes et al., 2005).

In planning competitions, it has been customary to sped#ying domains by providingrob-
lem generatorshat accept size parameters as input and then output PPDdalilepn instances.
These generators thus specify size-parameterized plagioimains. It is important to note, how-
ever, that not all problem generators provided in the repkamtning competitions specify planning
domains according to the definition used here. In particidame problem generators vary the
action set or the state predicates between the instancesageth The relationship between the
different problem instances generated by such generatomsich looser than that required by our
definition, and as such these “domains” are more like amyitrallections of planning problems.

Because our logical language allows generalization betvpeeblems only if those problems
share the same state and action language, we limit our exalgénialuation in Section 7 to domains
that were provided with problem generators that specifypmitag domains as just defined here, i.e.,
without varying the action definitions between instancesf@o which we can easily code such a
generator). We refer to domains with such generatoa®iing domains with fixed action spaces

Generalization between problems of varying size Because the object set varies in size, without
bound, across the problem instances of a domain, there famggly many possible states within
the different instances of a single domain. Each MDP we aedhas a finite state space, and so we
model a planning domain as an infinite set of MDPs for which veesgeking a good policy (in the
form of a good value function), one for each problem instance
A value function for an infinite set of MDPs is a mapping frone ttlisjoint union of the state

spaces of the MDPs to the real numbers. Such a value functiorbe used greedily as a policy
in any of the MDPs in the set. However, explicit represeatatf such a value function would
have infinite size. Here, we will use knowledge represaemtateéchniques to compactly represent
value functions over the infinite set of problem instance MBd# any given planning domain. The
compact representation derives from generalization adhessdomains, and our approach is funda-

1. In this paper we consider two candidate representatmmfeétures; only one of these, the relational represemtati
is capable of generalizing between problem sizes. For thegsitional representation, we restrict all training and
testing to problem instances of the same size.

mentally about finding good generalizations between the M@Rhin a single planning domain.
Our representation for value functions over planning dom& given below in Sections 2.5 and 4.

In this section, we discuss how to represent as a single f#itE any single planning problem
instance. However, we note that our objective in this workoigind good value functions for
the infinite collections of such MDPs that represent plaprmiomains. Throughout this paper, we
assume that each planning domain is provided along with agnfea sampling example problems
from the domain, and that the sampling is parameterized figudty (generally, problem size) so
that easy example problems can be selected. Although, PRIDB4$ not provide any such problem
distributions, benchmark planning domains are often plediwith problem generators defining
such distributions: where such generators are availal#e,se them, and otherwise we code our
own distributions over problem instances.

Generalizing between problems with varying goals To facilitate generalization between prob-
lem instances with different goals, and following (Martin@effner, 2004) and (Fern et al., 2006),
we translate a PPDDL instance description into an MDP whaoh state specifies not only what
is true in the state but also what the goal is. Action tramsgiin this MDP will never change the
“goal”, but the presence of that goal within the state desiom allows value functions (that are
defined as conditioning only on the state) to depend on theagowell. The goal region of the

MDP will simply be those MDP states where the specified curséeite information matches the
specified goal information.

Formally, in translating PPDDL problem instances into caatgMDPs, we enrich the given set
of world-state predicateBy by adding a copy of each predicate indicating the desired sfehat
predicate. We name the goal-description copy of a predjcéig prepending the word “goal-" to
the name. The set of all goal-description copies of the pedds inPyy is denotedP, and we take
Py U Pg to be the state predicates for the MDP corresponding to eirenplg instance. Intuitively,
the presence of goaka,b) in a state indicates that the goal condition requires tbegfa, b) to be
part of the world state. The only use of the goal predicatedirstructing a compact MDP from a
PPDDL description is in constructing the initial state, ethivill have the goal conditions true for
the goal predicates.

We use the domaiBlocksworld as an example here to illustrate the reformulation (the same
domain is also used as an example in (Fern et al., 2006)). ®akogndition in a Blocksworld
problem can be described as a conjunction of groomdop-of facts. The world-state predicate
on-top-of is in Py. As discussed above, this implies that the predigata-on-top-ofis in Pg.
Intuitively, one ground instance of that predicageal-on-top-of(b1,b2) means that for a state in
the goal region, the block1 has to be directly on the top of the blobR.

States with no available actions PPDDL allows the definition of domains where some states do
not meet the preconditions for any action to be applied. Heweur MDP formalism requires at
least one available action in every state. In translatingBPL problem instance to an MDP we
define the action transitions so that any action taken in autclead” state transitions deterministi-
cally to the absorbing. state. Because we consider such states undesirable irgjactdries, we
give these added transitions a reward of negative one uthlesource state is a goal state.

The resulting MDP We now formally describe an MDR/ = (S, A, R, T, so) given a planning
problem instance. As discussed in Section 2.3, the $etsd A(s) are defined by specifying the
predicates and objects available. The PPDDL descriptiecips the setév of action names and

7

O of objects, as well as a sé&%;r of world predicates. We construct the enrichedBet Py U Pg

of state predicates and define the state space as all setplmlépns of these predicates to the
objects inO. The setA(s) for any states is the set of PPDDL action instances built frashandO

for which s satisfies the preconditions, except that if this set is empty) is the set of all PPDDL
action instances built fromv and O. In the latter case, we say the state is “dead.” The reward
function R is defined as discussed previously in Section 2.2; Rés,a,s’) = 1 when the goal
conditionG is true ins, R(s,a,s’) = —1 whens is a non-goal dead state, and zero otherwise. We
defineT(s,a, s’) according to the semantics of PPDDL augmented with the secsasf | from
Section 2.2-%(s,a, L) will be one if s satisfiesG, s is dead, ors = L, and zero otherwise.
Transiting from one state to another never changes the gaditon description in the states given
by predicates irP;. The MDP initial states, is just the PPDDL problem initial statg augmented

by the goal condition7 using the goal predicates frof;. If a propositional representation is
desired, it can be easily constructed directly from thiatiehal representation by grounding.

2.5 Linear Approximation of Value Functions

As many previous authors have done (Patrascu et al., 2002e5& Boutilier, 2006; Bertsekas &
Tsitsiklis, 1996; Tesauro, 1995; Tsitsiklis & Roy, 1997)ewaddress very large compactly rep-
resentedS and/or A by implicitly representing value functions in terms of st@pacefeatures
f S — R. Our featuresf must select a real value for each state. We describe two agipes to
representing and selecting such features in Section 4.

Recall from Section 1 that our goal is to learn a value fumcfiar a family of related MDP
problems. We assume that our state-space features areddafiress the union of the state spaces
in the family.

We represent value functions using a linear combinatiohfeltures extracted from i.e., as
V(s) = Zﬁzo w; fi(s). Our goal is to find featureg; (each mapping states to real values) and
weightsw; so thatV closely approximate¥ ™.

Various methods have been proposed to select weightsr linear approximations (see, e.g.,
(Sutton, 1988) or (Widrow & Hoff, 1960)). Here, we review amsk a trajectory-based approximate
value iteration (AVI) approach. Other training methods easily be substituted. AVI constructs a

finite sequence of value functions!, V2, ..., VT, and returns the last one. Each value function
is represented ak”(s) = Zﬁ:o wiﬁfi(s). To determine Weighta)fJrl from V5, we draw a set
of training statessy, s, ..., s, by following policy GreedyV?) in different example problems

selected using the provided problem distribution at theenirlevel of problem difficulty. (See
Section 3 for discussion of the control of problem difficyltyhe number of trajectories drawn and
the maximum length of each trajectory are parameters of YHen&thod. For each training state
we compute the Bellman update updaf€)(s) from the MDP model of the problem instance. We
can then comput&;fJrl from the training states using

Wit = wf S afi(sy)(updatéV) (s;) — V(s,)

, Wherea is the learning rate and; is the number of statesin s, s, ..., s, for which f;(s) is
non-zero. Weight updates using this weight-update forrdakcend the gradient of thg distance

2. Note that according to our definitions in Section 2.2, teadistates are now technically “goal states”, but have
negative rewards.

betweenV? and updatél/”) on the training states, with the features first rescaled tmatize the
effective learning rate to correct for feature values witreroccurrence in the training set.

Scaling step-size during AVl For the complex domains addressed in this paper, simpléegitad
descent has many potential pitfalls. One such pitfall i$ tha gradient surface may be extremely
steep at some points. Because the weight changes in AVIapeiional to the gradient, arbitrarily
large gradients result in arbitrarily large single-stepgliechanges that are rarely desirable (and can
also cause floating-point overflow). There is a substaritedature on dynamically adjusting step
size during gradient descent (Jacobs, 1988; Kwong & Johnd&@92; Harris, Chabries, & Bishop,
1986; Mathews & Xie, 1993); however, gradient descent istm@tmain topic of this paper and so
we resort only to a simple work-around for arbitrarily lagradients: rather than step proportional
to the gradient, we compress the unbounded space of postgplasizes to a finite interval using a
sigmoidal function, as described next. Large gradients hex due to large statewise Bellman error
averages over the training set, as can be seen by examimingeight update equation, Equation 1.
Here we compress large weight updates by a sigmoidal scafitige average statewise Bellman
error, as described formally in the next three equations:

Busg = Y (updateV”)(s;) - V°(s,)

1

TTIF exp(—4(1 — [Bavgl/Tscald) -

Wit = uf 473" afi(s)(updateV?) (s;) — V(s)))

[
J

In our experiments, we use this approach to compuiifig! rather than the direct approach given
by equation 1. The scaling factar will be close to one unless the average statewise Bellman
error B,,, grows large, and thus significant differences between tleetdapproach and the scaled
approach appear only in that case. The domain-specific paeam,. .. represents the reward
scaling of the problem domain. We note that any MDP problembzarescaled by multiplying all
rewards by the same positive scalar with consequent ragaaflithe value of any policy at any state
by the same scalar. Our method here is not invariant to tesafig and thus requires a hand-set
domain parameter to represent the reward scaling. It is taneisting topic of future research to
automatically, possibly dynamically, find the value of tteésvard scaling parameter.

Sign restriction in weight adjustment Another pitfall in using gradient descent with complex
gradient surfaces is that dramatic increases in error cantrieom one step of weight update. In
our AVI setting, this can result in dramatic drops in the ssscrate of the resulting greedy policy.
Because in goal-oriented domains a useful gradient is ctedmnly from successful trajectories,
such dramatic drops in success rate can result in an uniafamengradient from which AVI often
cannot recover. Various mechanisms can be designed fartihgtelramatic drops in policy quality
during AVI and revisiting the weight updates that lead tonthdnere we focus only on revisiting
weight updates that change the sign of a weight, and only wheimmediately resulting policy
performs much worse than the policy before the weight update

3. In deriving this gradient-descent weight-update fomnebch featurg; is scaled by; = , /-, giving f; = 7 f:.

It is fairly intuitive that weight updates changing the sigina weight are particularly suspect.
If the weight for a feature has been tuned to a positive vatus,hopefully because that feature
has been seen to correlate to the desired value functionevewthis immediately implies that
the negation of that feature anti-correlates with the @éswalue. Changing the sign of a weight
is a form of rejecting previous training regarding the entirection of the importance of the cor-
responding feature. Empirically, we have found that AVI @mplex error surfaces often makes
damaging mistakes by stepping too far in weight update tal#dgeee that the sign of a feature is
reversed and the resulting policy is suddenly severelyaiksgt.

In our experiments in goal-oriented planning problems, mplément a mechanism to detect
and avoid weight sign changes that must be avoided to peepeticy quality, as follows. First, we
define a method for empirically comparing policies: we sat thpolicyr; “tests as significantly
better” than a policyr, if Student’s t-test confirms the hypothesis that the sucraesofr, is at
most 0.9 times the success ratergfwith significance 0.025 based upon 100 sample trajectofies o
each. Second, each time we construct an AVI training set awidg trajectories, we measure the
success rate of the policy Greddyised over the trajectories drawn to create the training set—
call this the training success rate of the value funciionf the training success of the current value
function V4 is lower than the training success of the previous valuetfond/;, we then test if the
the policy Greed{l;) tests as significantly better than the policy Gre@dy. If so, we reconsider
any weight sign changes (including changes to or from zemjerduring the intervening weight
update as follows. Suppose tHatis described by weights” andV; by weightsw®*!. For each
weight w; that changed sign fromjf to wf“, we test if reversing the update of just that weight,
using wf in place ofwiﬁ“, yields a greedy policy that tests significantly better taeedy15).
Any such weights that yield significant improvements whezirti+ 1-iteration updates are reversed
are then restored to theiriteration values and their sign is locked for the remairafehis run of
AVI. In other words, any future weight update to that weightielh would change the sign of that
weight is replaced with no change to that weight.

3. Feature-discovering Value-function Construction

As noted above, we use a “boosting style” learning approadinding value functions, iterating
between selecting weights and generating new features dmsifty on the Bellman error in the
current value function. Our value function representatian be viewed as a weighted ensemble of
single-feature hypotheses. We start with a value functian has only a trivial feature, a constant
feature always returning the value one, with initial weigbto. We iteratively both retrain the
weights and select new features matching regions of stateghich the current weighted ensemble
has high statewise Bellman error.

We take a “learning from small problems” approach and leagiures first in problems with
relatively lower difficulty, and increasing problem diffitpiover time, as discussed below. Learning
initially in small problems (Martin & Geffner, 2004; Yoongekn, & Givan, 2002) is more effective
due to the smaller state space and the ability to obtainipedtedback (i.e., reach the goal) in
a smaller number of steps. We show experimentally in Secidinat good value functions for
high difficulty problems can indeed be learned in this fasHiom problems of lower, increasing
difficulties.

Our approach relies on two assumed subroutines, and carstaatiated in different ways by
providing different algorithms for these subroutines skia method of weight selection is assumed;

10

Initial feature vectord
Initial weight vectorW/
Initial problem difficultyD

Reselectfy attempting
to minimize Bellman
error of V =Wd |

Increase problem

_ difficulty D. Keep W
Reweighted value anda))./ P

functionV =Wi®

Learn new feature correlating
to training set, and add it ®
Keep the current problem
difficulty D.

No

Performance a
current difficulty
meets threshold ¢
out of time?

Performance 3
target level or ou

Generate statewise-Bellman-
error training set

f

Done

Figure 1: Control flow for feature learning. Boxes with doaiblorders represent assumed subroutines for
our method. We assume that the targeted class of problensasnpterized by problem difficulty (such
as problem size). When this is not so, all problems are teasehaving the same difficulty, and the two
performance tests are the same; in this case, the step nameeeid’se problem difficulty” is never reached.

this method takes as input a problem domain and a fixed seatirées, and selects a weight vector
for a value function for the problem domains using the presliteatures. We intend this method to
heuristically or approximately minimizé., Bellman error in its choice of weight vector. Second,
a feature hypothesis space and corresponding learner sumed to be provided by the system
designer.

The control flow for our approach is shown in Figure 1. Eachatien at a fixed problem
difficulty selects weights for the current feature set (gsamy method attempting to minimize,,
Bellman error), computes the statewise Bellman error oféiselting value function for a training
set of states, and learns a new feature matching that tgagat) adding that feature to the feature
set.

For the experiments reported in Section 7, we evaluate tleviog choices for the assumed
subroutines. For all experiments we use AVI to select weidbt feature sets. We evaluate two
choices for the feature hypothesis space and correspotedinger, one relational and one proposi-
tional, as described in Section 4.

Separate training sets are drawn for weight selection anthéfeature learning; the former
will depend on the weight selection method, and is describedVI in Section 2.5, and the latter
is described in this section.

Problem difficulty is increased when sampled performanciéefgreedy policy at the current
difficulty exceeds user-specified performance threshdtdsur planning-domain experiments, the
performance parameters measured are success ratio @ageen trials that find the goal) and av-

11

erage successful plan length (the average number of steps tgpal among all successful trials).
The non-goal-oriented domains Bétris andSysAdmin use different performance measures: aver-
age total reward for Tetris and Bellman error for SysAdminfécilitate comparison with (Patrascu
et al., 2002)).

