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Abstract

In this paper we introduce a generalization of Fisher-
Rao’s discriminant analysis and its application in a
human-computer interaction scenario: a sensing chair.
Our algorithm shows to be able to successfully estimate
the underlying distributions of the pressure maps data
of the sensing chair. Other linear discriminant tech-
niques, such as LDA, had been found to be inadequate
for the job; typically yielding inferior results than PCA.
We compare our approach to several template-based ap-
proaches and show that the new discriminant function
is comparable to the best approach classifier. This is
important because generally each application tends to
prefer a different algorithm. Fortunately, our new al-
gorithm is usually the top one (or comparable to the top
one). In this paper we will however restrict our study
tothe classification of sitting postures.

1 Introduction

One way to improve current human-computer in-
teraction systems is by using multimodal interfaces.
Two important challenges in the area of multimodal
interfaces are: i) to identify new potential modalities
that can be effectively used to improve our communi-
cation with computers, and ii) to design classification
algorithms that can be successfully used in several of
these modalities. The sensing chair [13, 14] has recently
shown to have potential toward the first goal. Unfortu-
nately, the second point remains unsolved. The sitting
posture data captured with the sensing chair has been
found to be extremely challenging for most of the pat-
tern recognition algorithms defined in the literature.
To our knowledge, a simple Euclidean distance in the
reduced space of the Principal Components of the co-
variance matrix of the pressure map is currently the

1063-6919/03 $17.00 © 2003 IEEE

best and most robust system designed to date [14] —
where results are around 85% for known users and be-
low 75% for unknown users.

We have recently experimented with other classifi-
cation algorithms such as K Nearest Neighbor (K-NN)
and Linear Discriminant Analysis (LDA), only to find
out that the results obtained with Principal Compo-
nents Analysis (PCA) are almost always superior (see
Ezperimental Results for details). Unfortunately, this is
not of particular note. Martinez and Kak [10] showed
that PCA can be seen as a superior technique under
several conditions.

It is thus desirable to design a single classifier that
can adapt to the current problem so as to perform as
the best existing technique. Note that different appli-
cations are bias toward distinct approaches. We are
working toward the design of problem-invariant algo-
rithms (or close to).

In this paper, we present a first step toward this
goal. Our algorithm is based on the ideas of Sliced
Inverse Regression (SIR) [8] and Regularized Discrim-
inant Analysis (RDA) [4].

2 The Sensing Chair

2.1 System Overview

Our Sensing Chair is equipped with a commer-
cially available pressure distribution sensor called the
Body Pressure Measurement System manufactured by
Tekscan Inc. (South Boston, MA). This system was se-
lected for (1) its high resolution (10 mm inter-element
distance), and (2) the flexibility of the sensor sheets
(0.10 mm in thickness) so they can conform to the
shape of a chair. Two sensor sheets (placed inside plas-
tic protective casings, as shown in Fig. 1) are surface
mounted on the seatpan and the backrest of the chair.



Figure 1. The sensing chair.

Each sensor sheet has an array of 42-by-48 pressure
sensing elements. Each sensing element outputs an 8-
bit digital value proportional to the local pressure. The
raw digital data are used directly as a measure of sit-
ting pressure. A potential problem of this system is
sensor displacement while an occupant moves in the
chair. This problem is minimized by fastening the cor-
ners of the protective casings to the chair. To further
minimize this problem, only the area that corresponds
to the pressure created by the person sitting on the
chair is considered (cropped out).

2.2 Data Normalization

Before each of the seat prints can be compared to
the others, they need to be normalized with regard to
translation and size. For simplicity, we have restricted
our preliminary studies to the seatpan of the pressure
map only.

The pressure maps in the seatpan are not transla-
tion invariant. People tend to sit differently: Some
people prefer the center of a chair, while others tend
to sit closer to one side. Similarly, while most peo-
ple prefer using the backrest of the chair for support,
others prefer not to. This means that the pressure
points (sensors) activated are in different locations of
the seatpan, and therefore the system is not translation
invariant. This problem can be solved by cropping the
area of the seatpan that corresponds to the contact
area between the subject and the seatpan only — leav-
ing out the rest of the zero-pressure pixels. Specifically,
we project the 2D image onto each of the two dimen-
sions, x and y axes, as shown in Fig. 2(a)and 2(b),
respectively. The projection along the x-axis produces
two overlapping Gaussians for the two legs. The left
threshold is given by the left u% cut of the Gaussian on
the left. The right threshold is given by the right u%

cut of the Gaussian on the right. Fig. 2(a) shows an
example with v = 2. The projection along the y-axis
corresponds to a Gaussian distribution. We select an
upper and lower threshold that omits u% of the distri-
bution (usually, ). Fig. 2(b) shows an example with
an upper and a lower threshold of 2%. We can now
crop the original seatpan pressure image with borders
set by the upper, lower, leftmost and rightmost lim-
its obtained above (see vertical lines in Fig. 2). After
cropping, all images represent the rectangle that con-
tained most of the contact area between a person and
the seatpan.

