
Relational Sequential Inference
with Reliable Observations

Alan Fern and Robert Givan
Electrical and Computer Engineering

Purdue University

{afern, givan}@purdue.edu
November 26, 2003

Abstract

We present a trainable sequential-inference technique for processes
with large state and observation spaces and relational structure. Our
method assumes “reliable observations”, i.e., that each process state
persists long enough to be reliably inferred from the observations
it generates. We introduce the idea of a “state-inference function”
(from observation sequences to underlying hidden states) for repre-
senting knowledge about a process and develop an efficient sequential-
inference algorithm, utilizing this function, that is correct for processes
that generate reliable observations consistent with the state-inference
function. We describe a logical representation for state-inference func-
tions in relational domains and give a corresponding supervised learn-
ing algorithm. Empirical results, in relational video interpretation,
show that the resulting trainable system provides significantly im-
proved accuracy and speed relative to a variety of recent, hand-coded,
non-trainable systems.

1

1 Introduction

We consider processes with hidden state that produce sequences of noisy ob-
servations. By watching the observations, our task is to infer the underlying
state sequence of the process. We are interested in problems with enormous
numbers of possible states and observations that are represented in relation-
ally factored form (with sets of relational atoms such as ON(block1, block2)).
In such large problems, general-purpose modeling approaches that fail to
make strong structural assumptions are typically intractable.

In place of more familiar independence assumptions (e.g. Markov model-
ing), our inference approach exploits an assumption that the process gener-
ates “reliable” observations. By this we mean that hidden states persist for
multiple observations, and that the sequence of observations generated while
remaining in a single hidden state reliably determines the state—i.e., no other
hidden state is likely to generate that sequence of observations. The assump-
tion of reliable observations appears to hold well in our video-interpretation
application domain. Many video frames pass while the underlying inter-
pretation remains fixed, and we are able to infer (using a “state inference
function”) that underlying interpretation from the sequence of frames.

We introduce the idea of using a state-inference function to represent
knowledge about a process. We provide an efficient sequential-inference al-
gorithm that is correct, assuming reliable observations and a correct state-
inference function. Our inference algorithm is not tied to a particular repre-
sentation of states, observations, or state-inference function. Thus, we first
describe the problem setup (Section 2) and inference method (Section 3)
for arbitrary sets of observations and states. When these sets are relation-
ally represented, our method provides general-purpose, relational, sequential
inference, given reliable observations.

Although our inference technique is independent of the representation,
representation is relevant because the required state-inference function is gen-
erally unavailable and must be learned automatically. To facilitate learning,
the states and observations must be represented in some factored form, and
below we describe a (familiar) general relational representation (in Section 4).
We then describe a logic-based representation for relational state-inference
functions and provide a corresponding supervised learning algorithm (in Sec-
tion 5). Finally, we give promising experimental results for that relational
representation (in Section 6) in our (noisy) video-interpretation application.

We note that probabilistic modeling and inference is a popular approach

2

to dealing with noisy problems such as ours; however, here we do not use
probabilistic methods. Related probabilistic modeling work is applicable only
with unclear extensions (see Section 7). Here, we present a simple, logical-
constraint-based approach with surprising robustness to noise.

2 Problem Setup
A sequential process is a triple (O,S,P), where the observation space O and
state space S are arbitrary disjoint sets that contain all possible observations
and states, respectively. P is a probability distribution over (O×S)∗, i.e., the
space of finite sequences constructed from members of O×S. We can extract
from each such sequence a pair of an observation sequence (o-sequence) and a
state sequence (s-sequence), and we often treat P as assigning probabilities to
such pairs. We say state s generates o-sequence o1, . . . , ok in state-observation
sequence P , if (s, o1), . . . , (s, ok) is a subsequence of P , and also that o1, . . . , ok

is generated by consecutive states s1 and s2 in sequence P if, for some t, the
sequence (s1, o1), . . . , (s1, ot), (s2, ot+1), . . . , (s2, ok) is a subsequence of P .

Sequential inference is the problem of mapping an o-sequence to the most
likely (hidden) s-sequence. In our large structured problems, the o-sequence
typically determines the s-sequence, so we simplify this goal to finding the
single possible s-sequence. Here, we do not require a model of P, rather we
use supervised learning, needing only to sample a training set of sequences
of state/observation pairs from P.