We also assume a user-provided schedule for problem diffioatreases in problems where
difficulty is parameterized by more than one parameter,(&ze may be measured in by the number
of objects of each type); further domain-independent aatm of the increase in difficulty is a
topic for future research. We give the difficulty-increastedules and performance thresholds for
our experiments in the section presenting the experim&etstjon 7.

Training set generation The training set for selection of a new feature is a set okstatue
pairs. The training set is constructed by repeatedly saim@in example problem instance from
the problem distribution at the current level of difficulnd applying the current greedy policy
Greedy V) to that problem instance to create a trajectory of statesweriered. Every state (re-
moving duplicates) encountered is added to the trainingos@ied with its statewise Bellman error
computed in the problem instance that generated it. Thedfiflee feature-selection training set
and the maximum length of each training trajectory are $igecby the user as parameters of the
algorithm.

A possible problem occurs when the current greedy policyotireach enough states to com-
plete the desired training set. If 200 consecutive trajgetcare drawn without visiting a new state
before the desired training set size is reached, the praosassdified as follows. At that point,
the method attempts to complete the training set by drawajgdtories using random walk (again
using sampled example problems from the current probletritalison). If this process again leads
to 200 consecutive trajectories without a new state, thénagketerminates training-set generation
and uses the current training set even though it is smalter tifie target size.

Applicability of the method Feature-discovering value-function construction as festcribed
does not require complete access to the underlying MDP madthel AVI updates and the training
set generation are both based on the following computatiartte model:

1. Given a state the ability to compute the action sé{s).

2. Given a state, actiona € A(s), and value functiori/, the ability to compute thé€)-value
Q(s,a,V).

3. Given a state and actiorn € A(s), the ability to draw a state from the next state distribution
defined byT'(s, a, s').

4. Given a state, the ability to compute the features in the selected fedaumguage ors and
any computations on the state required for the selectedriebgarner.

The first three items enable the computation of the Bellmatatgofs and the last item enables
computation of the estimated value function given the wisigihd features defining it as well as the
selection of new features by the feature learner.

While the PPDDL planning domains studied provide all theinfation needed to perform these
computations, our method also applies to domains that dneataral to represent in PPDDL. These
can be analyzed by our method once the above computatiortzedamplemented. For instance, in
our Tetris experiments in Section 7.2, the underlying model is reprteseby providing hand-coded
routines for the above computations within the domain.

12

Analysis MDP value iteration is guaranteed to converge to the optiralale function if conducted
with a tabular value-function representation in the presesf discounting (Bertsekas, 1995). Al-
though weight selection in AVI is designed to mimic valuegateon, while avoiding a tabular rep-
resentation, there is no general guarantee that the weiglates will track value iteration and thus
converge to the optimal value function. In particular, themay be no weighted combination of
features that represents the optimal value function, dmavise none that represents the Bellman
update updatd”) for some value functio¥” produced by AVI weight training process. Our learn-
ing system introduces new features to the existing featnserable in response to this problem:
the training set used to select the new feature pairs statlesheir statewise Bellman error. If the
learned feature exactly captures the statewise Bellmam-eoncept (by exactly capturing the train-
ing set and generalizing successfully) then the new featpaee will contain the Bellman update
of the value function used to generate the training data.

We aim to find features that approximate the “Bellman erratuee,” which we take to be a
function mapping states to their statewise Bellman errdrecretical properties of Bellman error
features in the uncontrolled Markov processes (i.e., withioe max operator in the Bellman equa-
tion) have recently been discussed in (Parr et al., 2007grevthe addition of such features (or
close approximations thereof) is proven to reduce the viethh,-norm distance between the best
weight setting and the the true (uncontrolled) valiie when linear fixed-point methods are used
to train the weights before feature addition. Prior to thatkyin (Wu & Givan, 2005)), and now in
parallel to it, we have been empirically exploring the efffeaf selecting Bellman error features in
the more complex controlled case, leading to the resulisrtegp here.

Itis clear that if we were to simply add the Bellman error €eatdirectly, and set the correspond-
ing weight to one, the resulting value function would be tlesiced Bellman update updaté) of
the current value functiov Adding such features at each iteration would thus give usatwa
conduct value iteration exactly, without enumeratingestatBut each such added feature would
describe the Bellman error of a value function defined in teofrpreviously added features, posing
a serious computational cost issue when evaluating theddddéures. In particular, each Bellman
error feature for a value functiolW can be estimated at any particular state with high confidence
by evaluating the value functiovi at that state and at a polynomial-sized sample of next states
each action (based on Chernoff bounds). However, if theevhlactionV is based upon a previ-
ously added Bellman-error feature, then each evaluatidn mquires further sampling (again, for
each possible action) to compute. In this manner, the amafusempling needed for high confi-
dence grows exponentially with the number of successiveddeatures of this type. The levels
of sampling do not collapse into one expectation becauseteifviening choices between actions,
as is often the case in decision-theoretic sampling. Ouufeaelection method is an attempt to
tractably approximate this exact value iteration methoddayning concise and efficiently com-
putable descriptions of the Bellman-error feature at ethtion.

Our method can thus be viewed as a heuristic approximatia@xact value iteration. Exact
value iteration is the instance of our method obtained bggiain explicit state-value table as the
feature representation and generating training sets &urfe learning containing all states — to
obtain exact value iteration we would also omit AVI trainibigt instead set each weight to one.

When the feature language and learner can be shown to ap@atxexplicit features tightly
enough (so that the resulting approximate Bellman updaedstraction in thé ., norm), then itis
easy to prove that tightening approximationd/Gfwill result if all weights are set to one. However,

13

for the more practical results in our experiments, we ustufeaepresentations and learners for
which no such approximation bound relative to explicit éeas is known.

4. Two Candidate Hypothesis Spaces for Features

In this section we describe two hypothesis spaces for festun relational feature space and a
propositional feature space, along with their respectaadure learning methods. For each of the
two feature spaces, we assume the learner is provided wilining set of states paired with their
statewise Bellman error values.

Note that these two feature-space-learner pairs lead tinstances of our general method and
that others can easily be defined by defining new feature sgakcorresponding learners. In this
paper we empirically evaluate the two instances presergssl h

4.1 Relational Features

A relational MDP is defined in terms of a set of state predealdese state predicates are the basic
elements from which we define a feature-representationukzgey Below, we define a general-
purpose means of enriching the basic set of state predicathe resulting enriched predicates
can be used as the predicate symbols in standard first-oreldicate logic. We then consider any
formula in that logic with one free variable as a feature digWs.

A state in a relational MDP is a first-order interpretation.filst-order formula with one free
variable is then a function from such states to natural nusnylich maps each state to the number
of objects in that state that satisfy the formula. We takendirst-order formulas to be real-valued
features by normalizing to a real number between zero ang-time normalization is done by
dividing the feature value by the maximum value that theueatan take, which is typically the
total number of objects in the domain, but can be smaller thenin domains where objects (and
guantifiers) are typed. A similar feature representatiamséed in (Fawcett, 1996).

This feature representation is used for our relational expnts, but the learner we describe
in the next subsection only considers existentially quigaticonjunctions of literals (with one free
variable) as features. The space of such formulas is thiesféative features space for our relational
experiments.

Example 4.1: TakeBlocksworld with the table as an object for exampt®)(z, y) is

a predicate in the domain that asserts the bledk on top of the objecy, wherey
may be a block or the table. A possible feature for this dorsambe described ak,
on(z,y), which is a first-order formula with: as the one free variable. This formula
means that there is some other object immediately below lthek mbjectx, which
essentially excludes the table object and the block beitdjhethe arm (if any) from
the object set described by the feature. Rttocks problems, the un-normalized value
of this feature is: for states with no block being held by the arm,ro+ 1 for states
with a block being held by the arm.

The enriched predicate set More interesting examples are possible with the enrichedipate
set that we now define. To enrich the set of state predidatese add for each binary predicate
a transitive closure form of that predicaie- and predicates mip-and maxp identifying minimal
and maximal elements under that predicate. In goal-basethids, recall that our problem repre-
sentation (from Section 2.4) includes, for each predigata goal version of the predicate called

14

goalw to represent the desired state of the predipdtethe goal. Here, we also add a means-ends

analysis predicate correptto represenp facts that are present in both the current state and the goal.
So, for objectsr andy, correctp(x,y) is true if and only if bothp(z, y) and goalp(z,y) are

true. p+(x, y) is true of objects: andy connected by a path in the binary relatienThe relation

max+(z) is true if objectzr is a maximal element with respectjpi.e., there exists no other object

y such thap(z, y) is true. The relation mip{x) is true if objectz is a minimal element with respect

to p, i.e., there exists no other objegcsuch thap(y, x) is true.

Example 4.1 (cont.):The featuredy correcton(z, y) means that is stacked on top of
some objecy both in the current state and in the goal state. The featyen+(x, y)
means that in the current stateis directly above some objegti.e., there is a sequence
of onrelations traversing a path betweeandy, inclusively. The feature maan+(x)
means that is the table object when all block-towers are placed on thietaince the
table is the only object that is not any other object. The feature mam+-(x) means
that there is no other object on topafi.e.,z is clear.

4.2 Learning Relational Features

We select first-order formulas as candidate features usiagm search with a beam widiti. The
search starts with basic features derived automaticadiy fhe domain description and repeatedly
derives new candidate features from the best scdiinfpatures found so far, adding the new fea-
tures as candidates and keeping only the best sco¥irigatures at all times. After new candidates
have been added a fixed deptlof times, the best scoring feature found overall is seletdeloe
added to the value-function representation. Candidateirfesmare scored for the beam search by
their correlation to the Bellman error feature as formalibelow.

Specifically, we score each candidate featfinith its correlation coefficient to the Bellman
error featurefp as estimated by this training set. The correlation coeffidietweenf and f’ is
defined as corr-coéf, f') = E{f(s)f’(s)};ﬁ{{(s)}E{f’(s)}. Instead of using a known distribution to
compute this value, we use the states in the training set@ngute a sampled version instead. Note
that our features are non-negative, but can still be welletaited to the Bellman error (which can
be negative), and that the presence of a constant feature nejresentation allows a non-negative
feature to be shifted automatically as needed. The scoungtibn for feature selection is then a
regularized version of the correlation coefficient betwtenfeature and the Bellman error feature

scord f) = |corr-coef f, fpr)|(1 — Adepth(f)),

where the “depth” of a feature is the depth in the beam sedrethigh it first occurs, and\ is a
parameter of the learner representing the degree of rézatian (bias towards low-depth features).
It remains only to specify which features in the hypothepigce will be considered initial, or
basic, features for the beam search, and to specify a meaosrfstructing more complex features
from simpler ones for use in extending the beam search. Wedke the state predicate stin
a domain and enricl as described in Section 4.1. After this enrichmeniPofwe take as basic
features the existentially quantified applications of Gioly negated) state predicates to variables
with zero or one free varialfle A feature with no free variables is treated technically ama-
free-variable feature where that variable is not used; rdssilts in a “binary” feature value that

4. If the domain distinguishes any objects by naming therh wdinstants, we allow these constants as arguments to the
predicates here as well.

15

is either zero or the total number of objects, because itiatary the free variable different ways
always results in the same truth value. We assume throughatievery existential quantifier is
automatically renamed away from every other variable ingygtem. We can also take as basic
features any human-provided features that may be availabtewe do not add such features in
our experiments in this paper in order to clearly evaluateroethod’s ability to discover domain
structure on its own.

At each stage in the beam search we add new candidate feéttaning thell” best scoring
features from the previous stage). The new candidate &satue created as follows. Any feature in
the beam is combined conjunctively with any other, or witk basic feature. The method of com-
bination of two features is described in Figure 2. This figgliews non-deterministic pseudo-code
for combining two input features, such that any way of makimgnon-deterministic choices results
in a new candidate feature. The pseudo-code refers to theddarmulasf; and f, describing the
two features. In some places, these formulas and othersrarenawvith their free variable exposed,
as f1(x) and f2(y). Also substitution for that variable is notated by replacinin the notation, as
in fi(z).

The combination is by conjoining the feature formulas, amshin line 2 of Figure 2; however,
there is additional complexity resulting from combining tivo free variables and possibly equating
bound variables between the two features. The two freehladgaare either equated (by substitu-
tion) or one is existentially quantified before the comhimatis done, in line 1. Up to two pairs
of variables, chosen one from each contributing feature; atso be equated, with the resulting
guantifier at the front, as described in line 3. Every suchldoation feature is a candidate.

Example 4.2: Assume we have two basic featufésp(z, z) and3w q(y, w). The set
of the possible candidates that can be generated by corglimiise two features are:
When line 3 in Figure 2 runs zero times,

1. @z 3z p(z, 2)) A Gw q(y, w)), from 3z f1(x) A fa(y)
2. @z p(z,2)) A By Fw q(y, w)), from fi(z) A Jyf2(y), and
3. @z p(x, 2)) A Qw q(z,w)), from fi(z) A fa(x)
and when line 3 runs one time,
4. Ju (3= p(u, 2)) A (q(y, w))), from equatinge andw in item 1 above,
5. Ju 3z p(z,w)) A (Q(y,w)), from equatinge andz in item 1 above,
6. Ju (p(z,u) A (Fw q(u, w))), from equating: andy in item 2 above,
7. Ju (p(z,u) A (Jy q(y, w))), from equating: andw in item 2 above, and
8. Ju (p(z,u) A (g(x,u))), from equating: andw in item 3 above.

The first three are computed using cases 1a, 1b, and 1c, tigspecThe remaining
five derive from the first three by equating bound variablesifif; and f5.

Features generated at a deptlin this language can easily require enumeratingkalliples
of domain objects. Since the cost of this evaluation growsoegntially withk, we bound the
maximum number of quantifiers in scope at any point in anyufeaformula tog, and refuse to
consider any feature violating this bound.

The values¥V, XA, d, andq are the parameters controlling the relational learner veduate in
this paper. How we set these parameters is discussed fumttiex experimental setup description
in Section 6.

16

Input: f1(x), f2(y)

1. Perform one of
a. f1 = (3x) f1(x)
b. fo = (Jy) f2(y)
C. fa = fa(x)

2.01= f1/\ fo

3. Perform the following zero, one, or two times:

a. Letv be a variable occurring irfiy ando.
Let e; be the expression of the for(@v)¢, (v) that occurs irpy

b. Letw be a variable occurring i, ando;.
Let e, be the expression of the forf@w)¢2(w) that occurs i,

c. Letu be a new variable, not useddn
d. o, = replacee; with ¢ (u) and replaces with ¢o(u) in 01

e.o; = (Ju)oz

4., returno;

Figure 2: A non-deterministic method for combining two featformulas. The choice between 1a, 1b, and
1c, the choice of number of iterations of step 3, and the @sodfe; ande; in steps 3a and 3b are all non-
deterministic choices. Any feature that can be producedryyran of this non-deterministic method is a
candidate. Note: it is assumed thfatand f, have no variables in common, by renaming if necessary before
this operation.

4.3 Propositional Features

Here we discuss a second candidate hypothesis space farefgatising a propositional represen-
tation. We use decision trees to represent these propwitfeatures. A detailed discussion of
classification using decision trees can be found in (Milgi€197). A decision tree is a binary tree
with internal nodes labeled by binary tests on states, eligrded “yes” and “no” representing
results of the binary tests, and leaves labeled with cla@sesir case, either zero or one). A path
through the tree from the root to a leaf with labédientifies a labeling of some set of states—each
state consistent with the state-test results on the paibwsed as labeletlby the tree. In this way, a
decision tree with real number labels at the leaves is vieagddbeling all states with real numbers,
and is thus a feature.

We learn decision trees from training sets of labeled staiwy the well known C4.5 algorithm
(Quinlan, 1993). This algorithm induces a tree greedilyahniaig the training data from the root
down. We use C4.5 to induce new features—the key to our #tgoris how we construct suitable
training sets for C4.5 so that the induced features are usefeducing Bellman error.

17

We include as possible state tests for the decision treesduee every grounded predicate
applicatio®? from the state predicates, as well as every previously ®elegecision-tree feature
(each of which is a binary test because all leaf labels a®@eone).