The areas cropped above is now invariant to transla-
tion, but not to scale. Note that the size of the cropped
area depends on the size of the person sitting on the
chair, and on her/his weight. To solve this problem,
we can resize all (cropped) images to a standard (nor-
malized) size. We decided to resize all images to the
average size of the windows obtained by the procedure
described in the previous paragraph. Our experimen-
tation with different sizes shows that similar results are
obtained if we resize the images to other sizes (e.g., the
max or min size). Alternatively, one could use algo-
rithms to enhance the resolution of the original low-
quality images [11].

2.3 Data collection

The database used in this paper is an extension of
the one defined in [14]. The new database consists of
10 different postures: (1) seated upright, (2) leaning
forward, (3) right leg crossed, (4) left leg crossed, (5)
leaning back, (6) leaning left, (7) leaning left with right
leg crossed, (8) leaning right, (9) leaning right with left
leg crossed, and (10) slouching. Fifty participants (25
males and 25 females) sat in each of these postures five
times. Between data collection of different samples,
each participant was asked to stand up, move away
from the chair, and then come back and sit down again.
The data were then normalized as described above.

3 Our Classifier

Our classifier is based on the Sliced Inverse Regres-
sion (SIR) algorithm of Li [8]. In this section, we first
introduce SIR, and then describe our extension for class
and subclass classification.

3.1 Slice Inverse Regression
The general goal in regression analysis is to de-

termine the conditional distribution of Z given X =
{X1,...,Xn}, where x; € RP. If the distribution Z|X



Figure 2. Normalization with respect to translation (for posture “seated upright”). (a) Projection onto the axis and
the associated best-fitting Gaussian functions. (b) Projection onto the y axis and the associated best-fitting Gaussian

function.

were given, we would know the class value for each
of the values of X. In practice, Z|X is not known and
needs to be estimated from training data. This compu-
tation is, however, problematic and important assump-
tions are generally necessary to make it tractable [1].
SIR reverses the roles of Z and X for the following rea-
son. If we assume that Z is of low dimensions, then it is
easier to compute the underlying distribution of Z than
that of X (which is of much higher dimensionality).
Since SIR is a supervised classification method, we
can assume that the training data has been sorted by
classes so that all the samples corresponding to the first
class go first, followed by the ones of the second class,
etc. Mathematically, Y = {x11,...,X1,4,...,Xc},
where x; ; is the jt" sample of class i, n = C-t, and C is
the number of classes. To estimate the underlying dis-
tribution of Z, we divide Y in H equal slices and then
compute the covariance of the slice means (H < C).
An estimate of that distribution is given by:

H
S = D (= ) an — )" (1)
h=1

where pp, is the mean feature vector of slice h, u is the
global mean, and nj, is the number of samples in slice
h. The SIR directions (features) are then given by the
following generalized eigenvalue decomposition of ¥,
with respect to X,:

5,.E = SxEA (2)

where E is the eigenvectors matrix, ei,...,eg_1, and
A is a diagonal matrix containing the corresponding
eigenvalues, A1,...,Ag_1. The eigenvectors associated
with the largest eigenvalues are selected as the SIR
features; g < H — 1.

3.2 SIR and LDA

3.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [3, 12] searches
for those vectors of the underlying space of the data
that best (linearly) discriminate among classes. More
formally, given a number of independent features of
the data, LDA creates a linear combination of those
that yield the largest mean differences between the de-
sired classes. Mathematically, for all the samples of all
classes we define two measures. The first is called the
within-class scatter matrix, and is given by

C nj
Sw =Y > (xij — 1) (xig = p1)"

i=1 j=1

where x; ; is the it" sample of class j, 5 is the mean of
class j, C is the number of classes, and n; the number of
samples in class j. The second measure is the between-
class scatter matrix:

where p represents the mean of all classes. The goal of
LDA is to maximize the between-class measure while
minimizing the within-class measure, which is given by
the vectors that maximize the following function:
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3.2.2 The special case of H =C

It is quite clear that SIR is a supervised technique sim-
ilar to LDA [7]. In particular, when the number of
slices, H, in SIR equals the number of classes, C, then



¥, is equivalent to the between-class scatter matrix [2].
To show this, we need to find the eigenvectors of Eqn.
3, which are given by:

Spei = YiSwe;

Since 3,, = Sp, the equation above can be rewritten
as:
Ynei =viSwe;

We now add ;2. €; on both sides:
(1 +7)Ene; = vi(Xn + Sw)e;

Since Y x = Sw + S [5], we can finally rearrange the
above equation to yield:

L Yye (4)
which is the same as Eqn. 2 with

Vi
A = 5
1+ 5)

This brings the following [9]:

Preposition 1: When H = C, the SIR di-
mensions (features) are the same as those ob-
tained by LDA except for a possible difference
in scaling.