Our method leverages an assumption that hidden states persist for many
observation steps. We also assume that the utility of an inferred state se-
quence primarily derives from the sequence of distinct states (with consec-
utive repetitions removed), rather than whether it also identifies the exact
state-transition points. This assumption holds in our video-interpretation
domain, where the exact location of transition points is often ambiguous (as
judged by a human observer) and unimportant. For example, in Figure 1,
it will typically be unimportant exactly which frame is considered to be the
transition. We therefore consider a state-sequence label to be accurate if it
agrees on the sequence of distinct states. Let Compress(S) denote the se-
quence that is derived from S by removing its consecutive repetitions. For ex-
ample, Compress(a; a; a; b; b; a; c; c) = a; b; a; c. We consider Compress(S)
to be an accurate label for the sequence S.
Example 1. In our experimental video-interpretation domain, the process
corresponds to a hand playing with a set of blocks. Figure 1 shows key video
frames from a sequence where the hand picks up a red block from a green

3

Frame 1 Frame 3 Frame 14 Frame 21
Figure 1: Key frames in a video segment showing a hand picking up a red block from a
green block. The object tracker’s output is shown by the polygons. The video segment
has two distinct force-dynamic states given by: {Grounded(hand), Grounded(green),
Contacts(green,red)} (frames 1 and 3) and {Grounded(hand), Grounded(green),
Attached(hand,red)} (frames 14 and 20). The transition occurs between frames 3 and
14. See Example 3 regarding the predicates Grounded, Contacts, and Attached.

block. Our goal is to observe the video and infer the underlying force-dynamic
states, describing the support relations among the objects. The figure caption
describes the single state transition. States are represented as sets of force-
dynamic facts, such as Attached(hand,red). Observations are repre-
sented as sets of low-level numeric facts, such as Distance(green,red, 3),
that are easily derived from an object tracker’s noisy output (shown by the
polygons in the figure). The state and observation sets are large, with roughly
235 states for a three-block scene with one hand.

3 Sequential Inference with Reliable Observations

A simple approach to the sequential inference problem is to assume that each
observation uniquely determines the state generating it. We could then use
the training data to learn a (possibly non-trivial) observation-state mapping
that can reconstruct a hidden s-sequence from a given o-sequence. How-
ever, this assumption is quite strong, and, empirically, does not hold in our
video-interpretation domain, due to noise and natural ambiguity near force-
dynamic transitions. Instead, we make a much weaker assumption sufficient
for robust performance: we assume reliable observations, as defined below.

Deinition 1 (Defining Sequence). For process P, an o-sequence O is a
defining sequence for state s if: (1) s generates O in some sequence drawn
from P, and (2) no other state generates O in any sequence drawn from P.

Deinition 2 (Reliable Observations). Process P has reliable observa-
tions with redundancy r if, in each sequence drawn from P, each state s
persists long enough to generate an observation sequence that can be divided
into at least r consecutive defining sequences for s.

Let ROr denote the set of processes having reliable observations with

4

redundancy at least r. Later we show that our inference technique is correct
for processes in RO2. In practice, processes with rare violations of this
assumption also admit our techniques. The reliable observations assumption
is intuitively nearly met by our video-interpretation domain, where semantic
scene properties persist for enough video frames to be inferred.

Reliable observations (with redundancy at least 1) imply that the maximal-
length observation sequence generated by a state, any time that state occurs,
cannot be generated by any other state. Thus, under reliable observations,
there exists a mapping from “long enough” o-sequences generated by single
states to the unique states likely to generate them. A state-inference function
σ is, then, a mapping fromO∗ to S∪{⊥}. We say that σ is correct if, for each
O ∈ O∗, σ(O) is a state capable of generating O under P, and σ(O) = ⊥ ex-
actly when no single state is capable of generating O under P. Our inference
algorithm assumes we have a nearly correct state-inference function (particu-
larly, correct for “long enough” observation sequences), which we provide for
our application by machine learning (see Section 5). A correct σ is monotone,
returning ⊥ for a sequence whenever it returns ⊥ for any subsequence.