4.4 Learning Propositional Features

To construct binary features, we use only the sign of the ltBah error feature,” not the magni-
tude. The sign of the statewise Bellman error at each statesas an indication of whether the
state is undervalued or overvalued by the current apprdiomaat least with respect to exactly
representing the Bellman update of the current value fanctif we can identify a collection of
“undervalued” states as a new feature, then assigning aon@mgte positive weight to that feature
will increase their value. Similarly, identifying “overkeed” states with a new feature and assigning
a negative weight will decrease their value. We note thattireains of interest are generally too
large for state-space enumeration, so we will need claasdit learning to generalize the notions
of overvalued and undervalued across the state space faomng sets of sample states.

To avoid blurring the concepts of overvalued and underghivigh each other, we discard states
with statewise Bellman error near zero from either trairsey Specifically, among the states with
negative statewise Bellman error, we discard any stateswith error closer to zero than the median
within that set; we do the same among the states with posstatewise Bellman error. More
sophisticated methods for discarding training data neairttended boundary can be considered
in future research; these will often introduce additionatgmeters to the method. Here, we seek
an initial and simple evaluation of our overall approachteAthis discarding, we defing, to be
the set of all remaining training pairs with states havingifpee statewise Bellman error, and_
likewise those with negative statewise Bellman error.

We then use:, as the positive examples and_ as the negative examples for a supervised
classification algorithm; in our case, C4.5 is used. The thgxis space for classification the space
of decision trees built with tests selected from the priwmitattributes defining the state space and
goal; in our case, we also use previously learned featuatsith decision trees over these attributes.
The concept resulting from supervised learning is thertdteas a new feature for our linear ap-
proximation architecture, with an initial weight of zero.

4.5 Discussion

Generalization across varying domain sizes The propositional feature space described above
varies in size as the number of objects in a relational donsamaried. As a result, features learned
at one domain size are not generally meaningful (or evenssacty defined) at other domain sizes.
The relational approach above is, in contrast, able to gdéimematurally between different domains
sizes. Our experiments report on the ability of the propmsd technique to learn within each
domain size directly, but do not attempt to use that apprdaictearning from small problems to
gain performance in large problems. This is a major limitatin producing good results for large
domains.

Learning time The primary motivation for giving up generalization ovemukn sizes in order
to employ a propositional approach is that the resultingnktacan use highly efficient, off-the-

5. A grounded predicate application is a predicate appletthé appropriate number of objects from the problem in-
stance.

18

shelf classification algorithms. The learning times regwih Section 7 show that our propositional
learner learns new features orders of magnitude fastertttearelational learner.

5. Related Work

5.1 Previous research on feature-learning value-functioronstruction

Automatic learning of relational features for approximeatue-function representation has surpris-
ingly not been frequently studied until quite recently, archains poorly understood. Here, we
review recent work that is related on one or more dimensiomsit contribution.

Feature selection based on Bellman error magnitude Feature selection based on Bellman error
has recently been studied in the uncontrolled (policywatibn) context in (Keller et al., 2006)
and (Parr et al., 2007), with attribute-value or explicatstspaces rather than relational feature
representations. Here, we extend this work to the conttalkrision-making setting and study the
incorporation of relational learning and the selection mbrapriate knowledge representation for
value functions that generalize between problems of diffesizes within the same domain.

The main contribution of (Parr et al., 2007) is formally shgy for the uncontrolled case of
policy evaluation, that using (possibly approximate) Belh-error features “provably tightens ap-
proximation error bounds,” i.e., that adding an exact Balinerror-feature provably reduces the
(weighted L,-norm) distance from the optimal value function that can tieieved by optimizing
the weights in the linear combination of features. Thisltdasextended in a weaker form to approx-
imated Bellman-error features, again for the uncontrotlase. The limitation to the uncontrolled
case is a substantial difference from the setting of our wditke limited experiments shown use
explicit state-space representations, and the technearad a completely new set of features for
each policy evaluation conducted during policy iteratibmcontrast, our method accumulates fea-
tures during value iteration, at no point limiting the fodosa single policy. Constructing a new
feature set for each policy evaluation is a procedure momnaivie to formal analysis than retain-
ing all learned features throughout value iteration beedhe policy being implicitly considered
during value iteration (the greedy policy) is potentiallyanging throughout. However, when us-
ing relational feature learning, the runtime cost of featl@arning is currently too high to make
constructing new feature sets repeatedly practicallyiliésas

(Parr et al., 2007) builds on the prior work in (Keller et &006) that also studied the uncon-
trolled setting. That work provides no theoretical resualbs any general framework, but provides
a specific approach to using Bellman error in attribute vadyeesentations (where a state is repre-
sented as a real vector) in order to select new features. gpgreach provides no apparent leverage
on problems where the state is not a real vector, but a stedttagical interpretation, as is typical
in planning benchmarks.

Feature discovery via goal regression Other previous methods (Gretton & Thiébaux, 2004; San-
ner & Boutilier, 2006) find useful features by first identifgi goal regions (or high reward regions),
then identifying additional dynamically relevant regiomg regressing through the action defini-
tions from previously identified regions. The principle mited is that when a given state feature
indicates value in the state, then being able to achievefelsiire in one step should also indicate
value in a state. Regressing a feature definition througla¢tien definitions yields a definition of
the states that can achieve the feature in one step. Repegtedsion can then identify many re-

19

gions of states that have the possibility of transitioninder some action sequence to a high-reward
region.

Because there are exponentially many action sequencdivedia plan length, there can be
exponentially many regions discovered in this way, as welimexponential increase in the size of
the representation of each region. Both exponentials aexiins of the number of regression steps
taken. To control this exponential growth in the number atdees considered, regression has been
implemented with pruning optimizations that control ormgéhate overlap between regions when it
can be detected inexpensively as well as dropping of ugligaths. However, without a scoring
technique (such as the fit to the Bellman-error used in thiepao select features, regression still
generates a very large number of useless new features. frieattyimost effective regression-based
first-order MDP planner, described in (Sanner & Boultili€08) is only effective when disallowing
overlapping features to allow optimizations in the weightmputation, yet clearly most human
feature sets in fact have overlapping features.

Our inductive technique avoids these issues by consideritygcompactly represented features,
selecting those which match sampled statewise Bellmam ggaining data. We provide extensive
empirical comparison to the First-Order Approximate Lin€aogramming technique (FOALP)
from (Sanner & Boutilier, 2006) in our empirical results. IGumpirical evaluation yields stronger
results across a wide range of probabilistic planning bevacks than the goal-regression approach
as implemented in FOALP (although aspects of the approauthes than the goal-regression can-
didate generation vary in the comparison as well).

Regression-based approaches to feature discovery aredrédeour method of fitting Bellman
error in that both exploit the fact that states that can reatirmble states must themselves be valu-
able, i.e. both seek local consistency. In fact, regresmm the goal can be viewed as a special
case of iteratively fitting features to the Bellman error loé current value function. Depending
on the exact problem formulation, for aky the Bellman error for thé-step-to-go value function
will be non-zero (or otherwise nontrivially structured)tiaé region of states that reach the goal first
in k£ + 1 steps. Significant differences between our Bellman errpragch and regression-based
feature selection arise for states which can reach the gibaldiferent probabilities at different
horizons. Our approach fits the magnitude of the Bellmarrearad so can smoothly consider the
degree to which each state reaches the goal at each horizorapproach also immediately gen-
eralizes to the setting where a useful heuristic value fanas provided before automatic feature
learning, whereas the goal-regression approach appegeguive goal regions to begin regression.
In spite of these issues, we believe that both approachegpprepriate and valuable and should be
considered as important sources of automatically derigatlufes in future work.

Effective regression requires a compact declarative matiodel, which is not always availaBle
The inductive technique we present does not require everld RIbtion model, as the only deduc-
tive component is the computation of the Bellman error fatividual states. Any representation
from which this statewise Bellman error can be computedffscgent for this technique. In our em-
pirical results we show performance for our plannefetris, where the model is represented only
by giving a program that, given any state as input, returasgplicit next state distribution for that
state. FOALP is inapplicable to such representations duependence on logical deductive rea-

6. For example, in the Second International Probabilistimfing Competition, the regression-based FOALP planner
required human assistance in each domain in providing tedetedomain information even though the standard
PDDL model was provided by the competition and was suffidieneach other planner.

20

soning. We believe the inductive and deductive approach@xbrporating logical representation
are both important and are complementary.

The goal regression approach is a special case of the moeeagj@pproach of generating candi-
date features by transforming currently useful featurege €uch transformation is goal regression.
Others that have been considered include abstractioniaipation, and decomposition (Fawcett,
1996) — all of which simplify the features, in contrast to oegression. Research on human-
defined concept transformations dates back at least to tlgniark Al program AM (Davis &
Lenat, 1982). Our work uses only one means of generatingadaiedeatures: a beam search of log-
ical formulas in increasing depth. This means of candidateetpation has the advantage of strongly
favoring concise and inexpensive features, but may misg cmnplex but very accurate/useful fea-
tures. But our approach directly generalizes to these atieams of generating candidate features.
What most centrally distinguishes our approach from alvioes work leveraging such feature
transformations is the use of statewise Bellman error toescandidate features. FOALP (Sanner
& Boutilier, 2006) uses no scoring function, but includelsran-pruned candidate features in the
linear program used to find an approximately optimal valuefion; the Zenith system (Fawcett,
1996) uses a scoring function provided by an unspecified¢cri

Previous scoring functions for MDP feature selection A method, from (Patrascu et al., 2002),
selects features by estimating and minimizing theerror of the value function that results from
retraining the weights with the candidate feature includég error is used in that work instead
of Bellman error because of the difficulty of retraining theights to minimize Bellman error.
Because our method focuses on fitting the Bellman error ofcthveent approximation (without
retraining with the new feature), it avoids this expensiaining computation during search and
is able to search a much larger feature space effectiveljle\ifPatrascu et al., 2002) contains no
discussion of relational representation, fhescoring method could certainly be used with features
represented in predicate logic; no work to date has triegd(ffotentially too expensive) approach.

5.2 Relational reinforcement learning

In (DZeroski, DeRaedt, & Driessens, 2001), a relationafoecement learning (RRL) system learns
logical regression trees to represent Q-functions of tavjePs. This work is related to ours since
both use relational representations and automaticallgtoact functions that capture state value. In
addition to the Q-function trees, a policy tree learner sbahtroduced in (DZeroski et al., 2001)
that finds policy trees based on the Q-function trees. We titean an explicit policy description
and instead use only greedy policies for evaluation.

The logical expressions in RRL regression trees are usee@siah points in computing the
value function (or policy) rather than as numerically valfeatures for linear combination, as in our
method. Generalization across problem sizes is achievégblying policy trees; the learned value
functions apply only to the training problem sizes. To d#dte,empirical results from this approach
have failed to demonstrate an ability to represent the valoetion usefully in familiar planning
benchmark domains. While good performance is shown for Iffieghb goals such as placing a
particular block A onto a particular block B, the technigadlsf to capture the structure in richer
problems such as constructing particular arrangementdoakBworld towers. RRL has not been
entered into any of the international planning competgionhese difficulties representing complex
relational value functions persist in extensions to thginal RRL work (Driessens & DZeroski,

21

2004; Driessens et al., 2006), where again only limitediaglpility is shown to benchmark planning
domains such as those used in our work.

5.3 Approximate policy iteration for relational domains

Our planners use greedy policies derived from learned Valnetions. Alternatively, one can di-

rectly learn representations for policies. The policyettearning in (DZeroski et al., 2001), dis-
cussed previously in Section 5.2, is one such example. Reawk uses a relational decision-list
language to learn policies for small example problems thaegalize well to perform in large prob-

lems (Khardon, 1999; Martin & Geffner, 2004; Yoon et al., 2R0Due to the inductive nature of

this line of work, however, the selected policies occadlgraontain severe flaws, and no mecha-
nism is provided for policy improvement. Such policy impeavent is quite challenging due to the
astronomically large highly structured state spaces amddiational policy language.

In (Fern et al., 2006), an approximate version of policyatem addressing these issues is
presented. Starting from a base policy, approximate pdiération iteratively generates training
data from an improved policy (using policy rollout) and theses the learning algorithm in (Yoon
et al., 2002) to capture the improved policy in the compactgilen-list language again. Similar to
our work, the learner in (Fern et al., 2006) aims to take a ftheaution structure and improve its
quality using conventional MDP techniques (in that casaliigg an improved policy with policy
rollout) and machine learning. Unlike our work, in (Fern &t 2006) the improved policies are
learned in the form of logical decision lists. Our work canvi@wved as complementary to this
previous work in exploring the structured representatioratue functions where that work explored
the structured representation of policies. Both approaehne likely to be relevant and important to
any long-term effort to solve structured stochastic deoishaking problems.

5.4 Automatic extraction of domain knowledge

There is a substantial literature on learning to plan usieghods other than direct representation
of a value function or a reactive policy, especially in theéedministic planning literature. These
techniques are related to ours in that both acquire doma&icifspknowledge via planning experi-
ence in the domain. Much of this literature targets contravidedge for particular search-based
planners (Estlin & Mooney, 1997; Kambhampati, Katukam, & @296; Veloso, Carbonell, Perez,
Borrajo, Fink, & Blythe, 1995), and is distant from our apgeh in its focus on the particular plan-
ning technology used and on the limitation to determinidbmains. It is unclear how to generalize
this work to value-function construction or probabilistiomains.

However, the broader learning-to-plan literature alsot@ios work producing declarative
learned domain knowledge that could well be exploited dufeature discovery for value func-
tion representation. In (Fox & Long, 1998), a pre-procassimodule called TIM is able to infer
useful domain-specific and problem-specific structuresh &s typing of objects and state invari-
ants, from descriptions of domain definition and initialteta While these invariants are targeted
in that work to improving the planning efficiency of a Grapdplbased planner, we suggest that
future work could exploit these invariants in discoveriegtres for value function representation.
Similarly, in (Gerevini & Schubert, 1998), DISCOPLAN infestate constraints from the domain
definition and initial state in order to improve the perfomoa of SAT-based planners; again, these
constraints could be incorporated in a feature search likerethod but have not to date.

22

6. Experimental Setting

We present experiments in nine stochastic planning domainkiding both reward-oriented and
goal-oriented domains. We use Pentium 4 Xeon 2.8GHz maghwib 3GB memory. In this sec-
tion, we give a general overview of our experiments befovingidetailed results and discussion for
individual domains in Section 7. Here, first, we briefly dissthe selection of evaluation domains
in Section 6.1. Second, in Section 6.2, we give details orpdrameter selection for our learning
algorithms.

6.1 Domains considered

In all the evaluation domains below, it is necessary to $peailiscount factory when modeling the
domain as an MDP with discounting. The discount factor d¢ffety specifies the tradeoff between
the goals of reducing expected plan length and increasiogess ratesy is not a parameter of our
method, but of the domain being studied, and our featumnsilega method can be applied for any
choice ofy. Here, for simplicity, we choose to be 0.95 throughout all our experiments. We note
that this is the same discount factor used in$ysAdmin domain formalization that we compare
to from the previous work of Patrascu et al. (Patrascu e2@02).

Tetris In Section 7.2 we evaluate the performance of both our oglatiand propositional learners
using the stochastic computer-gaifetris, a reward-oriented domain where the goal of a player is
to maximize the accumulated reward. We compare our resutteetperformance of a set of hand-
crafted features, and the performance of randomly seldetgdres.

Planning Competition Domains In Section 7.3, we evaluate the performance of our relationa
learner in seven goal-oriented planning domains from theihkernational probabilistic planning
competitions (IPPCs) (Younes et al., 2005; Bonet & GivarQ&}0 For comparison purposes, we
evaluate the performance of our propositional learner andfwthe seven domain®(ocksworld
and a variant oBoxworld described below). Results from these two domains illusttiag diffi-
culty of learning useful propositional features in compitanning domains. We also compare the
results of our relational planner with two recent compeatitstochastic planners FF-Replan (Yoon
et al., 2007) and FOALP (Sanner & Bouitilier, 2006) that hawthlperformed well in the planning
competitions. Finally, we compare our results to thoseinbthby randomly selecting relational
features and tuning weights for them. For a complete desmmipf, and PPDDL source for, the
domains used, please see (Younes et al., 2005; Bonet & Gl08%).

