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ABSTRACT

This paper is concemed with how objects in an
environment can be made aware of people via haptic
sensing. It was motivated by the desire to make our
environment “smarter” by providing it with sensory
systems similar to our own. The work reported here
focuses on an object that is involved in virtually all
human-computer interactions, yet has remained sensory-
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Figure 1. The four pathways of information flow
Jfor a haptic human-machine interface.
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deprived — the chair. A real-time sitiing posture The office chair was chosen as the sensing object
classification system has been developed using surface- because it is involved in virtually all human-computer
mounted pressure sensors placed on the seatpan and interactions, but has so far remained sensory-deprived.
backrest of a chair. The ultimate goal of this work is to Surface.mounted pressure  distribution sensors wee
build a robust multi-user sitting-posture tracking system selected for several reasons. First, they function similarly
that will have many applications including ergonomics as the skin — the lafgest organ on a human body. They
and automatic control of airbag deployment in a car. provide the chair with a layer of "artificial skin". Second,
Challenges for reaching the goal and plans of future work chairs are less mobile than the person. By attaching
are discussed. sensors to.the chair, the human user need not be tethered.
Third, data collected from pressure sensors are essentiall
1. INTRODUCTION two-dimensional digital aﬁ—ays that resemble gray-levg{
This work was motivated by the desire to make the images. Thus they lend themselves very well to
environment we occupy “smarter” by providing it with computer vision algorithms.
sensory: systems similar to our own. In recent years,
several “smart” environments have been developedy that 2. _ THE BODY PRESSURE
enable computers to identify people and interpret their  MEASUREMENT SYSTEM S
actions and speech in real time (e.g., Torrance, 1995; The sensing system used by our sitting-posturs
Pentland, 1996). These systems enable computers to see classification system is the Body Pressure Measurement
and hear through various imaging and acoustic sensors, System (BPMS) manufactured by Tekscan, Inc. in South
This work investigates how to enable a computer to Boston, Massachusetts. It consists of two identical
“feel” its environment via haptic sensors. In a typical surface-mounted pressure-sensitive transducer sheets, their
setup where a haptic human-machine interface is placed interface electronics, and a PC interface board. The two
between 2 human and a computer, information flows in sensor sheets are mounted on the seat pan and the back
four pathways (see Fig. 1). The focus of this paper is a rest of an office chair. Each ultra-thin sheet is printed with
haptic perceptual user interface. Here we are mainly an array of 42-by-48 sensing units and measures 0.10 mm
concemed with how a computer can* derive “haptic in thickness. The sensing units are uniformly spaced

information about its user. with 2 10 mm inter-element distance, Therefore, each

sensor sheet has an active area of 41-by-47 cm. FEach
sensing unit acts as a variable resistor in an electrical
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circuit. When the unit is unloaded, its resistance is very
high; when a force is applied to the unit, its resistance
decreases. This output resistance is then converted to an
8-bit digital value. The sensors can be calibrated to
display pressure readings in digital units, PSI, or mmHg.
For the purpose of sitting-posture classification, only the
relative pressure distribution information is needed.
Therefore the raw 8-bit digital values are used.

The pressure maps from the two -sensor sheets are

spliced to form an 84-by-48 grayscale image which lends
itself very micely to image modeling and classification
algorithms. Two typical pressure-map images for the
sitting postures of “seated upright” and “left leg crossed”
are shown in Fig. 2. To understand the orientation of
these pressure maps, imagine standing in front of the chair
and viewing the pressure maps from the backrest (tops)
and the seatpan (bottoms). Therefore, the left and right
sides of the pressure maps in Fig. 2 correspond to the
right and left sides of the person sitting in the chair,
respectively. Notice that the pressure readings from the
seatpan are usually higher than those from the backrest.
Notice also that the pressure maps for the two postures are
quite  distinctive, especially the bottom halves

corresponding to the pressure distributions in the seatpan.

Figure 2. Pressure maps for "seated upright" (left)
and "left leg crossed ' (right) postures. Darker pixels
correspond to lower pressure readings. See text for
details.

3. POSTURE-BASED EIGENSPACES
FOR POSTURE CLASSIFICATION

Our eigenspace-based approach to sitting-posture
classification is based on a well-known algorithm in
computer vision called “eigenfaces for recognition” (Turk
& Pentland, 1991; Pentland, Moghaddam, & Starner,
1994). This approach extracts the relevant information in
a pressure-distribution map by finding the principal

. components of the distribution of such maps, or the

eigenvectors of the covariance matrix of the set of pressure
maps. Let a pressure map P(x,y) be a two-dimensional

84 by 48 array of 8-bit digitized values. Such a map may
also be considered as a vector of dimension 4032, so that
each pressure map becomes a point or a vector in a 4,032-
dimensional space. An ensemble of pressure-map vectors
then maps to a collection of points in this huge space.
The locations of the pressure-map vectors, however, are
not uniformly distributed in this space: In fact, points
corresponding to the same posture collected from the same
person should form a cluster and can be described by a
relatively low dimensional subspace. The eigenvectors
that describe this low dimensional subspace are called

- Eigen Pressure Maps (EPMs) in this paper.