Given an o-sequence O, if we are somehow told which subsequences
of O were generated by single states, then we can apply a correct state-
inference function to each such subsequence to correctly infer the underlying
s-sequence. However, in practice, we are not given this information. Nev-
ertheless, under reliable observations we are able to infer this subsequence
information with sufficient accuracy by detecting state transitions. To see
how, note that, by definition, no single state can generate an o-sequence
that contains defining sequences for two distinct states. This implies that
a correct state-inference function “detects transitions” by returning ⊥ on
a “long enough” o-sequence generated by consecutive states—in particular,
long enough to include a defining sequence from each state. This property
leads to a greedy algorithm for constructing a compressed s-sequence.

The forward-greedy-merge (FGM) algorithm, Figure 2, applies a state-
inference function σ to increasing prefixes of o-sequence O, until locating the
shortest prefix o1, . . . , ok for which σ(o1, . . . , ok) is ⊥. For correct σ, and O
drawn from P, k ≥ 2. If k = 1, then o1 has been incorrectly labeled “impossi-
ble”, and the algorithm returns “fail”. Otherwise, FGM adds σ(o1, . . . , ok−1)
to the inferred s-sequence and recursively processes the remaining suffix of
O. The number of calls to σ is linear in |O|. In our application, σ runs in
poly-time in its input size, and thus the overall inference process is poly-time.

5

FGM(O, σ)
Input: Obs. seq. O = (o1, . . . , on),

State-inference function σ
Output: Compressed state seq. or “fail”
if O = NULL then return NULL
if σ(o1) = ⊥ then return “fail”
k← 2
while (σ(o1, . . . , ok) 6= ⊥) && (k ≤ n)

k ← k + 1
S′ ← FGM((ok, . . . , on), σ)
if S′ = “fail”

then return “fail”
else return σ(o1, . . . , ok−1) | S′

Figure 2. Pseudo-code for forward-greedy-
merge.“x|y” is the list y with x at the front.

In practice, we handle the case
that FGM returns “fail” due to an
incorrect σ by pre-processing the ob-
servation sequence to remove all sin-
gle observations identified incorrectly
as “impossible” by σ. We give em-
pirical results with and without this
sequence-cleaning, showing that very
few observations are removed, but that
such removal improves performance.

Example 2. The FGM algorithm is
inspired by imagining a viewer watch-
ing a (noisy) video very slowly, an-
alyzing each frame consciously. Any
given frame may not provide enough information to reconstruct the scene
semantics (the hidden state). Each new frame provides more information
about the current scene, which the viewer adds to the saved partial knowl-
edge. Only when something contradictory to the currently inferred scene is
noticed does the viewer assume that a state transition has occurred. At that
point, whatever has been inferred about the previous “current state” is taken
to completely describe that state. Our technique does not (yet) reason about
connections between distinct, adjacent states, beyond detecting transitions—
such reasoning may be needed in some domains but, empirically, not in ours.

FGM is not guaranteed to be correct for all processes in RO1. However,
for processes in RO2, FGM can detect state transitions accurately enough
to correctly infer the underlying compressed state sequence.1

Proposition 1. Let process P be in RO2 and σ be a correct state-inference
function for P. For any state and observation sequences S and O drawn
together from P, FGM(O, σ) returns Compress(S).

Proof: (Sketch) Let Compress(S) = s1, s2, . . . , sn and Oi denote the max-
imal o-sequence in O that was generated by si (assume w.l.o.g. that no two
si are the same state). Note that O = O1; O2; · · · ; On, where “;” indicates
concatenation. Since P has a redundancy of at least two, each Oi can be
written Oi = O′

i; O
′′
i , where O′

i and O′′
i are both defining sequences for state

1While our algorithm outputs only Compress(S), FGM does infer state transition
points (k after the while loop) that can be used to construct an estimate of S, if desired.

6

Attached(x, y) x supports y by attachment Grounded(x) support of x is unknown
Contacts(x, y) x supports y by contact

Direction(x,d) x moving in direction d Speed(x,s) x’s speed is s
Elevation(x,e) x’s elevation is e Morph(x,c) x’s shape-change factor
Distance(x,y,d) distance between x and y ∆Dist(x,y,dd) change in distance
Compass(x,y,c) compass direction of y to x Angle(x,y,a) angle between x and y

Table 1: Force-dynamic state predicates Rs (top) and observation predicates Ro (bottom)
for our application.
si. To complete the proof, prove by induction on k that, for 1 ≤ k ≤ n,
FGM(O1; · · · ; Ok, σ) = s1, s2, . . . , sk and sk was “produced” by applying σ
(in the last line of FGM in Figure 2) to a suffix of Ok that includes O′′

k . The
key proof step notes that applying σ to such a suffix, with O′

k+1 concatenated
on the end, yields ⊥. Thus, state transitions will be detected. 2