Every goal-oriented domain with a problem generator fromftrst or second IPPC was con-
sidered for inclusion in our experiments. For inclusion,reguire a planning domain with a fixed
action space, as defined in Section 2.4, that in addition hisground conjunctive goal regions.
Four domains have these properties directly, and we hayeedithree more of the domains to have
these properties as we describe in the next paragraph. $hkimg selection provides seven IPPC
planning domains for our empirical study. Figure 3 lists tbasons for the exclusion of the other
six goal-oriented domains. In addition, four of the domahet we use in evaluation occur in both
competitions in slightly different forms and we evaluate are version of each of these four, as
described in Figure 4.

The three domains we adapted for inclusion are as followsch&ted our own problem gen-
erators for the first IPPC domaiff®wers of Hanoi andFileworld, as none were provided in the
competition. For both these domains, there is only one most@f each size. In Towers of Hanoi,

23

Domain name IPPC versionReason for exclusion

Colored blocksworld IPPC1 Goal region is not a ground conjunction

Drive IPPC2 Uses predicates with three or more arguments
Elevators IPPC2 Uses predicates with three or more arguments
Pitchcatch IPPC2 Action space not fixed throughout domain
Schedule IPPC2 Action space not fixed throughout domain
Random IPPC2 Action space not fixed throughout domain

Figure 3: Reasons for excluding some planning competit@nalns from our experiments.

. . Version)

Domain name | Differences used |Reason for choice

Many small differences

— IPPC2 addemptyhand, on-table(z), andclear(x) o
Blocksworld — IPPC2 removes table object ippcy |IPPC2 version inaccuracy

— IPPC2 adds actionpick-up-from-table, put-down, allowson(z, z)

pick-tower, put-tower-on-block, andput-tower-down

—IPPC2 allowson(z, x)
Exploding blocks No generator in IPPC1 IPPC2 |Problem generator in IPPC2
Tireworld No generator in IPPC1 IPPC2 |Problem generator in IPPC2
Zenotravel No generator in IPPC1 IPPC2 |Problem generator in IPPC2

Figure 4: Differences between IPPC1 and IPPC2 versionsaoinhg domains present in both competitions,
which version is used in our experimental evaluation, ang.wh

all instances share the same action set and state predisatdmt a suitable problem generator is
straightforward. In Fileworld, a planning domain with a filxaction space results if we consider
the collection of instances that share the same fixed nunftfetders, but varying the number of
files. When the number of folders varies, the state predicatel actions change, so that instances
with varying numbers of folders cannot be in the same fixdibaepace planning domain under
our definitions (preventing natural generalization betwgiges). For our experiments, we create a
suitable domain by coding a problem generator restrictedrame folders.

Furthermore Fileworld, as written for the competition, is partially proposititimad (for un-
known reasons). First, rather than have a one-argumenicpted'have-folder”, the competition
domain has one proposition “hayé&-for each folderf. Also, the competition domain duplicates
and renames each action for each folder rather than takdex fabject as an action argument (again
for unknown reasons). Finally, the competition domain aor® an apparent bug because it does
not give types to the objects, so it is possible to file a folddtself. Because we study relational
generalization here, we have constructed the obvious Mégsion of this domain with object types;
we include the PPDDL source as Appendix A-1 of this paper. ®ltloe resulting domaihifted-
Fileworld3.

Finally, for Boxworld, we modify the problem generator so that the goal regionviegs a
ground conjunctive expression by replacing the goal “aldsomust be at their destinations” with a
conjuction of specific box location goals. We call the raagldomainConjunctive-Boxworld.

SysAdmin We conclude our experiments by comparing our propositiaher with a previous
method by Patrascu et al. (Patrascu et al., 2002), usinchtheameSysAdmin domain used for
evaluation there. This empirical comparison on the SysAdmeimain is shown in Section 7.4.

24

6.2 Parameterization of our methods

Here we describe our choice of parameters for our methodseré\fiossible, parameterization is
done once, to apply identically to all experiments, as dieedrhere. There are some choices made
once for each domain, and these are described in the sulrselgdicated to each domain. The
primary choices that must be made in a domain-specific wairadearning from small problems:
we must specify for each domain the performance threshaeidhigh difficulty will be increased (as
shown in Fig. 1) as well as the sequence of difficulties to besiciered (in cases where there is more
than one parameter controlling problem size). We defer tiaréuresearch the topic of automated
control of problem difficulty when learning from small prebhs.

Trajectory termination Training sets for both feature learning and for AVI weighdafe are
drawn by drawing trajectories based on the current greeligypda problems drawn from the prob-
lem distribution at the current level of difficulty, as dé¢ali in Sections 3 and 2.5. It is an important
and somewhat independent research topic to automatieabgnize when such a trajectory is not
making progress, e.g., by recognizing dead-end regionsatédssand/or lack of progress towards
the goal. Any such research can be plugged into our methoéstlgi by terminating all training
trajectories when they fail an appropriate test.

Here, we do not address this issue in any sophisticated waietminate trajectories whenever
one of three conditions holds:

1. a goal state is reached,
2. adead-end state is reached,
3. the trajectory contains 1,000 steps.

Training set sizes Each feature-learning training set across all our relatitearning experiments
is drawn to be 20,000 states by the method described in Begti@ecause propositional feature
learning is faster than relational feature learning, weabte to allow 200,000 states in propositional
feature learning training sets in tfetris and SysAdmin experiments, but still only 20,000 states
in the planning domains.

Throughout all experiments, each AVI weight-update tragnset is drawn by collecting the
states from 30 trajectories.

Learning rate for weight updates in AVl As discussed in Section 2.5, we adjust the weights
of our approximated value functions using AVI. We use a de#inen-converge schedule for the
learning rate of this iterative gradient descent methodufihout our experiments (see (Darken &
Moody, 1992)); specifically, we set the learning ratin AVI to 1++/100 wherek is the number of
AVl iterations already executed.

Parametrization of the relational algorithm There are various parameters in the feature con-
struction process described in this section, includingltéam-width1¥/, the beam-search depth
limit d, the regularization parametar and the bound on the maximum number of quantifiers in
scopeg. Changes to these parameters affect the quality of thercatetl features by changing the
feature-space regions searched and the number of canfiidaiees considered, as well as changing
the preferences expressed in scoring the features. Thatisrlef these parameters further affects
the choice of the size of feature training set, as in pradéiaer training examples can be considered
when the number of candidate features grows.

25

Throughout all our experiments we choddé to be 60,d to be 5, and\ to be 0.03 for all
domains. We sef to 1 for the planning competition domains (settipgo 2 does not result in
a noted improvement in the performance in these domains whieig the above parameters, but
results in a substantial and occasionally intolerableimmtost), and we setto 2 for Tetris. These
severe limits ory are necessary to control the expense of searching thedesgtace. Note however
that there is implicit quantification in the transitive-sloe predicates and min/max predicates in the
extended predicate set defining the feature space, in additithe explicit quantifiers limited by
See Section 4.1 for discussion of the extended predicate set

Parametrization of the propositional algorithm Our propositional feature learning algorithm is
already well defined in Section 4.4, except for how to setwpuinderlying C4.5 learner (Quinlan,
1993). We use the default parameters for C4.5, except fdiotlmving: we use the gain criterion

instead of the gain ratio criterion. We allow the trees toagfmom a node without any restriction

on the minimum number of objects in the resulting brantha@e pruning confidence level is set
to 0.9.

7. Experimental Results
7.1 How to read our results

The task of evaluating a feature-learning planning systesabtle and complex. This is particularly
a factor in the relational case because generalizationdsgtywroblem sizes and learning from small
problems must be evaluated. The resulting data is exteasi@éighly structured, requiring some
training of the reader to understand and interpret. Herentveduce the reader to the structure of
our results.

In experiments with the propositional learning (or with damly selected propositional fea-
tures), the problem size never varies within one run of thenker, because the propositional repre-
sentation from Section 4.3 can’'t generalize between sisrun a separate experiment for each
size considered. Each experiment is two independent;téalsh trial starts with a single trivial
feature and repeatedly adds features until a terminatiaditon is met. After each feature addi-
tion, AVI is used to select the weights for combining the feas to form a value function, and the
performance of that value function is measured (by sampfiagperformance of the greedy policy).
We then compute the average (of the two trials) of the perfoce as a function of the number
of features used. Since this results in a single line plotesfggmance as a function of number
of features, several different fixed-problem-size lessr@m be compared on one figure, with one
line for each, as is done for example in Figures 7 and 14. Thienpeance measure used varies
appropriately with the domain as presented below.

We study the ability of relational representation from &et#.1 to generalize between sizes.
This study can only be properly understood against the apkdf the flowchart in Figure 1. As
described in this flowchart, one trial of the learner willnea sequence of features and encounter
a sequence of increasing problem difficulties. One itematibthe learner willeither add a new
featureor increase the problem difficulty (depending on the curremtopeance). In either case,
the weights are then retrained by AVI and a performance nmeasant of the resulting greedy policy
is taken. Because different trials may increase the sizéfateht points, we cannot meaningfully
average the measurements from two trials. Instead, wergrése independent trials separately

7. The default C4.5 parameter requires at least 2 brancbesany node to contain at least 2 objects.

26

in two tables, such as the Figures 5 and 12. For the first tnalalso present the same data a
second time as a line plot showing performance as a funcfianraber of features, where problem
size changes are annotated along the line, such as thempleigures 6 and 13. Note that success
ratio generally increases along the line when features @dedy but falls when problem size is
increased. (InTetris, however, we measure “rows erased” rather than success aatil “rows
erased” generally increases with either the addition ofvafeature or the addition of new rows to
the available grid.)

To interpret the tables showing trials of the relationakihes, it is useful to focus on the first
two rows, labeled “# of features” and “Problem difficulty.”h&se rows, taken together, show the
progress of the learner in adding features and and incigeasiiblem size. Each column in the table
represents the result in the indicated problem size usiagniticated number of learned features.
From one column to the next, there will be a change in only drikase rows—if the performance
of the policy shown in a column is high enough, it will be thelpem difficulty that increases, and
otherwise it will be the number of features that increasagther adding to the subtlety in inter-
preting these tables, we note that when several adjacamnoslincrease the number of features,
we sometimes splice out all but two of these columns to sameespThus, if several features are
added consecutively at one problem size, with slowly irgirgaperformance, we may show only
the first and last of these columns at that problem size, witbresequent jump in the number of
features between these columns. We likewise sometimesesplit columns when several consec-
utive columns increase problem difficulty. We have found thase splicings not only save space
but increase readability after some practice reading ttases.

Performance numbers shown in each column (success ratiavanage plan length, or number
of rows erased, foffetris) refer to the performance of the weight-tuned policy résglfor that
feature set at that problem difficulty. We also show in eadhroa the performance of that value
function (without re-tuning weights) on the target problsize. Thus, we show quality measures
for each policy found during feature learning on both theenirproblem size at that point and on
the target problem size, to illustrate the progress of iegrfrom small problems on the target size
via generalization.

In both propositional and relational experiments, triaks stopped by experimenter judgment
when additional results are too expensive for the value #neygiving in evaluating the algorithm.
Also, in each trial, the accumulated real time for the tsahieasured and shown at each point during
the trial. We use real time rather than CPU time to reflect @&®J costs such as paging due to high
memory usage.

7.2 Tetris

Overview of Tetris The gamelTetris is played in a rectangular board area, usually of $ize 20,

that is initially empty. The program selects one of the sestegpes uniformly at random and the
player rotates and drops the selected piece from the enteyadithe board, which piles onto any
remaining fragments of the pieces that were placed prelyiolis our implementation, whenever
a full row of squares is occupied by fragments of pieces, rihnatis removed from the board and
fragments on top of the removed row are moved down one rowyarteis also received when a row
is removed. The process of selecting locations and rosfionrandomly drawn pieces continues
until the board is “full” and the new piece cannot be placeghdrere in the board. Tetris is stochas-
tic since the next piece to place is always randomly drawhitos is the only stochastic element

27

Trial #1

of features o 1 2 3 11 11 12 17 17 18 18 18
Problem difficulty 5 5 5 5 5 6 6 6 7 7 8 9
Score 02 05 10 30 18 31 32 35 55 56 80 102
Accumulated time (Hr.)] 0.0 2 42 52 20 21 24 39 42 46 50 57
Target size score 0.3 1.3 14 1.8 178 238 261 176 198 211 217 221
Trial #2

of features 0O 1 2 3 8 8 12 12 14 14 14
Problem difficulty 5 5 5 5 5 6 6 7 7 8 9

Score 02 06 11 45 16 28 36 53 56 78 97
Accumulated time (Hr.)] 0.0 24 39 49 15 15 27 29 39 44 49
Target size score 0.3 1.7 1.7 30 104 113 108 116 130 157 171

Figure 5: Tetris performance (averaged over 10,000 games). Score is shoawrerage rows erased, and
problem difficulty is shown in the number of rows on the Telrimrd. The number of columns is always 10.
Difficulty increases when the average score is greater tba2d*(n-5), wheren is the number of rows in
the Tetris board. Target problem size is 20 rows. Some caduang omitted as discussed on page 27.

in this game. Tetris is also used as an experimental domgimewvious MDP and reinforcement
learning research (Bertsekas & Tsitsiklis, 1996; Driesseinal., 2006). A set of human-selected
features is described in (Bertsekas & Tsitsiklis, 1996) #ields very good performance when used
in weighted linearly approximated value functions. We aarfairly compare our performance in
this domain to probabilistic planners requiring PPDDL inhpecause we have found no natural
PPDDL definition for Tetris.

Our performance metric fofetris is the number of rows erased averaged over 10,000 trial
games. The reward-scaling parametgy,. is selected to be 1.

Tetris relational feature learning results We represent théetris grid using rows and columns as
objects. We use three primitive predicatéiic,), meaning that the square on colummow r is
occupiedpelow(ry, r2), meaning that row is directly below rowry; andbesid€ ¢y, c2), meaning
that columnc; is directly to the left of columre,. While our representation here uses only these
primitive domain predicates, the RRL result we compare &susuman-specified Tetris-specific
functions in the representation such as “number of holesie@3ens et al., 2006). The quantifiers
used in our relational Tetris hypothesis space are typetjuke types “row” and “column”.

There are also state predicates representing the piece tabdwop; however, for efficiency
reasons our planner computes state value as a function bt grid, not the next piece. This
limitation in value-function expressiveness allows a gigantly cheaper Bellman-backup compu-
tation. The one-step lookahead in greedy policy executimviges implicit reasoning about the
piece being dropped, as that piece will be in the grid in alrkxt states.

We conduct our relationdletris experiments on a 10-column;row board, withn initially set
to 5 rows. Our threshold for increasing problem difficulty dgding one row is a score of at least
15 4+ 20(n — 5) rows erased. The target problem size for these experime@iows. The results
for the relational Tetris experiments are given in Figuresm8 6 and are discussed below.

Tetris propositional feature learning results For the propositional learner, we describe the
Tetris state with 7 binary attributes that represent which of thée¢gs is currently being dropped,

28

Tetris, Relational, Trial 1

3 120
% 10x¢
i 100 o
X
g 80)
@ 60 10%7
)
g 401 10x6 g —g—E—B—8—H 10x¢
% 201 105 > 10xE
0 A T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Number of Features

Figure 6: Plot of the average number of lines erased oveD00@tris games after each run of AVI training
during the learning of relational features (trial 1). Vedilines indicate difficulty increases (in the number of
rows), as labeled along the plot.

Tetris, Propositional

Average Rows Erased

0 2 4 6 81012141618202224262830323436384042 4446 4850
Number of Features
| -B—10x5 —%—10x7 ——10x9 —6—10x20|

Figure 7: Plot of the average number of lines erased in 10T@d@s games after each iteration of AVI
training during the learning of propositional featuresraged over two trials.

29

Tetris, Propositional

160
140
120 -
100
80
60
40
20

Accumulated Time (Hr.)