Calculation of EPMs for a Single Posture

Let P, P,, ... P, (size 4032x1) be the set of M
training data corresponding to one posture. The average
pressure-map vector for this posture can then be computed
as:

P 1MP
wﬁzi

Each training pressure-map vector differs from the average
by the vector: :

& =P-P

$ i
The covariance matrix for @, is then:

1 & r_ 1 T
C=—Y OO =—AA
MS M
where A=[(I>, -(I)z
4032x M.

®,] is a matrix of the size

The computation of the eigenvectors of the covariance
matrix C is computationally prohibitive, since the size of
C is 4032x4032. Luckily, given M training data
(M=10<<4032 was used in this study), only M
eigenvalues are nonzero. Furthermore, the eigenvectors of

the 4032x 4032 covariance matrix -1:7{—AAT and an



M x M matrix ﬁATA are related. Let v, (Mx1) be

the eigenvectors of %ATA , then

1
——ATA)V. =V,
(M i ul i
where 4, are the corresponding eigenvalues.

Premultiplying both sides by A gives:

L aaTYAv,)=p(Av,)
M

In other words, the eigenvalues and the eigenvectors of

C= XI/I—AAT are i, and Av,, respectively.

Given this ahalysis, we first construct the Mx M
matrix C'=£I—ATA and find the M eigenvectors v, of

C’. The EPMs w, (4032 x 1) are then determined by the
linear combinations of the M training pressure maps as

) M
u, =Ay, = Zvi.jq)i
=

where v, is the j-th component of v, and i=1,2,...M.

Posture-based EPM Subspaces and
Posture Classification

Training data on a total of N=14 sitting postures have
been collected. These postures are (1) seated upright, (2)
leaning forward, (3) right leg crossed (with knees
touching), (4) right foot on left knee, (5) left leg crossed
(with knees touching), (6) left foot on right knee, (7)
leaning back, (8) left foot on seatpan, (9) right foot on
seatpan, (10) slouching, (11) leaning left, (12) leaning left
with right leg crossed, (13) leaning right, and (14) leaning
right with left leg crossed. EPMs for each posture are

computed from the M =10 training pressure maps for that.

posture. These EPMs form a total of N independent
“posture subspaces" in the 4032-dimensional pressure-
map vector space.

Given a new pressure-map vector P, its distance from
posture space (DFPS) for all N posture subspaces are
calculated as follows. The mean-adjusted pressure-map
vector @, =P—P,, where P, is the average pressure-map
vector for k-th posture, is projected into the k-th posture
space to obtain the weights
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where u,, is the k-th EPM for posture k, k=1,2...N,

and i=1,2...M. The projection of @, into the kth

posture space is simply the linear combination of the
EPMs:

M
/-
o = Zwu“u
i=1

To the extent that the new mean-adjusted pressure-map
vector D, is well represented by the EPMs in the k-th
posture subspace, @, and @, would be almost identical.
Mathematically, the DFPS €} is computed as the squared
distance between the two pressure-map vectors

et =Jo. - off

and used as a measure of the distance between them.
Provided that all & values (k=1,2..N) are below a
preset threshold, the posture corresponding to the smallest
€] classifies the new pressure map.

Classification

Summary Posture

Algorithm
Based on the above derivation, our sitting posture

classification algorithm can be summarized as involving
the following steps.

_of

Preprocessing:

I.  Collect M =10 samples for N =14 sitting
postures. The pressure maps from the backrest and the
seatpan are combined as shown in Fig. 2 and converted to
a column vector P, (k=1,2...N and i=1,2... M) of the

size 4032 x1.

2. For each posture k, compute the mean pressure-map
vector P,. Compute the mean-adjusted pressure-map

vectors @, =P,, P, for i=1,2.. M.
3. For each posture k, first construct the MxM
matrix C = %A,‘TA,t where

A, = {(b‘t_| Q,, ... ¢ J‘,]. Compute its eigenvectors
v,, and sort them in descending eigenvalues.'

' To reduce the amount of computation further, one
might consider using only the first M' (M'<M)



4. For each posture k, compute the M nonzero
eigenvectors, the EPMs, for the covariance matrix

Ck ZI{I_A&A: as u,; :Akvk.i for i=1’2"‘M'

S. Repeatsteps 2 —4 for k=1,2...N.

The above steps for preprocessing are performed offline
in MATLAB.

Online processing;:

1. Acquire a new combined pressure map P(x,y) of

the size 84x 48 and apply local smoothing using its
eight neighbors. Convert the result to a pressure-map
column vector P.