Without reliable observations or a correct state-inference function, FGM
does not guarantee correct inference. However, FGM does solve an intuitively
appealing optimization problem, finding a state sequence allowed by σ with
the fewest possible state transitions. More formally, a partition of an obser-
vation sequence O is a sequence (Q1, . . . , Qk) of non-empty subsequences of
O such that Q1; · · · ; Qk = O. We say that σ allows a state sequence if that se-
quence is (σ(Q1), . . . , σ(Qk)) for some partition. We prefer fewer transitions
both because we have an inertial bias and because longer o-sequences yield
more reliable state inference (we assumed σ is correct for “long” o-sequences).
Proposition 2. When σ is monotone, FGM(O, σ) is a minimal-length
state sequence allowed by σ for O, or there is no allowed state sequence.

Proof: (Sketch) Prove, by induction on |O|, that for any observation se-
quence O′, with suffix O, any state sequence allowed by σ for O′ is at least
as long as FGM(O, σ). 2

4 Relational State and Observation Spaces
We say that a process (O,S,P) is relational when O and S are given by
specifying a domain set of objects D, a set of observation predicates Ro, and
a set of state predicates Rs. An observation fact (state fact) is a predicate
symbol in Ro (Rs) applied to the appropriate number of objects from D. For
example, a state fact might be ON(a, b) where “on” is in Rs and a and b are
objects in D. Observations are taken to be finite sets of observation facts
and O contains all such sets, likewise the states are taken to be finite sets of
state facts with S containing all such sets.
Example 3. Our video-interpretation application involves inferring the
sequence of force-dynamic states in videos of a hand playing with blocks.

7

The domain of objects D, contains all hands and blocks that may eventually
enter the visual field, along with the real numbers. To describe the state and
observation spaces, there are three force-dynamic state predicates2 and eight
observation predicates, shown in Table 1. The movie in Figure 1 contains
two distinct force-dynamic states given by the state-fact sets shown in the
caption.3 The object tracker places convex polygons around each object in
the visual field, and the observations are low-level numeric features of these
polygons and polygon pairs. For each video frame, an observation is the set
of observation facts calculated by computing the numeric argument of each
predicate for all objects and object pairs.

5 Learning a Relational State Inference Function
For relational processes, a state-inference function maps relational o-sequences
to relational states (or ⊥). Learning such a function corresponds to the diffi-
cult problem of multiple-predicate learning [2] from the area of inductive logic
programming (ILP) [7]. In order to achieve robust and “example efficient”
learning, below we introduce a representation for relational state-inference
functions, based on DATALOG [14], that leverages problem structure found
in our application domain and others like it. We then use an off-the-shelf
ILP system, Claudien [1], to learn the required DATALOG program.

Representation. A DATALOG program consists of a set of “if <body> then
<head>” rules, built up from logical atoms over available predicates. Here,
the available predicates are the observation and state predicates along with
the comparison predicates ≤ and 6=. A logical atom is a predicate applied
to the appropriate number of variables and/or numeric constants. The rule
<body> is a conjunction of logical atoms, and the <head> is either ⊥ or a
logical atom whose variables appear in the body.

We will consider two types of rules for defining state-inference functions.
First, o-rules allow only observation predictates in the body and state predi-
cates in the head, and can derive state facts from observations. For example,

if Distance(x, y, d)∧ (d ≤ 5)∧Speed(y, s)∧ (6 ≤ s) then Attached(x, y)

is an o-rule. Second, s-constraints are rules that do not involve observa-
tion predicates (the head may involve ⊥). These rules place logical con-

2Our predicates vary somewhat from Siskind [12], e.g., “attached” implies support.
3Notice that Grounded(green) is in both states, even though it seems to be supported

by the table. This is because the object tracker does not recognize the table as an object,
and thus the table is an “unknown” source of support for the the green block.