0 2 46 8101214161820222426283032343638404244464850
Number of Features

—H—10x5 —>%—10x7 ——10x9 —6—10x20

Figure 8: Plot of the accumulated time required to reach eadtt in Figure 7, averaged over two trials.

along with one additional binary attribute for each grid agurepresenting whether that square is
occupied. The adjacency relationships between the gridreguare represented only through the
procedurally coded action dynamics. Note that the numbetadé attributes depends on the size of
the Tetris grid, and learned features will only apply to peots of the same grid size. As a result,
we show separate results for selected problem sizes.

We evaluate propositional feature learning in 10-colufetris grids of four different sizes: 5
rows, 7 rows, 9 rows, and 20 rows. Results from these foustaige shown together in Figure 7 and
the average accumulated time required to reach each pofigare 7 is shown in Figure 8.

Evaluating random features in Tetris In Tetris, we compare the results of both our learning
approaches against selecting features randomly to deratengttat indeed using statewise Bellman
error as the criterion to select features is essential tsibeess of our feature learning approaches.
The only difference between constructing learned feataresrandom features is we replace the
target value in our feature training set with a random nunfoem -1 to 1. We use the same
approach to generate random features later in the planmngaihis. Again, in our propositional
approach we only show results from using 200,000 statestora feature training sets.

In Figure 9 we show the results for random feature$etris. For random features using our
relational representation, we use the same schedule usttkfiearned relational features in Tetris
by starting with thel0 x 5 problem size. However, the performance of random featsnesver good
enough to increase the problem size. For the propositigmaioach we show the same problem
sizes as in the learned propositional features.

Evaluating human features in Tetris In addition to evaluating our relational and propositional
feature learning approach, we also evaluate how the huelanted features described in (Bert-
sekas & Tsitsiklis, 1996) perform in selected problem siZzew each problem size, we start from
all weights zero and use the AVI process described in Se@ibrio train the weights for all 21

features until the performance appears to converge. Wegehthe learning rate from % to
30

/100 @S human features require a larger step-size to convergiiyraphe human features are
normalized to a value between 0 and 1 here in our experim@vdsiun two independent trials for

30

Random Features

Average Rows Erased

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of Features

—B— Relational —>— Propositional 10x5 —A— Propositional 10x7
—o— Propositional 10x9 —e— Propositional 10x20

Figure 9: Plot of the average number of lines erased in 10T@@@s games using for randomly generated
features. The relational trial starts with th@ x 5 problem size and never achieves sufficient performance to
increase that size.

each problem size and report the performance of the befirpeng weight vector found in each
trial, in Figure 10.

|10 x 5]10 x 7|10 x 9] 10 x 20

Average rows erased, Trial[l 19 86 267 | 17,054
Average rows erased, TrialR 19 86 266 | 18,125

Figure 10: The average number of lines erased in 10Ted@s games for the best weighted combination of
human feature found in each of two trials of AVI and four pexblsizes.

Performance comparison between different approaches to Teés Several general trends
emerge from the results dretris. First of all, the addition of new learned features is alnabsiys
increasing the performance of the resulting tuned policytf@ current size and on the target size),
until a best performance point is reached. This suggestgea act selecting useful features. We
also find clear evidence of the ability of the relational esg@ntation to usefully generalize between
problem sizes: substantial performance is developed amatfet problem size without ever training
directly in that size.

In our two relational learning trials the best target siz&qgrenances were 261 and 171 rows
erased, respectively. For comparison, the best RRL respitrted in (Driessens et al., 2006) was
around 55 rows erased (as we estimate from reading the padliglot). Our relational approach
thus produces performance far superior to the policy lehine RRL, even though RRL is us-
ing human-engineered Tetris-specific features much mareisticated than those in the primitive
domain description. The setting for the RRL work is subsdigtdifferent in access to the world
model from our setting in that RRL leverages only the abilitgxecute actions, whereas our learner
requires the ability to compute Bellman backups. It is azdlé topic for future research to design
an approximate Q-learning version of our methods that woedpiire only action execution for

31

| Relational| Prop.10 x 5 | Prop10 x 7| Prop10 x 9| Prop10 x 20
Average feature learning time (Min]) 112 | 44 | 52 | 60 | 44

Figure 11: Table for the average feature learning time fiati@nal and propositional approaches.

training. What we can conclude here is that our learner is &blexploit this simple additional
model access to much more than compensate for the lack of anarhinput regarding feature
selection.

We find that the best performance of learned propositioratlifes is much lower than that of
learned relational features in all problem sizes shown,le@n though a larger feature training set
size and many more learned features are used for the priopasiapproach. This suggests that
the rich relational representation indeed is able to bet@ture the dynamics in Tetris than the
propositional representation.

We find that the performance of using random featurekeinis is significantly worse than that
of using learned features, demonstrating the our perfocsanprovements in feature learning are
due to useful feature selection (using Bellman error), imapl/ due to increasing the number of
features.

Our learned relational feature performancd(nx 20 Tetris is far worse than that obtained by
using the human-selected features with AVI here. HowewelDix 5 Tetris the relational feature
performance is close to that of the human features. The hdieadnres are engineered to perform
well in the 10 x 20 Tetris hence some concepts that are useful in performingmainaller problem
sizes may not exist in these features.

Our feature learner has definitely not replaced the valueuofdan engineering in selecting
features in this domain, though it does produce the bestimaxdarned policy known to date that
is found without exploiting human engineering of the featset. We suggest that humans use
sophisticated reasoning about the domain model as well iaber feature representation in order
to develop more useful features than our technique can.

Time to learn each feature In Figure 11 we show the average time required to learn aoaklt
feature or a propositional feature Tietris.

The time required to learn a relational feature is signifilgalonger than that required to learn
a propositional feature, even though for the propositi@mgroach a larger feature training set size
is being used.

Key Factors to Finding Human Tetris Features Automatically Here we discuss key factors
that may need to be addressed to be able to automaticallyraongeatures similar to the human-
selected ones iietris. Of course, the rich knowledge representation used by hngimeers is a
critical factor. The human feature set we evaluate in thipaontains features defined with flexible
usage of defined concepts such as “column height,” “diffegeim height of adjacent columns,”
and “maximum height of all columns.” One can imagine seaigla feature hypothesis language
automatically containing such richer constructs, but drif such richness to avoid unacceptable
runtime cost could possibly become a major issue. Gengvedl\suggest careful enrichment of the
knowledge representation in the direction of capturingimtisished quantified concepts concisely
as defined concepts using few or no explicit quantifiers asitiut direction for future research.

32

The human feature set contains many features defined oneadbr column. This suggest
considering type-based feature discovery so that a newrgeatould be added for each object of
the same type. Nothing like this is done by our current method

The human feature set also contains a feature counting theerof covered up “holes” in the
board. This feature is likely derived by reasoning abouttihes of the game and realizing that such
holes are difficult to fill. Bellman error evaluation couldagla role in such reasoning. The state
of the art in planning, learning, and reasoning is far shbftnaling such a feature via reasoning
without also doing an unmanageable amount of other, ussasening. Nonetheless, using some
form of targeted reasoning from the rules to define an endiéeature-description space is a feasible
direction for future research.

7.3 Probabilistic Planning Competition Domains

Throughout the evaluations of our learners in planning dosave use a lower plan-length cutoff of
1000 steps when evaluating success ratio during the itergarning of features, to speed learning.
We use a longer cutoff of 2000 steps for the final evaluatiopadities for comparison with other
planners and for all evaluations on the target problem Sibe reward-scaling parametey, ;. is
selected to be 1 throughout the planning domains.

For domains with multi-dimensional problem sizes, it remsaan open research problem on how
to change problem size in different dimensions automdyitalincrease difficulty during learning.
Here, inConjunctive-Boxworld andZenotravel, we hand-design the sequence of increasing prob-
lem sizes.

Blocksworld In the probabilistic, non-reward version Blocksworld from the first IPPC, the
actionspickup and putdown have a small probability of placing the handled block on tigld
object instead of on the selected destination.

For our relational learner, we start with 3 blocks problelve. increase from blocks ton + 1
blocks whenever the success ratio excaefsand the average successful plan length is less than
30(n — 2). The target problem size is 20 blocks. Results are showrgurés 12 and 13.

For our propositional learner, results for problem size8,04, 5, and 10 blocks are shown in
Figure 14, with accumulated time taken shown in Figure 15.

Our relational learner consistently finds value functiorithvperfect or near-perfect success
ratio up to 15 blocks. This performance compares very falgreo the recent RRL (Driessens
et al., 2006) results in the deterministic blocksworld, veéhgoals are severely restricted to, for
instance, singl®©N atoms, and the success ratio performance of around 0.9rf® th ten blocks
(for the singleON goal) is still lower than that achieved here. Our resultslotksworld show
the average plan length is far from optimal. We have obselaeg® plateaus in the induced value
function: state regions where all states are given the satoe w0 that the greedy policy wanders.
This is a problem that merits further study to understand fgajure-induction does not break such
plateaus. Separately, we have studied the ability of losaich to break out of such plateaus (Wu,
Kalyanam, & Givan, 2008).

The performance on the target size clearly demonstrategssitil generalization between sizes
for the relational representation.

The propositional results demonstrate the limitationsefgropositional learner regarding lack
of generalization between sizes. While very good value tfans can be induced for the small
problem sizes (3 and 4 blocks), slightly larger sizes of 5@blbcks render the method ineffective.

33

Trial #1

of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 100 1 1 095 1 1 1 097
Plan length 89 45 20 133 19 33 173 395
Accumulated time (Hr.)l 0.5 1.0 15 22 33 39 10 36
Target size SR 0O O O O 0.98 09 0.98 0.97
Target size Slen. - - = = 761 724 754 745
Trial #2

of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 1 1 1 094 1 1 1 0.96
Plan length 80 48 19 125 17 34 167 386
Accumulated time (Hr.)l 0.5 10 14 20 33 38 94 33
Target size SR 0O O O O 0.97 098 0.98 0.98
Target size Slen. - - — — 768 750 770 741

Figure 12:Blocksworld performance (averaged over 600 problems) for relatiomahker. We add one feature
per column until success ratio excedd$ and average successful plan length is less @tdn — 2), for n
blocks, and then increase problem difficulty for the nexuomh. Plan lengths shown are successful trials
only. Problem difficulties are measured in number of blogkifh a target problem size of 20 blocks. Some
columns are omitted as discussed on page 27.

In 10 block problems, the initial random greedy policy cano® improved because it never finds
the goal. In addition, these results demonstrate thatilegadditional features once a good policy
is found can degrade performance, possibly because AVbasfworse in the higher dimensional
weight space that results.

Conjunctive-Boxworld The probabilistic, non-reward version Bbxworld from the first IPPC

is similar to the more familiakogistics domain used in deterministic planning competitions, ekcep
that an explicit connectivity graph for the cities is definbdLogistics, airports and aircraft play an
important role since it is not possible to move trucks frone airport (and the locations adjacent
to it) to another airport (and the locations adjacent to lit) Boxworld, it is possible to move all
the boxes without using the aircraft since the cities mayalconnected with truck routes. The
stochastic element introduced into this domain is that wehi¥ock is being moved from one city to
another, there is a small chance of ending up in an unintecithiedAs described in Section 6.1, we
useConjunctive-Boxworld, a modified version of Boxworld, in our experiments.

We start with 1-box problems in our relational learner aratease fronm boxes ton + 1 boxes
whenever the success ratio exceeds 0.9 and the averagssfutptan length is better thaddn.
All feature-learning problem difficulties use 5 cities. W&euwo target problem sizes: 15 boxes and
5 cities, and 10 boxes and 10 cities. Relational learninglt®are shown in Figures 16 and 17, and
results for the propositional learner on 5 cities with 1,123 boxes are shown in Figures 18 and 19.

In interpreting theConjunctive-Boxworld results, it is important to focus on the average suc-
cessful plan-length metric. In Conjunctive-Boxworld pierhs, random walk is able to solve the

34

Blocksworld, Trial 1

° 1 3 blocks 3 bLOCkE 3 b|9ck5 4,5, 10 block
3 X 15 block:
o - .
8 0.95 4 bl|(-)'cks
(O]
8 0.9
>
@ O.Sj,;\/
/I\/
0 T T i i
0 1 2 3
Number of Features
Blocksworld, Trial 1
S
S
400 -
et X5 block
& 300
o
2 200
@ 4 block X10 block:
[5) 3 blocks C
8 100 4 3 blocks
> 3 blocke 5 blocks
0 0 5) 4 blocks
0 1 2 3

Number of Features

Figure 13:Blocksworld success ratio and average successful plan length (aveoage@00 problems) for
the first trial from Figure 12 using our relational learner.

problem nearly always, but often with very long pl&nghe learned features enable more direct
solutions as reflected in the average plan-length metric.

Only two relational features are required for significamtproved performance in the problems
we have tested. Unlike the other domains we evaluate, foEtmgunctive-Boxworld domain the
learned features are straightforwardly describable inligimg The first feature counts how many
boxes are correctly at their target city. The second feataumts how many boxes are on trucks.

We note the lack of any features rewarding trucks for beinthen“right” place (resulting in
longer plan lengths due to wandering on value-functionealas). Such features can easily be writ-
ten in our knowledge representation (e.g. count the trumtatéd at cities that are the destinations
for some package on the truck), but require quantificaticer beth cities and packages. The severe
limitation on quantification currently in our method for eféncy reasons prevents consideration of
these features at this point. Itis also worth noting thatasgjon-based feature discovery, as studied
in (Sanner & Boutilier, 2006; Gretton & Thieébaux, 2004)nd#e expected to identify such features

8. We note that, oddly, the IPPC competition domain used h@section preconditions prohibiting moving a box away
from its destination. These preconditions bias the randatk automatically towards the goal. For consistency with
the competition results, we retain these odd preconditialtisough these preconditions are not necessary for good
performance for our algorithm.

35

Blocksworld Success Ratio

1.00

0.80

0.60

Success Ratio

0.40

0.20

0.00

450

Number of Features
—A— 3 blocks —+—4 blocks ——5 blocks —B8— 10 blocks

Blocksworld Successful Plan Length

400

350 A
300 -
250 A
200

Plan Length

150

100

50 -

0 2 4 6 8 10
Number of Features
| —A— 3 blocks —— 4 blocks ——5 blocks |

Figure 14:Blocksworld performance success ratio and average successful plath l@vgraged over 600
problems) for our propositional learner, averaged overttveds.

36

Blocksworld Accumulated Time

Accumulated Time (Hr.)

Number of Features
—A— 3 blocks —+— 4 blocks —>—5 blocks —=— 10 blocks

Figure 15: Accumulated run-time Blocksworld for our propositional learner, averaged over two trials.

regarding trucks by regressing the goal through the acfiomloading a package at the destination.
Combining our Bellman-error-based method with regresbased methods is a promising future
direction.

Nevertheless, our relational learner discovers two ceraiwl useful features that dramatically
reduce plan length relative to the initial policy of randoralkv This is a significant success for
automated domain-independent induction of problem featur

One trial of the relational feature learner @onjunctive-Boxworld takes several days, even
though we have fixed the number of cities for the training fgis at five cities. New techniques are
required for improving the efficiency of feature learninddye we can provide results for training in
larger numbers of cities. Our results here demonstratethieaturrent representation and learning
methods adequately manage small city graphs even withrlamg larger numbers of boxes to
deliver, and that the resulting value functions succelysfigneralize to 10-city problems.

In this domain, a well known weakness of AVl is apparent. WY1 often works in practice,
there is no theoretical guarantee on the quality of the weightor found by AVI training. (Al-
ternatively, an approximate linear programming step coefdace AVI training to provide a more
expensive but perhaps more robust weight selection.) ICthgunctive-Boxworld results, AVI
training goes astray when selecting weights in the 12 boxaitlosize in Trial 1. As a result, the
selected weights overemphasize the first feature, negiettie second feature. This is revealed in
the data shown because the plan-length performance degsapgficantly for that one column of
data. When AVI is repeated at the next problem size (13 boges)d performance is restored. A
similar one-column degradation of plan length occurs & Riat the 10-box and 12-box sizes.