84 48
2. If 3.Y P(x,y)< P, where P, is a preset threshold

x=1 y=l
on the sum of pressure readings, the new pressure map is
classified as from an empty chair. Return to step 1.

3. For the EPM subspace corresponding to posture k,
compute the mean-adjusted new pressure-map vector
®,=P-P.

4. Compute the projection of @, into the k-th EPM

M
space, ®/=Y w,u,,, where @, =ul®, reflects the
=1

weight for each EPM.
5. Compute DFPS &’ =@, - @[ .
6. Repeat steps 3 —5 for k=1,2...N.

7. Find the value of k, k’, that corresponds to

min £;.
1sksN

8. If €] <t where ¢ is a preset threshold, then the new

pressure map is classified as from posture &. Otherwise, it
is declared as unknown.

Results

Our algorithm was implemented on a Pentium PC in
Windows 3.11 environment (required by the Tekscan
hardware driver). As the user moves in the chair, the
system continuously reports the classified posture name
(including "empty seat" and "unknown") on the computer
screen. In static mode (i.e., the user assumes one of the

eigenvectors corresponding to the M’ largest eigenvalues
in subsequent steps.
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pre-trained sitting postures), the system always correc -
identifies the posture. It is, however, difficult to gauge
the system's overall performance for several reasons.
First, the current implementation is designed to classify,
not to frack, the user's sitting postures. As the user
switches from one posture to the other, the system keeps
attempting to classify postures in real time, thereby
giving erroneous responses. Second, we lack a general
database of pressure distribution patterns for sitting
postures that can be used to evaluate the performance of
any algorithms. Third, the hardware driver provided by
Tekscan Inc. prohibits direct access to data buffers,
thereby greatly reducing the efficiency of data acquisition.
For that reason, the update time of our algorithm could
not be reasonably determined.

4. FUTURE WORK

The long-term goal of this work is to build a robust,
multi-user sitting-posture tracking system — a "smart
chair". Towards this goal, work in the near future will
follow these directions: (1) a general pressure map
database for chairs, (2) extend the current algorithm to a
multi-user sitting posture classification system, (3)
modeling of pressure maps from transitional postures, and
(4) assessment of minimum resolution required of
pressure-distribution sensors.

A general pressure-map database is needed in order -
understand the variations in chair surface press
distribution due to parameters such as user (age, gende.,
weight, and size), chair (cushioned vs. hard surface,
contoured vs. flat surface, height of the seatpan relative to
the user's size), activity (typing on a keyboard, talking on
the phone, driving), and obviously, sitting posture. This
knowledge can be used to estimate certain features (e.g.,
the approximate weight of the user) from pressure
distribution maps. It can also be used to nommalize
pressure distribution maps for different people and chairs
for the purpose of identifying sitting postures regardless of
user's weight or height. Another important function of a
general pressure-map database is to evaluate and compare
the performance of sitting posture classification
algorithms. By annotating each pressure map with salient
features such as the person's weight and sitting posture
and use them as the “correct answers", the accuracy of a
sitting  posture classification  algorithm can be
quantitatively measured.

The current algorithm can be easily extended to a
multi-user sitting posture classification system by
introducing a new measure called Distance-Inside-Posture-
Space (DIPS). Instead of computing EMP subspaces
using only the training data from one person for a sitting
posture, we will use training data from several users to
form the EMP subspace. The pressure-map vectors



corresponding to different users are likely to form clusters
within this subspace of the 4032-dimensional pressure-
map vector space. We will first use DFPS to find the
subspace that is closest to a new pressure-map vector,
then use DIPS to find the cluster of training data that is
closest to the new pressure map. We will then be able to
identify both the sitting posture and the individual.

In order to have a posture tracking system that can not
only identify the static sitting posture but also track the
change from one posture to the other, we need to model
the change in pressure maps for transitional postures.
Several techniques, including biomechanical modeling of
the human body and Hidden Markov Models (HMM) will
be investigated.

Finally, the 10 mm inter-element spacing of the Body
Pressure Measurement System is probably more than
adequate. Pressure maps acquired from the BPMS will be
down-sampled and the performance of posture tracking
algorithm re-evaluated. The goal is to be able to specify
the minimum sensor resolution required in order to
achieve a certain performance criterion. A low-cost and
low-resolution pressure sensing system can then be
developed to facilitate the widespread use of smart chairs.

A smart chair such as the one we are developing can
have many important applications. For example, a
sensing chair that continuously monitors the pressure
distribution on chair surfaces can be a valuable
ergonomics tool for people who suffer from lower-back
pain due to poor postures. It can also assist furniture
designers to assess the long-term, dynamic performance of
a new chair. A carseat that can reliably estimate the
weight of its occupant can be used to control the force of
airbag deployment. Finally, a smart chair that
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continuously tracks its occupant's movements in the chair
can be regarded as a new type of haptic interface. The
possibilities for the use of such an interface for human-
computer interactions can only be limited by our
imagination.
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