8

straints on sets of state facts and can detect sets of facts that do not be-
long to any state (i.e. sets that violate some constraint). For example,
(if Attached(x, y) ∧ Contacts(x, y) then ⊥) is an s-constraint that says
x cannot support y by both contact and attachment.4

Any way of replacing the variables in a rule (consistently) with objects
and/or numbers gives an instance of that rule. Applying a rule to a premise
set of state and observation facts produces new assertions, in the usual way:
for each instance of the rule with the instance body true, relative to the
premise set, the instance head is produced as an assertion. For example, if we
are given the observation {Distance(green,red, 3), . . . ,Speed(red, 10)},
then the above o-rule will assert Attached(green,red). Given a rule set
R and premise set Q, the one step consequence operator τR(Q) computes the
union of all rule assertions for Q. We inductively define τ i

R(Q) = τR(τ i−1
R (Q)),

where τ 0
R(Q) = Q, and let τ ∗R(Q) denote the union over all i of τ i

R(Q).
A DATALOG program Σ = Σo ∪ Σs, with o-rules Σo and s-constraints

Σs, defines a state inference function σ as follows. The result set Σ(O) for an
observation sequence O = (o1, . . . , on) is calculated by computing the o-rule
assertions for each oi and then iteratively applying the s-constraints to the
union of the assertions. Formally we have Σ(O) = τ ∗Σs

(
⋃

i τΣo(oi)).
5 Finally,

we define σ(O) to be ⊥ if ⊥ ∈ Σ(O), and to be Σ(O), otherwise.
This DATALOG representation for state-inference functions is motivated

by two observations about our application. First, although we are unable to
learn o-rules that accurately map single observations to all of the underlying
state facts (due to noise and ambiguity), we are able to learn nearly sound
o-rules (i.e. rules that rarely produce false assertions) that assert some of the
underlying state facts for single observations. Intuitively, the rules only assert
the “most obviously true” state facts for a given observation. Typically, for
states in our application, each state fact is “obviously true” in at least one
of the observations a state generates. Thus, unioning o-rule assertions across
observations (as done above) typically yields exactly the true state facts.

The second observation about our application domain is that the union
of facts from distinct consecutive states do not correspond to any actual
state, i.e. the state facts are inconsistent. Given s-constraints to detect
such inconsistent fact sets, the above computation can detect when an input

4We could also consider rules with both observation and state predicates in the body,
resulting in more expensive learning. Such rules were not needed for our application.

5The iteration of Σs is required since s-constraints can be recursive. However, the
iteration will always terminate since there are only a finite number of possible state facts.

9

observation sequence was (most likely) not generated by a single state.

Example 4. As an illustration of when σ will return ⊥, assume that Σ in-
cludes the rule (if Attached(x, y) ∧Contacts(z, y) then ⊥), representing
the constraint that no object is supported via both contact and attachment.
Let O be the o-sequence from the video in Figure 1, which is generated by
two distinct force-dynamic states. We expect that, for some frame during the
first force-dynamic state (e.g., frame 1 or frame 3), the rules will be able to
assert Contacts(green,red), and that, for some frame in the second state
(e.g., frame 20), the rules will assert Attached(hand,red). Given these
assertions, the above rule will assert ⊥ and thus σ(O) = ⊥, which signals
that O did not arise from a single state according to σ.

Learning. We use Claudien to search for the most general o-rules and
s-constraints that agree with all of the state-observation pairs in the training
set.6 Here, a rule r1 is more general than r2 if any assertion produced by r2

can also be produced by r1, for all premise sets. For our domain, Claudien
typically produces a large, redundant ruleset (with 300-400 rules).

Prune-Ruleset(Σs, Σo, ∆)

Σ′ ← Σs

while Σs ∪ Σo 6=∆ Σ′

r ← argmaxr∈Σo

C(Σ′ ∪ {r}, ∆)
Σ′ ← Σ ∪ {r}

return Σ′

Figure 3. Pruning Routine.

Motivated by Occam’s Razor (i.e. reducing over-
fitting) and the fact that small rulesets are cheaper
to apply, we prune to find a smaller, but “practically
equivalent”, subset of the Claudien-generated o-
rules.7 Let ∆ be a set of o-sequences (typically the
training data o-sequences). We consider two rule-
sets Σ and Σ′ to be FGM-equivalent on ∆ (written
Σ =∆ Σ′) if for any O in ∆, we have FGM(O, σ) =
FGM(O, σ′), where σ and σ′ are the state-inference
functions defined by Σ and Σ′ respectively.