For our propositional experiments in thi@onjunctive-Boxworld, we note that, generally,
adding learned propositional features degrades the sicatesperformance relative to the initial
random walk policy by introducing ineffective loops intcetiyreedy policy. The resulting greedy
policies find the goal in fewer steps than random walk, buegaly pay an unacceptable drop in

37

Trial #1

of features 0 i1 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 10 11 12 13 15
Success ratio 097 1 1 1 1 1 1 1 1 1 1
Plan length 226 84 23 37 44 54 77 80 313 87 92

Accumulated time (Hr)) 7.2 10 13 14 16 21 42 49 57 65 84
Target size #1 SR 098 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. | 1056 359 93 91 90 92 90 92 355 90 091
Target size #2 SR 0.16 0.90 0.97 0.97 0.96 0.98 0.96 0.98 0.90 0.98 0.96
Target size #2 Slen. | 1583 996 238 230 233 244 240 238 1024 240 239

Trial #2

of features 0 i1 2 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 9 10 11 12 13 15
Success ratio 097 1 1 1 1 1 1 1 1 100 1 1
Plan length 235 85 24 34 43 54 72 299 80 310 84 91

Accumulated time (Hr) 7.3 11 14 16 18 23 39 45 51 60 68 86
Target size #1 SR 09% 1 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. | 1019 365 90 91 91 92 89 359 89 363 90 90
Target size #2 SR 0.19 0.9 0.97 0.97 0.98 0.98 0.97 0.92 0.98 0.91 0.97 0.96
Target size #2 Slen. | 1574 982 226 230 233 233 242 1006 231 1026 240 233

Figure 16: Conjunctive-Boxworld performance (averaged over 600 problems). We add one éeptir
column until success ratio is greater than0.9 and average successful plan length is less #tan for n
boxes, and then increase problem difficulty for the nextwwiu Problem difficulty is shown in number of
boxes. Throughout the learning process the number of d#i€s Plan lengths shown are successful trials
only. Two target problem sizes are used. Target problem#izgas 15 boxes and 5 cities. Target problem
size #2 has 10 boxes and 10 cities. Some columns are omitthscassed on page 27.

success ratio to do so. The one exception is the policy foandrie-box problems using just two
propositional features, which significantly reduces pkmgth while preserving success ratio. Still,
this result is much weaker than that for our relational featanguage.

These problems get more severe as problem size increasie8-ox problems suffering severe
degradation in success rate with only modest gains in ssftdgslan length. Also please note
that accumulated runtime for these experiments is verye|aggpecially for 3-box problems. AVI
training is very expensive for policies that do not find thalg&omputing the greedy policy at each
state in a long trajectory requires considering each actinod the number of available actions can
be quite large in this domain. For these reasons, the priogaali technique is not evaluate at sizes
larger than three boxes.

Tireworld We use theTireworld domain from the second IPPC. The agent needs to drive a ve-
hicle through a graph from the start node to the goal node. nWheving from one node to an
adjacent node, the vehicle has a certain chance of suffarilag tire (while still arriving at the adja-
cent node). The flat tire can be replaced by a spare tire, lyifdhere is such a spare tire present

in the node containing the vehicle, or if the vehicle is cangya spare tire. The vehicle can pick up

a spare tire if it is not already carrying one and there is amegnt in the node containing the vehi-
cle. The default setting for the second-IPPC problem géoefar this domain defines a problem
distribution that includes problems for which there is ndigyoachieving the goal with probability
one. Such problems create a tradeoff between goal-achetgonobability and expected number

38

Boxworld, 5 Cities, Trial 1

_% Al box 1, 2, 3,5, 10, and 15 bo;
x 1 =
a Mv
4 4
8
o 0.95 -
n N —
T N—
ol ‘ ‘
0 1 2
Number of Features
Boxworld, 5 Cities, Trial 1
250
<>1\box
S
=2 200
)
-
c
& 150
o
2
0
@ 100 o © 15 boxes
8 ox X 10 boxes
>
a :
%0 g Bgig% 2 boxes
o 1 box
0 i T
0 1 2

Number of Features

Figure 17: Conjunctive-Boxworld success ratio and average successful plan length (avecaged00
problems) for the first trial using our relational learner.

of steps to the goal. How strongly our planner favors goaleagiiment versus short trajectories to
the goal is determined by the choice of the discount factatenia Section 6.1.

We start with 4-node problems in our relational learner armtgase frorm nodes ton + 1
nodes whenever the success ratio exceeds 0.85 and theeagacagssful plan length is better than
4n steps. The target problem size is 30 nodes. The results annsh Figures 20 and 21.

In Tireworld , our relational learner again is able to find features thatgaize well to large
problems. Our learner achieves a success ratio of aboutn03® mode problems. It is unknown
whether any policy can exceed this success ratio on thislgarolistribution; however, neither
comparison planner, FOALP nor FF-Replan, finds a higheresszcate policy.

We note that some improvements in success rate in this domtinecessarily be associated
with increases in plan length because success-rate impeaws may be due to path deviations to
acquire spare tires.

39

Boxworld Success Ratio

100 w A
2 0.80 T\
©
« \ \\ \/«
¢ 0.60
[0}
3
A 0.40 -
0.20 -
0.00
0 2 4 6 8 10
Number of Features
—A— 1 box —+— 2 box —%— 3 box
Boxworld Successful Plan Length
500
. . N2 X
400 -~ ~ - N .
< W ~——X
-
5 200 A\
o
100 -
0
0 2 4 6 8 10
Number of Features
—A— 1 box —+—2 box —>— 3 box

Figure 18: Conjunctive-Boxworld performance (averaged over 600 problems) for propositi@aaner,
averaged over two trials. Throughout the learning prodesstimber of cities is 5.

Zenotravel We use theZenotravel domain from the second IPPC. The goal of this domain is to
fly all travelers from their original location to their desdtion. Planes have (finite-range, discrete)
fuel levels, and need to be re-fuelled when the fuel levethiea zero to continue flying. Each
available activity (boarding, debarking, flying, zoomirgg, refueling) is divided into two stages,
so that an activity X is modelled as two actions start-X andsffirX. Each finish-X activity has

a (high) probability of doing nothing. Once a “start” actientaken, the corresponding “finish”
action must be taken (repeatedly) until it succeeds befoyeanflicting action can be started. This
structure allows the failure rates on the “finish” actionssimulate action costs (which were not
used explicitly in the problem representation for the cotitipa). A plane can be moved between

40

Boxworld Accumulated Time, 5 Cities

= —
e —

Accumulated Time (Hr.)

Number of Features
—A— 1 box —+—2 box —— 3 box

Figure 19:Conjunctive-Boxworld accumulated time (averaged over 600 problems) for prdpasitlearner,
averaged over two trials.

Trial #1

of features o 1 2 3 3 3 4 4 5 5 5 5
Problem difficulty 4 4 4 4 5 6 6 9 9 10 20 30
Success ratio 0.52 0.81 0.84 0.86 0.86 0.84 0.88 0.85 0.86 0.86 0.91 0.91
Plan length 4 3 4 2 2 2 3 3 4 4 5 5
Accumulated time (Hr) 0.3 3.1 12 17 18 18 19 21 22 23 29 36
Target size SR 0.17 0.53 0.81 0.83 0.83 0.82 0.90 0.91 0.91 0.91 0.92 0.92
Target size Slen. 5 4 9 5 4 4 6 6 6 6 5 6
Trial #2

of features 0 1 2 3 3 3 4 4 4 4

Problem difficulty 4 4 4 4 5 6 6 10 20 30

Success ratio 0.52 0.81 0.85 0.86 0.93 0.81 0.89 0.85 0.86 0.88

Plan length 4 3 3 2 3 2 3 4 4 5

Accumulated time (Hr) 0.5 3.7 69 10 11 11 12 14 18 24

Target size SR 0.19 0.49 0.80 0.82 0.91 0.62 0.92 0.91 0.90 0.88

Target size Slen. 7 3 9 4 5 2 5 5 6 6

Figure 20:Tireworld performance (averaged over 600 problems) for relatioraihler. We add one feature
per column until success ratio excedds5 and average successful plan length is less tharfor n nodes,
and then increase problem difficulty for the next column. nREngths shown are successful trials only.
Problem difficulties are measured in number of nodes, wittiget problem size of 30 nodes. Some columns
are omitted as discussed on page 27.

41

Tireworld, Trial 1

1
e 09 4, 5 nodes 6 nodes 20, 38 nodes
go 4nodes Argdes o ——% X
pi 08 / 6 nodes 9nodes 9, 10 nodes
)
807
o
S 0.6
n 0.5.8 4 nodes
2~ —
/l_/ ‘ | | | |
0 1 2 3 . -
Number of Features
Tireworld, Trial 1
6
! 20, 30 node
8 51 ;
S 4 nodes
< 44 .
= anoce Sbe 9, 10 nodes
s 3 &
2 2 6, 9 nodes
7]
8 4,5, 6 nodes
é 1
0 ‘ | ‘ | |
0 1 2 3 . :

Number of Features

Figure 21:Tireworld success ratio and average successful plan length (avesage@00 problems) for the

first trial using our relational learner.

42

Trial #1

of features 0 1 1 2 3 4 5 6 7 8 9
Problem difficulty 3,1,13,1,13,2,2 3,2,23,2,2 3,22 32,2 3,22 3,22 3,223
Success ratio 0.79 0.8 0.59 0.52 0.54 0.55 0.54 0.52 0.56 0.53 0.55
Plan length 253 255 413 440 437 450 411 440 426 428 451
Accumulated time (Hr))0.75 1.7 34 71 11 15 19 25 30 36 41
Target size SR 0.06 0.08 0.09 0.09 0.12 0.11 0.10 0.08 0.11 0.08 0.12
Target size Slen. 916 1024 1064 1114 1050 1125 1111 1115 1061 1174 1195
Trial #2

of features 0 1 2 2 3 4 5 6 7 8 9
Problem difficulty 3,1,13,1,13,1,13,223,22 3,22 3,22 3,22 3,22 3,223
Success ratio 0.77 0.79 0.80 0.55 0.55 0.50 0.53 0.12 0.12 0.12 0.10
Plan length 262 254 233 391 425 415 422 O 0 0 0
Accumulated time (Hr) 1.3 2.3 3.3 53 89 13 17 22 29 36 43
Target size SR 0.05 0.10 0.10 0.09 0.09 0.08 0.10 0.02 0.02 0.02 0.01
Target size Slen. 814 1008 1007 1067 1088 1014 1078 O 0 0 0

Figure 22:Zenotravel performance (averaged over 600 problems) for relatiorahler. The problem diffi-
culty shown in this table lists the numbers of cities, trave| and aircraft, with a target problem size of 10
cities, 2 travelers, and 2 aircraft. We add one feature pkemuoo until success ratio exceedss, and then
increase problem difficulty for the next column. Plan lersgghown are successful trials only.

locations by flying or zooming. Zooming uses more fuel thamfly but has a higher success
probability.

We start with a problem difficulty of 3 cities, 1 traveler, ahdircraft using our relational feature
learner. Whenever the success ratio excéetlswve increase the numberof travelers and aircraft
by 1 if the number of cities is no less than—2, and increase the number of cities by one otherwise.
The target problem size is 10 cities, 2 travelers, and 2afircZenotravel results for the relational
learner are shown in Figures 22 and 23.

The relational learner is unable to find features that en&¥léo achieve the threshold success
rate (0.8) for 3 cities, 2 travelers, and 2 aircraft, altho@gelational features are learned. The trials
were stopped because no improvement in performance was/adhor several iterations of feature
addition. Using a broader searc(= 160, ¢ = 3, andd = 3) we are able to find better features
and extend the solvable size to several cities with suceder9 (not shown here as all results in
this paper use the same search parameters, but reported & Gian, 2007)), but the runtime also
increases dramatically, to weeks. We believe the speedffaeadiecness of the relational learning
needs to be improved to excel in this domain, and a likely migotor is improved knowledge
representation for features so that key conceptZémotravel are easily represented.

Trial two in Figure 22 shows a striking event where addinghglsi new feature to a useful value
function results in a value function for which the greedyipokannot find the goal at all, so that
the success ratio degrades dramatically immediately. Nhatiein this small problem size, about
ten percent of the problems are trivial, in that the initi@te satisfies the goal. After the addition
of the sixth feature in trial two, these are the only problehespolicy can solve. This reflects the
unreliability of the AVI weight-selection technique moleah any aspect of our feature discovery:
after all, AVI is free to assign a zero weight to this new feaflbut does not. Additional study of

43

Zenotravel, Trial 1

1]
-% 3 cities, 1 person, 1 aircraft
o 0.8
7
§ 0.6 B
U:) 3 cities, 2 people, 2 aircraft 3 cities, 2 peoplejrraft
041
/0-]_/ T T T T T T T T T
0 1 2 3 4 5 6 7 8 9
Number of Features
Zenotravel, Trial 1
=
S 500
o
= 4001 3 3 cities, 2 people, 2 aircraft 3 cities, 2 people, 2 aircraft
[
o 300
=
“0(7)) 200 {—3-cities; & person, 1aircraft
@
S 100 -
7
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9

Number of Features

Figure 23:Zenotravel success ratio and average successful plan length (average@00 problems) for the
first trial using our relational learner.

44

Trial #1

of features o 1 2 3 4 5 6 7 7 8 9
Problem difficulty 3 3 3 3 3 3 3 3 4 4 4
Success ratio 0.56 0.58 0.56 0.63 0.56 0.68 0.62 0.71 0.4 0.45 0.43
Plan length i1 2 1 2 1 1 2 2 4 5 4

Accumulated time (Hr)) 0.6 1.4 22 31 42 59 87 11 12 20 28
Target size #1 SR 0.12 0.12 0.14 0.22 0.20 0.31 0.16 0.34 0.33 0.31 0.31
Target size #1 Slen. 3 3 3 5 4 6 9 6 6 5 5

Target size #2 SR 0O O 0 0.000.000.03 0 0.020.030.020.02
Target size #2 Slen. - - - 10 4 24 - 19 26 23 22
Trial #2

of features o 1 2 3 4 5 5 6 7 8 9
Problem difficulty 3 3 3 3 3 3 4 4 4 4 4
Success ratio 0.56 0.56 0.55 0.63 0.55 0.75 0.45 0.45 0.43 0.42 0.36
Plan length 1 2 1 2 1 2 4 5 5 4 4

Accumulated time (Hr)) 0.6 1.3 2.1 29 37 46 53 14 22 31 39
Target size #1 SR 0.14 0.15 0.12 0.18 0.17 0.33 0.31 0.32 0.31 0.28 0.30
Target size #1 Slen. 4 3 4 6 4 6 6 6 6 5 5
Target size #2 SR 0O O 0 0.010.000.020.010.010.020.010.01
Target size #2 Slen. - - - 19 18 26 27 15 21 15 18

Figure 24:Exploding Blocksworld performance (averaged over 600 problems) for relatiorsahker. Prob-
lem difficulties are measured in number of blocks. We add eagife per column until success ratio exceeds
0.7, and then increase problem difficulty for the next columrarAengths shown are successful trials only.
Target problem size #1 has 5 blocks, and target problem &r&a# 10 blocks.

the control of AVI and/or replacement of AVI by linear progreing methods is indicated by this
phenomenon; however, this is a rare event in our extenspererents.

Exploding Blocksworld We also usdexploding Blocksworld from the second IPPC to evaluate
our relational planner. This domain differs from the norBaicksworld largely due to the blocks
having certain probability of being “detonated” when theg being put down, destroying objects
beneath (but not the detonating block). Blocks that aredireletonated once will not be detonated
again. The goal state in this domain is described in towgnfients, where the fragments are not
generally required to be on the table. Destroyed objectsatdve picked up, and blocks cannot be
put down on destroyed objects (but a destroyed object clhibstpart of the goal if the necessary
relationships were established before or just as it wasalexst).

We start with 3-block problems using our relational learsed increase from blocks ton + 1
blocks whenever the success ratio exceeds 0.7. The targlefepr sizes are 5 and 10 blocks.
Exploding Blocksworld results for the relational learner are shown in Figures 24l 2651 The
results in Exploding Blocksworld are not good enough for pfenner to increase the difficulty
beyond 4-block problems, and while the results show limgederalization to 5-block problems,
there is very little generalization to 10-block problems.