3.2.3 Subclass classification

We have shown that when H = C, SIR is equivalent to
LDA (except for a scaling factor given by Eqn. 5). The
question now is what happens to SIR when H is made
larger? Note that we will not consider smaller values
of H, because in such a case we would only be able to
distinguish between less than C' classes. We obviously
need to be able to discriminate between, at least, C'
classes.

Before we continue, we will imposed an additional
ordering constraint on Y. The reasons for this will
become apparent shortly.

The classical way to order the data is by proximity
as given by the Lo norm. Clustering is a common way
to achieve this [5]. In this paper we describe a simple
clustering method which has shown to be adequate for
our data.

We assume that the vectors of each of the classes,
Xi1,---X;t, have been sorted as follows. x;; and x; ;
are the two most distant feature vectors of class ¢ (i.e.,
the Euclidean distance between these two vectors is
the largest: argmaz; k|/x;; — Xikll). X; 2 is the closest
feature vector to x; 1; and x;,—; is the closest to x; ;.
In general, x; ; is the j — 1*" feature vector closest to

X1, and x;¢_; is the j — 1" closest to x;¢. Fig. 3

shows the ordering of eight vectors as given by this
procedure.

The clustering procedure described above is useful
when H is larger than C. For example, if H = 2C,
then each class is divided into two groups (i.e., two
subclasses). This is suitable for those cases where i)
the underlying distribution of each of the classes is not
Gaussian, but can be represented as a combination of
two Gaussians (see Fig. 3(c)), or ) the classes are
not linearly separable, but the subclasses are (see Fig.
3(d)). However, to allow such a subdivision of classes,
the sample vectors in each group need to be ordered.
This is the reason why we first required a clustering
(ordering) step within each class.

3.2.4 The optimal value of H

To make the above approach useful for machine learn-
ing, we still need to define a way to calculate the most
convenient value for H. This can be achieved by means
of the leave-one-out strategy [4, 5, 6]. The technique
is to remove one of the training samples from X, com-
pute SIR using the remaining samples (for a given value
of H), and then compute the recognition rate of the
sample that was omitted; i.e. p; g = 0 if recognition
fails, and p; # = 1 otherwise; where p; gy represents
the recognition rate when the i*" sample was left out.
Since, for n samples, there are exactly n possible ways
to leave one sample out, we need to repeat this proce-
dure n times. The final recognition rate is given by:

erl/ani,H. (6)
i=1

The optimal value of H is then given by the H (H =
j-C,7=A1,2,...,(n/C) —1}) that maximizes Eqn.
6, Hoptimal = argmaxg ry-.

4 Experimental Results

We divided our data (see Section 2.3) into two
groups, one for training and one for testing. The train-
ing set contains three samples of each posture of each
person (i.e., a total of 1500 samples). The testing set
consists of the other two samples of each posture for
each of the individuals (i.e., a total of 1000 images).

In Fig. 4(a) we show the recognition rates obtained
with PCA, LDA and our SIR-based approach for each
of the ten postures of our database. Fig. 4(b) compares
the average recognition rate of PCA, LDA and SIR to
those obtained with a simple nearest neighbor classifier
(NN) and a K-NN (with K = {3,5,7}) classifier.



(a) (b) (c) (d)

Figure 3. (a) Clustering obtained following our simple (closeness-based) approach. (b) Classification of the vectors of
this class when H = C. (c¢) Classification with H = 2C. (d) Best classification results obtained with H = 2C' (circles
represent the sample vectors of one class, and stars represent the sample vectors of another class).
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Figure 4. Experimental results. (a) Recognition rates (%) for the nine sitting postures listed in Sec. 2.3 using the
LDA, PCA and SIR-based algorithms. (b) Recognition rates comparing NN and K-NN methods to those shown in
(a).



The SIR-based is the leading method. The PCA ap-
proach follows closely. In fact, the differences between
these two are not statistically significant. LDA is not
even superior to NN. And all K-NN tested resulted
with inferior results to NN.

5 Conclusions

This study generalizes the Fisher-Rao’s discriminant
analysis and applies it to the problem of static sitting
posture classification. The recognition rates achieved
by this technique are compared to those obtained with
PCA, LDA, NN, and K-NN methods. We show that on
average, our SIR-based method is comparable to PCA
in performance, and both outperform other methods
we have experimented with. We conclude that PCA
and SIR can be successfully applied to new types of
data encountered in human-computer interfaces such
as the pressure distribution data in a chair. However,
our SIR-based has the advantage that it can be success-
fully applied where discriminant techniques are gener-
ally superior to PCA — generally obtaining results sim-
ilar to those of LDA (Preposition 1).
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