Given the Claudien ruleset Σ = Σo ∪ Σs, where Σo and Σs are the o-
rules and s-constraints, we use a heuristic method to find a smaller Σ′ that is
FGM-equivalent. We define the coverage C(Σ, ∆) of Σ to be the sum, over all
individual observations o in ∆, of |Σ(o)|. This measure rewards rule sets that
assert true state facts more frequently. We start with Σ′ = Σs and add o-rules
greedily, according to coverage, until FGM equivalence is achieved. We show
pseudo-code for our pruning method in Figure 3. In our application, pruning
reduces error by over 50%, indicating significant pre-pruning overfitting.

6A rule agrees with a state-observation pair when the rule produces no new assertions
on the premise set given by the union of the state and observation fact sets.

7One could also consider pruning s-constraints, though unnecessary for our application.

10

6 Experimental Results
We evaluate our techniques by applying them to force-dynamic state in-
ference. The Leonard system [11] uses inferred force-dynamic states to
recognize visual events from video-camera input—a simple example of an
event is “a hand picking up a block”, as depicted in Figure 1. Leonard is
distinctive in its use of force-dynamic properties for event recognition, which
Siskind argues is more semantically grounded (and thus more generally ac-
curate) for many event types than motion profile analysis. Leonard uses
a hand-crafted force-dynamic inference technique (details in [12]), based on
kinematic physics that was shown to correctly infer force-dynamic relations
for approximately 80% of the ˜10,000 video frames in a test corpus. A large
part of the inaccuracy stems from noise in the object tracker’s output, in-
cluding, for example, variable strength “jitter” and more serious errors such
as “object teleportation”. Our original motivation for this work was to de-
velop a robust trainable system to replace and improve the accuracy and
speed of Leonard’s reconstruction of force-dynamic state. We note that, in
improving these features, we have dropped the kinematic-physics approach
to the problem (among other things), which may have ramifications yet to
be explored in either system by evaluation on a much wider variety of data.
Procedure8. We use the same 210 videos (and the same object tracker
output) that were used to demonstrate Leonard [12]. The videos depict
a hand playing with up to 3 blocks and are divided into 7 different event
types (30 movies each), which vary in complexity from a simple pick-up to
assembling towers. From the tracker output of each video, we can construct
the corresponding relational observation sequence as described in Example 3.

We hand-labeled 3 randomly selected videos from each event type with
the human-judged force-dynamic state, yielding 21 training videos in total.9

We labeled the other 189 videos with their compressed s-sequence only (the
output of Compress), as that is the labeling our algorithm produces. This
compressed label, in fact, depends only on the event type.

We drew three training sets of 7, 14, and 21 videos from the training
instances, drawing equally from each event type in each set, and learn state-
inference functions σ7, σ14, and σ21, respectively. For each state-inference
function and each test-video observation sequence, we inferred a force-dynamic
state sequence using the FGM inference algorithm, both with and without

8All data along with detailed descriptions are available at the first author’s web site.
9Learning appears insensitive to variation in human labeling at ambiguous transitions.

11

the pre-processing sequence cleaning described in Section 3.
We compare our results with Leonard. We note, however, that the goals

of the Leonard project and our work are quite different. Leonard is an
attempt to create a general, force-dynamic interpretation system, whereas
our approach represents a trainable sequential inference technique that can
be tuned to the class of videos exibited by the training data. This comparison
is analagous to work showing that learned domain-specific language parsers
[13] outperform general-purpose language parsers within the trained domain.

We hand-designed programs for force-dynamic inference aimed at the
class of movies in our corpus. Hack1 was designed after examining only the
size-14 training videos. Hack2 was an improvement found by examining the
errors Hack1 made on the test data—a form of cheating.

Table 2: Test error. Parentheses
indicate no sequence cleaning.

Percent Error
Frame Video

σ7 0.8 15 (23)
σ14 0.1 6 (16)
σ21 5e–4 3 (13)