Our performance in this domain is quite weak. We believeithtue to the presence of many
dead-end states that are reachable with high probabilitgs@ are the states where either the table
or one of the blocks needed in the goal has been destroyemtelibé object in question achieved the
required properties. Our planner can find meaningful arelegit features: the planner discovers

45

Exploding Blocksworld, Trial 1

1

il
S 0.8
o 3 blocks 3 blocks
a 3 blocks 3 blocks
g i 4 blocks
N 0.4 4 block '

T N——

/01\/ T T T T T T T T T

0 1 2 3 4 5 6 7 8 9
Number of Features

- Exploding Blocksworld, Trial 1
S 6
o
—:' ° 4 blocks
(\5 Ir.J | =)
o 4 4 blocks
S 3
b7 5 3 blocks 3 blocks 3 blocks
(n VN y u y .
Q 3 blocks
§ 1 \ 4 2 /
m 0 T T T T T T T T T

0 1 2 3 4 5 6 7 8 9

Number of Features

Figure 25: Exploding Blocksworld success ratio and average successful plan length (avecaged®00
problems) for the first trial using our relational learner.

that it is undesirable to destroy the table, for instancewéi@r, the resulting partial understand-
ing of the domain cannot be augmented by random walk (as it &ine other domains such as
Blocksworld and Conjunctive-Boxworld) to enable steadyiovement in value, leading to the

goal; random walk in this domain invariably lands the agent idead end. Very short successful
plan length, low probability of reaching the goal, and (rfadwn here) very high unsuccessful plan
length (caused by wandering in a dead end region) suggesietiak for new techniques aimed at
handling dead-end regions to handle this domain. Thesésammonstrate that our technique re-
lies on random walk (or some other form of search) so thatahmbd features need not completely
describe the desired policy.

Towers of Hanoi We use the domaiowers of Hanoifrom the first IPPC. In this probabilistic

version of the well-known problem, the agent can move on&ordiscs simultaneously, but there
is a small probability of going to a dead-end state on eachemand this probability depends on
whether the largest disc has been moved and which type ofrdige (one or two at a time) is being
used. We note that there is only one planning problem in esablgim size here.

It is important to note that 100% success rate is generalychievable in this domain due to
the unavoidable dead-end states.

46

Trial #1

of features 0 1 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 2 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.70 0.75 0.11 044 073 0 O O O O 051 o O O
Plan length 4 2 43 26 4 - - - - - 4 - - =
Accumulated time (Hr.) 0.0 0.0 01 02 03 04 05 11 12 21 22 23 18 53
Target size #1 SR 0.07 0.15 0.01 008 003 0 O O O O 052 053 0 043
Target size #1 Slen. 13 9 90 9% 3% - - - - - 4 4 - 4
Target size #2 SR 0.00 O 0 0O 000 O 0O 0O O O O 0O 0 O
Target size #2 Slen. 1 - - - 107 - - - - - = - - -
Trial #2

of features 0 0 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 3 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.71 0.23 014 042 075 0 O O O O 0583 0 0 O
Plan length 4 12 37 25 4 - - - - - 4 - - =
Accumulated time (Hr.) 0.0 0.0 02 03 03 04 05 11 19 23 26 27 6 16
Target size #1 SR 01 009 00 009 003 0 O O O O 049 0 O0 O
Target size #1 Slen. 14 11 105 9% 41 - - - - — 4 - - =
Target size #2 SR 000 01 O 0O 000 O O O O O O 0O 0 O
Target size #2 Slen. 16 29 - - w07 - - - - - - - - =

Figure 26:Towers of Hanoi performance (averaged over 600 problems) for relatioraahkr. We add one
feature per column until success ratio exce@@8 ! for n discs, and then increase problem difficulty for the
next column. Plan lengths shown are successful trials dtigblem difficulties are measured in number of
discs, with a target problem size #1 of 4 discs and size #2 &¢sd

We start with the 2-disc problem in our relational learned arcrease the problem difficulty
fromn discs ton + 1 discs whenever the success ratio excéetls . The target problem sizes are
4 and 5 discsTowers of Hanoiresults for the relational learner are shown in Figures 2623

The learner is clearly able to adapt to three- and four-dieblpms, achieving around 50%
success rate on the four disc problem in both trials. Thergtsolution for the four disc problem
has success rate 75%. This policy uses single disc movdsthmiarge disc is moved and then
uses double disc moves. Palicies that use only single dis@snor only double disc moves can
achieve success rates of 64% and 58%, respectively, onuhei&r problem. The learned solution
occasionally moves a disc in a way that doesn'’t get closdra@@obal, reducing its success.

Unfortunately, the trials show that an increasing numbenest features are needed to adapt
to each larger problem size, and in our trials even 38 totlfes are not enough to adapt to the
five-disc problem. Thus, we do not know if this approach caermek even to five discs. Moreover,
the results indicate poor generalization between probieass

We believe it is difficult for our learner (and for humans) apresent a good value function
across problem sizes. Humans deal with this domain by fatimg a good recursive policy, not by
establishing any direct idea of the value of a state. Findunth a recursive policy automatically is
an interesting open research question outside the scopées gfaper.

Lifted-Fileworld3 As described in Section 6.1, we use the domadited-Fileworld3 , which is a
straightforwardly lifted form ofFileworld from the first IPPC, restricted to three folders. To reach
the goal of filing all files, an action needs to be taken for edehto randomly determine which

a7

Tower of Hanoi, Trial 1

0.8 2 discs

Success Ratio

4 discs

) 5dis
0 1 2 3 4 5 6 7 8 20 380

Number of Features

Tower of Hanoi, Trial 1

50

c

Sa0 &N

T

& 30 3 discs

>

%20 -

0

810

(&) . .

3 4, Mo 4 discg
0 1 2 3 4 5 6 7 8

Number of Features

Figure 27:Towers of Hanoi success ratio and average successful plan length (aveoage@00 problems)
for the first trial using our relational learner.

folder that file should go into. There are actions for taking & folder, putting a file in that folder,
and returning the folder to the cabinet. The goal is reacheeiwvall files are correctly filed in the
targeted folders.

We note that bothrileworld and Lifted-Fileworld3 are very benign domains. There are no
reachable dead ends and very few non-optimal actions, déadhiah is directly reversible. Random
walk solves this domain with success rate one even for tfildg. The technical challenge posed
then is to minimize unnecessary steps so as to minimize ptagth. The optimal policy solves the
n-file problem with betweefn + 1 and2n + 5 steps, depending on the random file types generated.

Rather than preset a plan-length threshold for increadffigulty (as a function ofn), here we
adopt a policy of increasing difficulty whenever the methaitsfto improve plan length by adding
features. Specifically, if the success ratio exceeds 0.9ardeature is added without improving
plan length, we remove that feature and increase probldinudif instead?

9. It is possible to specify a plan-length threshold functior triggering increase in difficulty in this domain, as we
have done in other domains. We find that this domain is quiteitee to the choice of that function, and in the end
it must be chosen to trigger difficulty increase only wheritfar feature addition is fruitless at the current difficulty
So, we have directly implemented that automatic methodrifggering difficulty increase.

48

Trial #1

of features 0 1 2 3 3 4 4 4 4 4 4 4 4 4 55567 7 7 7
Problem difficulty 1 1 1 1 2 2 3 4 8 10 11 12 13 14 141516 16 16 18 19 20
Success ratio 1 1 1 1 1 1 1 1 1 11 11 1111111 11
Plan length 14 8 4 3 7 6 9 11 21 25 30 29 31 49 37 355537 37 41 43 45
Accumulated time (Hr{)0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 24 3.84.85.9 7.389 10 13 1591871 49 62
Target size SR 111 00 O0O0O1001001 1 1 112 22211 1 1 1
Target size Slen. 25113487 — — — — 87 82 91 88 93 65 90 91 65 91 65 65 65 111 65
Trial #2

of features 0 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Problem difficulty 1 1 1 1 2 2 3 4 5 8 9 10 14 15 16 17 181920 23 24 25
Success ratio 1 1 1 1 1 1 1 1 11111 1111111 11
Plan length 14 8 4 3 7 6 9 12 14 21 23 25 33 35 62 65 41 43 49 91 53 55
Accumulated time (Hr{)0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.6 2.53.1 3.9 9.0 11 13 19 27 3®GB466 74
Target size SR 11 1 0 0 0 009 1 1 1 12 2 2111111 11
Target size Slen. 25113588 - - — — 85 88 82 82 91 96 87 91 93 97 65 65 107 82 65

Figure 28:Lifted-Fileworld3 performance (averaged over 600 problems) for relatiorahler. We add one
feature per column until success ratio exceeds 0.9 and gddim extra feature does not improve plan length,
and then increase problem difficulty for the next columndiafemoving the extra feature). Plan lengths
shown are successful trials only. Problem difficulties aemasured in number of files, with a target problem
size of 30 files. Some columns are omitted as discussed orFage

We start with 1 file problems in our relational learner andéase fromn files ton + 1 files
whenever the performance does not improve upon featuréi@udilThe target problem size is 30
files. Lifted-Fileworld3 results for the relational learner are shown in Figures 2B2%h

The results show that our planner acquires an optimal pédicthe 30-file target size problem
after learning four features, in each of the two trials. Tésuits in this domain again reveal the
weakness of the AVI weight-selection method. Although flmatures are enough to define an opti-
mal policy, as problem difficulty increases, AVI often faitsfind the weight assignment producing
such a policy. When this happens, further feature additeom lue triggered, as in trial 1. In this
domain, the results show that such extra features do noepr@¥| from finding good weights on
subsequent iterations, as the optimal policy is recovegathawith the larger feature set. Nonethe-
less, here is another indication that improved performanag be available via work on alternative
weight-selection approaches, orthogonal to the topicatufe selection.

Random Features In order to show that our performance is not simply due to thmlver of
features, but to the feature-selection criterion, we gerdwo greedy policies in each domain using
random feature selection within our relational repred@na alternating AVI training, difficulty
increase, and feature generation as in the experimentgedpabove. For each domain, we select
the best performing policy generated in this manner, rupiiire algorithm until there are nine
random features selected or until the target problem diffida reached. We evaluate each greedy
policy acquired in this manner, measuring the average tamdlem-size performance in each
domain using the target problem sizes shown for each dontmivea The results are shown in
Figure 30. In no domain does random-feature generatiorogertomparably to our relational
feature learner, with the exception of three domain/sizaldnations where both learners perform
very poorly (Zenotravel, 10-block Exploding Blocksworlthd 5-disc Towers of Hanoi).

49

Lifted-Fileworld3, Trial 1

(@] "
% 1file 1 file 1 file 1 and 2 file 14 to 16 file: 16 files
& 1 © o] o = B—
" 2 to 14 file: 16 to 20 file:
0
8
S 0.954
n T Ne—
/'l_/
0 T i i i i i i
0 1 2 3 4 5 6 7
Number of Features
Lifted-Fileworld3, Trial 1
< 60
=3 3 16 files
o 20 files
- : A
& 40 14 files
o & 13files files|
= 11 files® 17 files
) == 10 files
§ 20
1 file
(@] 4 s H
= 1 file 2files 4filesX o ¢
; fil
@ \e\lge\gri 3 files
e
0 i i i i i i i
0 1 2 3 4 5 6 7

Number of Features

Figure 29:Lifted-Fileworld3 success ratio and average successful plan length (average@00 problems)
for the first trial using our relational learner.

Domain | BW | Box Box | Tire| Zeno | EX-BW | EX-BW | TOH| TOH | File

Size 20 | (15,5)| (10,10)| 30 |(10,2,2) 5 10 4 5 30
Random features SR 0 | 099 | 0.21 |0.67| 0.05 0.26 0.01 [0.24|0.03| 1
Random features SLen. — 946 | 1582 | 6 910 7 12 13 | 26 | 215
Learned features SR | 0.98| 1 0.98 [0.92| 0.11 0.34 0.03 | 051|0.00| 1
Learned features SLen| 748 | 90 235 5 1137 6 23 4 14 | 65
Random walk SR 0 | 097 | 0.18 [0.18| 0.06 0.13 0 0.09| 0.00| 1
Random walk SLen. — | 1038| 1579 | 6 865 4 - 14 | 14 | 251

Figure 30: Target-problem-size performance (averaged 6@ problems) of random relational features,
learned relational features, and random walk, averagediogdest results of two independent trials for each

target problem size.

Comparison to FF-Replan and FOALP We compare the performance of our learned policies to
FF-Replan and FOALP on each of the PPDDL evaluation domaied above. We use the problem
generators provided by the planning competitions to gea&@ problems for each tested problem
size except fofTowers of Hanoi and Lifted Fileworld3, where there is one fixed problem for

50

15 blocks BW 20 blocks BW 25 blocks BW 30 blocks BW
RFAVI #1 | 1 (483) 1 (584) 0.85 (1098) 0.75 (1243)
RFAVI#2 | 1.00 (463) 1.00 (578) 0.85 (1099) 0.77 (1227)
FF-Replan 0.93 (52) 0.91 (71) 0.7 (96) 0.23 (118)
FOALP 1 (56) 0.73 (73) 0.2 (96) 0.07 (119)

(10BX,5Cl)Box (10BX,10CI)Box (10BX,15CIhBox (15BX,5CBpx (20BX,20CIl)Box
RFAVI#1 | 1(76) 0.97 (225) 0.93 (459) 1 (90) 0.82 (959)
RFAVI#2 | 1 (75) 0.97 (223) 0.93 (454) 1(90) 0.82 (989)
FF-Replan 1 (70) 0.98 (256) 0.93 (507) 1(88) 0.35 (1069)
FOALP 1(35) 0.70 (257) 0.28 (395) 0.99 (56) 0.0 (7112)

20 nodes Tire 30 nodes Tire 40 nodes Tire| (10CI,2PR,2AT)Zeno
RFAVI#1 | 0.87 (5) 0.85(7) 0.98 (6) 0.06 (1240)
RFAVI#2 | 0.85(4) 0.84 (7) 0.97 (6) 0.07 (1252)
FF-Replan 0.76 (2) 0.73(3) 0.83 (3) 1(99)
FOALP 0.92 (4) 0.90 (5) 0.91 (5) N/A

5 blocks EX-BW 10 blocks EX-BW 4 discs TOH 5 discs TOH | 30 files Lifted-File
RFAVI#1 | 0.25(8) 0.02 (30) 0.43 (4) 0(-) 1(65)
RFAVI#2 | 0.25 (8) 0.01 (35) 0.47 (4) 0(-) 1 (65)
FF-Replan 0.91 (7) 0.45 (20) 0.57 (3) 0.37 (7) 1 (66)
FOALP N/A N/A N/A N/A N/A

Figure 31: Comparison of our planner (RFAVI) against FF{Be@mnd FOALP. Success ratio for a total of
900 attempts (30 attempts fdowers of Hanoi andLifted Fileworld3) for each problem size is reported,
followed by the average successful plan length in pareethekhe two rows for RFAVI map to two learning
trials shown in the paper.

|30 BW|(20,20) BX]|40 Tire| (10,2,2) Zeng10 EX-BW|5 TOH| 30 Files

RFAVI#1 | 106s 83s 1s 51s 2s - 1s
RFAVI#2 | 105s 86s Os 51s 3s - 1s
FF-Replan| 872s 739s Os 1s 8s 3s 10s
FOALP 16s 173s 24s N/A N/A N/A N/A

Figure 32: Average runtime of the successful attempts, fiteerresults shown in Figure 31, on the largest
problem size for each domain.

each problem size. We evaluate the performance of eachasl@intimes for each problem, and
report in Fig. 31 the success ratio of each planner in eadbilgmrosize (averaged over all attempts).
Our policies, learned from the two independent trials shabove, are indicated as RFAVI #1 and
RFAVI #2. Each planner has a 30-minute time limit for eackrapt. The average time required to
finish a successful attempt for the largest problem sizeéh damain is reported in Figure 32.