Leonard 16.4 100
Hack1 –– 33
Hack2 –– 9

Whole-Movie Performance. The sec-
ond column of Table 2 shows the percent-
age of test videos labeled incorrectly. The
first three rows are for FGM with the learned
state-inference functions, both with and
without sequence cleaning (the latter in
parentheses). The final three rows show
Leonard and our hand-constructed pro-
grams. We see that, as more training data
is included, the performance of FGM im-
proves. With only a relatively small set of training data, FGM achieves a 3%
error rate when sequence cleaning is used. Sequence cleaning significantly
improves the FGM performance, though less than 0.5% of the observations
were removed. Comparing to our hand-coded systems, FGM always out-
performs Hack1 and is comparable to Hack2 for the larger training sets.
So, our system is able to learn an inference system that is on par with a
significant, even cheating, attempt to hand-code a solution.
Per-Frame Performance. The poor performance of Leonard relative to
whole-movie error does not properly reflect its ability. Although Leonard
rarely computes the exact true compressed state sequence, it does correctly
label most individual observations with the correct force-dynamic state. The
evaluation measure used in [12] considered the inferred state sequence as a
multi-set, and then calculated the percentage of the multi-set members that
did not appear in the correct state labeling (so state order does not affect the
error). The first column of Table 2 shows this error measure for Leonard
and FGM. Under this measure, Leonard labels over 80% of the frames

12

correctly. FGM, however, significantly outperforms Leonard.
We also compare inference time on the 210 videos for each method, all

implemented in Scheme and running on the same machine. Frame rates were
1 per second for Leonard, 3.8 per second for FGM (with σ7, σ14, or σ21),
and 5.3 per second for either Hack1 or Hack2. So, FGM is about 4 times
faster than Leonard, but 28% slower than our hand-constructed domain-
specific programs. Importantly, 90% of FGM’s runtime was spent computing
the observation predicates from the tracker output. FGM runs at frame rate
(30 frames/second) when given the observation predicates. We believe these
predicates can also be computed at frame rate with a C implementation.

7 Related Work
Sliding-window techniques [4] label each observation using a fixed-size local
window of observations and possibly previous classifications. These tech-
niques leverage a stronger assumption than reliable observations due to the
fixed window size. Finding a good state-inference function is problematic
here because of the ambiguity at transitions—FGM can be viewed as vary-
ing the window size to avoid the ambiguities at transition points.

Other work, e.g. [6, 8], uses observation-subsequence classifiers to con-
struct optimization problems. Each classification assigns a measure of “good
fit” (with the classified subsequence) to each state, and then an optimization
problem is solved to select a state sequence. These methods have assumed a
small explicit state space, and generalization to our problem is unclear.

Probabilistic modeling is a widely preferred approach to achieving noise
robustness, but is not straightforward to apply to our problem. Most tech-
niques, such as HMMs [9] and conditional random fields [5], have tradition-
ally assumed small “explicit” state spaces, and extensions such as dynamic
Bayesian networks [3] require a fixed number of state variables. In our prob-
lem, the number of state factors can vary based on the number of objects.

However, it is not our intention to argue against the use of probabilistic
models for problems such as ours. In fact, the recently proposed dynamic
probabilistic relational model [10] is a candidate, as it explicitly factors states
in terms of objects. Use of these models for our problem would require
development of corresponding learning methods. In addition, exact inference
in such models is typically intractable, and various approximate inference
techniques would need to be considered. Instead, we give a simple logic-
based approach, to both the learning and inference problems, that achieves
good robustness to noise without using probabilistic modeling.

13

References

[1] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning,
26:99–146, 1997.

[2] L. De Raedt, N. Lavrac, and S. Dzeroski. Multiple predicate learning.
In IJCAI, 1993.

[3] T. Dean and K. Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3):142–150, 1989.

[4] Thomas G. Dietterich. Machine learning for sequential data: A review.
In Proceedings of the Fourth International Workshop on Statistical Tech-
niques in Pattern Recognition, 2002.

[5] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
ICML, pages 282–289, 2001.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[7] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. Journal of Logic Programming, 19/20:629–679,
1994.

[8] V. Punyakanok and D. Roth. The use of classifiers in sequential infer-
ence. In NIPS, 2000.

[9] L. R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[10] S. Sanghai, P. Domingos, and D. Weld. Dynamic probabilistic relational
models. In IJCAI’03, 2003.

[11] J. Siskind. Grounding lexical semantics of verbs in visual perception
using force dynamics and event logic. JAIR, 15:31–90, 2001.

[12] J. Siskind. Reconstructing force-dynamic models from video sequences.
AIJ, to appear.

14

[13] Lappoon R. Tang and Raymond J. Mooney. Automated construction
of database interfaces: Integrating statistical and relational learning for
semantic parsing. In Joint Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, 2000.

[14] J. Ullman. Principles of Database and Knowledge-Base Systems. CS
Press, 1988.

15