For each of the two trials of our learner in each domain, wduewa here the policy that per-
formed the best in the trial on the (first) target problem sizéere, a “policy” is a set of features
and a corresponding weight vector learned by AVI during tfe.} Performance is measured by
success rate, with ties broken by plan length. Any remaitieg are broken by taking the later
policy in the trial from those that are tied. In each case, wes@ler that policy to be the “policy
learned from the trial.”

51

The results show that our planner's performance is incoaiparwith that of FF-Replan (win-
ning in some domains, losing in others) and generally doteghat of FOALP.

RFAVI performs the best of the planners in largdocksworld, Conjunctive-Boxworld, and
Tireworld problems. RFAVI is essentially tied with FF-Replan in pemi@nce inLifted-
Fileworld3. RFAVI loses to FF-Replan in the remaining three domalfxqloding Blocksworld,
Zenotravel, andTowers of Hanoi. Reasons for the difficulties in the last three domains ase di
cussed above in the sections presenting results for thaosaids. We note that FOALP does
not have a learned policy in Zenotravel, Exploding BlockddioTowers of Hanoi, and Lifted-
Fileworld3.

RFAVI relies on random walk to explore plateaus of statesdiib¢rentiated by the selected
features. This reliance frequently results in long plargtea and at times results in failure. We
have recently reported elsewhere on early results from ioggwork remedying this problem by
using search in place of random walk (Wu et al., 2008).

The RFAVI learning approach is very different from the neashing online replanning used
by FF-Replan, where the problem is determinized, dropplhgrabability parameters. It is an
important topic for future research to try to combine thedjits obtained by these very different
planners across all domains.

The dominance of RFAVI over FOALP in these results impliest RFAVI is at the state of the
art among first-order techniques — those that work with tiodlem in lifted form and use lifted
generalization. Although FOALP uses first-order structinréeature representation, the learned
features are aimed at satisfying goal predicates indilliguaot as a whole. We believe that the
goal-decomposition technique can sometimes work well iallproblems but does not scale well
to large problems.

In these comparisons, it should also be noted that FOALPrimagad PPDDL domain descrip-
tions directly, but requires human-written domain axiorsifts learning, unlike our completely
automatic technique (requiring only a few numeric paransetdaracterizing the domain). This
requirement for human-written domain axioms is one of tlesoas why FOALP did not compete
in some of the competition domains and does not have a legrolery for some of the domains
tested here.

In Conjunctive-Boxworld!®, we note that FF-Replan uses an “all outcomes” problem deter
minization that does not discriminate between likely andlkety outcomes of truck-movement
actions. As a result, plans are frequently selected thaorelnlikely outcomes (perhaps choosing
to move a truck to an undesired location, relying on the @hjiloutcome of “accidentally” moving
to the desired location). These plans will usually failutéag in repeated replanning until FF luck-
ily selects the high-likelihood outcome or plan executi@ppens to get the desired low-likelihood
outcome. This behavior is in effect similar to the behavior learned value function exhibits be-
cause, as discussed on page 35, our learner failed to findeatyré rewarding appropriate truck
moves. Both planners result in long plan lengths due to mahglpful truck moves. However, our
learned policy conducts the random walk of trucks much méreiently (and thus more success-
fully) than the online replanning of FF-Replan, especiatlyhe larger problem sizes. We believe
even more dramatic improvements will be available with iowedd knowledge representation for
features.

10. We hand-convert the nested universal quantifiers andittamal effects in the original boxworld domain definition
to an equivalent form without universal quantifiers and dtmdial effects to allow FF-Replan to read the domain.

52

7.4 SysAdmin

A full description of theSysAdmindomain is provided in (Guestrin, Koller, & Parr, 2001). Hexe
summarize that description. In the SysAdmin domain, mashare connected in different topolo-
gies. Each machine might fail at each step, and the failusbalility depends on the number of
failed machines connected to it. The agent works towardmmiiing the number of failed machines
by rebooting machines, with one machine rebooted at eaah gtep. For a problem with ma-
chines and a fixed topology, the dynamic state space canfigentfy described by. propositional
variables, each representing the on/off status of a cemairhine.

We test this domain for the purpose of direct comparison@ptrformance of our propositional
techniques to the published results in (Patrascu et al2)200e test exactly the topologies evaluated
there and measure the performance measure reported tinenmeoisn Bellman error.

We evaluate our method on the exact same problems (same MB&dYor evaluation in (Pa-
trascu et al., 2002) for testing this domain. Two differeimidls of topologies are tested: 3-legs and
cycle. The “3-legs” topology has three three-node legsh@alinear sequence of three connected
nodes) each connected to a single central node at one endcyidie” topology arranges the ten
nodes in one large cycle. There are 10 nodes in each topolbgtarget of learning in this domain
is to keep as many machines operational as possible, so thigemwf operating machines directly
determines the reward for each step. Since there are onlpdé€srand the basic features are just
the on/off statuses of the nodes, there are a total of 108#ksstahe reward-scaling parametgs,;.
is selected to be 10.

(Patrascu et al., 2002) uség,; (sup norm) Bellman error as the performance measurement in
SysAdmin. Our technique, as described above, seeks to reduce mdamaBedrror more directly
than L, Bellman error. In particular, because we allow duplicatedes in our AVI training sets,
our weight selection prefers weights that have low meamtail error, even if the largest Bellman
error encountered is larger for such weights. For this mas@ here evaluate two versions of
our technique: that described and evaluated above, andai@arwhich is identical except that
duplicate states are removed from AVI training sets. We ntefbe L;,; Bellman error, averaged
over two trials, on both versions in Figure 33.

Also included in Figure 33 are the results shown in (Patrasel, 2002). We select the best re-
sult shown there (from various algorithmic approacheanftbe 3-legs and cycle topologies shown
in their paper. These correspond to the “d-o0-s” settingherdycle topology and the “d-x-n setting”
for the 3-legs topology, in the terminology of that paper.

Both topologies show that both variants of our algorithmues$ thel;,,¢ Bellman error more
effectively per feature as well as more effectively ovetladin the experiments previously reported
in (Patrascu et al., 2002). Both topologies also show tlaiihg duplicate states in the AVI training
sets eventually encourages value functions that with highBellman error after an initial substan-
tial success in reducing that Bellman error. The methodvatig duplicate states can still achieve
low Bellman error by remembering and restoring the besispming weighted feature set once
weakened performance is detected.

8. Discussion and future research

We have presented a general framework for automaticalinileg state-value functions by feature-
discovery and gradient-based weight training. In this Beuork, we greedily select features from

53

SysAdmin, 3-Legs Topology

32.7 11.6
10 va
S
]
c
©
E
©
o}
0 T
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Features
—o— 3-legs, dup—A— 3-legs, nodup—8— 3-legs, Patrascﬁj
SysAdmin, Cycle Topology
. 25.0418
S
i,
c
©
£
©
s}

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Features

‘ —o— Cycle, dup—A— Cycle, nodup—&— Cycle, PatrascLl

Figure 33: L ;,+ Bellman error for theSysAdmin domain (10 nodes) for two topologies. Values for the
results from (Patrascu et al., 2002) are taken from Figumned23aof (Patrascu et al., 2002). The labedup
represents trials of a variant of our method for which the A¥dight training sets have duplicate states

removed.

a provided hypothesis space (which is a parameter of theadpetb best correlate with Bellman
error features, and use AVI to find weights to associate widise¢ features.

We have proposed two different candidate hypothesis sgacdeatures. One of these two
spaces is a relational one where features are first-ordmufas with one free-variable, and a beam-

54

search process is used to greedily select a hypothesis. thi@elhypothesis space we have consid-
ered is a propositional feature representation whererestre decision trees. For this hypothesis
space, we use a standard classification algorithm C4.5 [@ih993) to build a feature that best

correlates with the sign of the statewise Bellman errotesd of using both the sign and magnitude.

The performance of our feature-learning planners is etedliasing both reward-oriented and
goal-oriented planning domains. We have demonstratedotitatelational planner represents the
state-of-the-art for feature-discovering probabiligfianning techniques. Our propositional planner
does not perform as well as our relational planner, and dageneralize between problem instances,
suggesting that knowledge representation is indeed aritic the success of feature-discovering
planners.

Bellman-error reduction is of course just one source of guig that might be followed in
feature discovery. During our experiments in the IPPC plemmlomains, we find that in many
domains the successful plan length achieved is much lohgerdptimal, as we discussed above on
page 52. A possible remedy other then our work (deployingcbgdn (Wu et al., 2008) is to learn
features targeting the dynamics inside the plateaus, amthase features in decision-making when
plateaus are encountered.

References

Bacchus, F., & Kabanza, F. (2000). Using temporal logicsxfwess search control knowledge for
planning. Artificial Intelligence 116, 123-191.

Bertsekas, D. P. (1995Ppynamic programming and optimal controAthena Scientific.
Bertsekas, D. P., & Tsitsiklis, J. N. (199@)euro-Dynamic ProgrammingAthena Scientific.

Bonet, B., & Givan, R. (2006). Non-deterministic plannimgdk of the 2006 international planning
competition. Website. http://www.ldc.usb.ve/ bonetfifc

Darken, C., & Moody, J. (1992). Towards faster stochastadgmt search. IfProceedings of the
4th Conference on Advances in Neural Information Processin

Davis, R., & Lenat, D. (1982)Knowledge-Based Systems in Artificial Intelligenbé&cGraw-Hill,
New York.

Driessens, K., & Dzeroski, S. (2004). Integrating guidamtto relational reinforcement learning.
Machine Learning57, 271-304.

Driessens, K., Ramon, J., & Gartner, T. (2006). Graph Keraled gaussian processes for relational
reinforcement learningMachine Learning64, 91-119.

Dzeroski, S., DeRaedt, L., & Driessens, K. (2001). Reftalaeinforcement learningMachine
Learning 43, 7-52.

Estlin, T. A., & Mooney, R. J. (1997). Learning to improve bafficiency and quality of planning.
In Proceedings of the 15th International Joint Conference difiéial Intelligence pp. 1227—
1232.

Fawecett, T. (1996). Knowledge-based feature discovenefatuation functions.Computational
Intelligence 12(1), 42—-64.

55

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policgrition with a policy language bias:
Solving relational markov decision processésurnal of Artificial Intelligence Research5,
75-118.

Fox, M., & Long, D. (1998). The automatic inference of stagariants in TIM.Journal of Artificial
Intelligence Researgt®, 367—421.

Gerevini, A., & Schubert, L. (1998). Inferring state coastts for domain-independent planning.
In Proceedings of the 15th National Conference on Atrtificialligence pp. 905-912.

Gretton, C., & Thiébaux, S. (2004). Exploiting first-ordegression in inductive policy selection.
In 20th Conference on Uncertainty in Artificial IntelligendgAl-04).

Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm prdjeas for factored MDPs. liProceed-
ings of the 17th International Joint Conference on Artifidigtelligence pp. 673-680.

Harris, R., Chabries, D., & Bishop, F. (1986). A variablepstes) adaptive filter algorithmlEEE
transactions on acoustics, speech, and signal proces3i{g), 309— 316.

Jacobs, R. (1988). Increased rates of convergence threaghiig rate adaptationNeural Net-
works 1, 295-307.

Kambhampati, S., Katukam, S., & Qu, Y. (1996). Failure dridynamic search control for partial
order planners: an explanation based approactificial Intelligence 88(1-2), 253-315.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic bdsisction construction for approximate
dynamic programming and reinforcement learningPmceedings of the 23th International
Conference on Machine Learning

Khardon, R. (1999). Learning action strategies for plagromains Atrtificial Intelligence 1131-
2), 125-148.

Kwong, R., & Johnston, E. (1992). A variable step size Imgatgm. IEEE Transactions on Signal
Processing4((7), 1633-1642.

Martin, M., & Geffner, H. (2004). Learning generalized pidis from planning examples using
concept language#pplied Intelligence20, 9-19.

Mathews, V., & Xie, Z. (1993). A stochastic gradient adapfiNter with gradient adaptive step size.
IEEE Transactions on Signal Processjdd(6), 2075-2087.

Mitchell, T. M. (1997). Machine Learning McGraw-Hill.

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (200Analyzing feature generation for value-
function approximation. IrProceedings of the 24th International Conference on Maghin
Learning

Patrascu, R., Poupart, P., Schuurmans, D., Boutilier, Gu&strin, C. (2002). Greedy linear value-
approximation for factored markov decision processefn Rroceedings of the 18th National
Conference on Atrtificial Intelligen¢gp. 285-291.

Quinlan, J. R. (1993)C4.5: Programs for Machine LearningMorgan Kaufmann.

Sanner, S., & Boutilier, C. (2006). Practical linear vaamproximation techniques for first-order
mdps. InProceedings of the 22nd Conference on Uncertainty in Aglflatelligence

Sutton, R. S. (1988). Learning to predict by the methodsroptaral differencesMachine Learning
3, 9-44.

56

Sutton, R. S., & Barto, A. G. (1998Reinforcement Learning: An IntroductioMIT Press.

Tesauro, G. (1995). Temporal difference learning and tdrgan. Communications of the ACM
38(3), 58-68.

Tsitsiklis, J., & Roy, B. V. (1997). An analysis of tempowdifference learning with function ap-
proximation. IEEE Transactions on Automatic Contydl2(5), 674—690.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink,&Blythe, J. (1995). Integrating planning
and learning: The PRODIGY architecturdournal of Experimental and Theoretical ,A(1).

Widrow, B., & Hoff, Jr, M. E. (1960). Adaptive switching cuds. IRE WESCON Convention
Record 96-104.

Williams, R. J., & Baird, L. C. (1993). Tight performance lmis on greedy policies based on
imperfect value functions. Tech. rep., Northeastern Usite

Wu, J., & Givan, R. (2007). Discovering relational domaimtf@es for probabilistic planning.
In Proceedings of the Seventeenth International Conferemc&womated Planning and
Schedulingpp. 344-351.

Wu, J., Kalyanam, R., & Givan, R. (2008). Stochastic enfdradl-climbing. In Proceedings of the
Eighteenth International Conference on Automated Plagaind Schedulingpp. 396—403.

Wu, J., & Givan, R. (2005). Feature-discovering approxanatlue iteration methods. Proceed-
ings of the Symposium on Abstraction, Reformulation, arnmédmmation pp. 321-331.

Yoon, S., Fern, A., & Givan, R. (2002). Inductive policy selen for first-order MDPs. IrPro-
ceedings of the 18th Conference on Uncertainty in Artifiiigdlligence

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A basefimeprobabilistic planning. IrPro-
ceedings of the Seventeenth International Conference tomfated Planning and Schedul-
ing, pp. 352—-358.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005heTirst probabilistic track of the
international planning competitiodournal of Artificial Intelligence ResearcB4, 851-887.

APPENDIX
A-1. PPDDL Source for Lifted-Fileworld3
The PPDDL source farifted-Fileworld3 with a problem size of 10 files.

(define (domain file-world)

(:requirements :typing
. di sjunctive-preconditions
: negative-preconditions
:conditional -effects
. probabilistic-effects
:uni versal - precondi tions)

(:types file folder)

57

(:predicates (has-type ?p - file)
(goes-in ?p - file ?f - folder)
(filed ?p - file)
(have ?f - folder))

(:constants FO F1 F2 - folder)

(:action get-type
:paraneters (?p - file)
:precondition (and (not (has-type ?p)))
.effect (and (has-type ?p)
(probabilistic

0. 333 (goes-in ?p FO)

0. 333 (goes-in ?p F1)

0. 334 (goes-in ?p F2))))

(:action get-fol der
:paraneters (?f - folder)
:precondition (and (forall (?x -folder) (not (have ?x))))
.effect (have ?f))

(:action file-F
cparaneters (?p - file ?f - folder)
:precondition (and (have ?f) (has-type ?p)
(goes-in ?p ?f))
ceffect (filed ?p))

(:action return-folder
:paraneters (?f - folder)
:precondition (have ?f)
.effect (not (have ?f)))
)

(define (problemfile-prob)
(:domain file-world)
(:objects pO pl p2 p3 p4 p5 p6 p7 p8 p9)
(:goal (and (filed p0) (filed pl) (filed p2) (filed p3)
(filed pd4) (filed p5) (filed p6) (filed p7)
(filed p8) (filed p9)))

58

