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Abstract—Robots can be used to mitigate risks in unsafe and
austere settings. In recent years, explosive ordnance disposal robots
have reduced the technician’s time-on-target, and thus, reduce
the direct risk of exposure. This article focuses on the study and
development of innovative techniques as the foundational work
for a new robot platform. The proposed system includes an or-
ganic electrochemical transistor device to detect the existence of
explosive residues, and lead to decisions for safe-removal progress.
Taurus’ surgical gripper facilitates object tactile exploration, and
manipulation with control precision to the millimeter range. The
highly sensitive triboelectric tactile sensor could reduce intrusive-
ness during contact, and mitigate the risk of detonation. Haptic
devices and visual displays are used to convey important signals,
in order to improve the situational awareness of the teleoperator.
A machine learning classifier can be used to assist the user to
identify objects from tactile sampling. The integration of these
methodologies allows for a sensitive approach to concealed objects
that are only accessible through tactile sensing.
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1. INTRODUCTION

XPLOSIVE ordnance disposal (EOD) is known to be
E among the most hazardous occupations [1]. When con-
fronted with improvised explosive devices (IEDs), most EOD
operations target to dispose of the exposed explosive materials
expeditiously and safely while minimizing collateral damage.
The EOD technicians are trained to recognize, identify, and often
analyze the explosive materials, in order to disarm and render
them safe for disposal. In hazardous environments, protective
suits, helmets, and heavy steel blast shields provide the necessary
protection again blast injuries [2]. While the impact from blasts
can be mitigated, the protection may not be completely effec-
tive against direct exposures, leading to physical injuries [3].
Additionally, the protective equipment is heavy and constrains
movement, introducing fatigue, heat stress, and reduced dexter-
ity in onsite operations [4].

To mitigate these problems in hazardous environments, EOD
robots have been deployed to disposal tasks, reducing the risks
in otherwise deadly scenarios. Most EOD robots are based
on some form of teleoperation, in which the technicians need
to play the role of teleoperators who control the robot from
afar [5], [6]. The remote control is established by a bidirectional
communication link that transfers the control command and
observation feedback between human and robotics in real time.
On the negative side, the use of telerobots limits situational
awareness [7], especially considering that current available EOD
robots build heavily on the visual telemetry [8]. Such low situa-
tional awareness can impair the ability to detect IEDs that are not
exposed, such as those that are concealed or buried [9]. Within
controlled environments, ordnance disassembly attempts to re-
move energetics for ordnance preservation. Some operations
require increased risk exposure for the technician to validate
inert status.

This article proposes a suite of algorithms and techniques that
can improve situational awareness in such teleoperation tasks by
multimodality sensory feedback. The multimodal information
consists of vision, tactile, and the chemical composition of the
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target object. The resulting multimodal signals are used by the
teleoperator to enhance decision making regarding risk level,
proper disposal, and manipulation strategies of the explosive
residues in question. Likewise, the usage of tactile feedback
will allow operators to feel the object with their arms and
hands through haptics. This allows them to understand object
shape, structure, and composition [10]. Tactile feedback is also
designed to assure safe interaction with objects in an unintrusive
fashion [11]. This is critical as minimal changes can lead to
inadvertent detonation.

From the human side, this work also aims to improve situa-
tional awareness through tactile display methods based on visual
and haptic channels. Using the accumulated observations, object
shape can be recovered based on accumulated contact signatures
that are intrinsically sparse and discrete [12]. The semantic in-
formation that requires immediate attention is conveyed through
a pair of haptic sleeves that exploits the information bandwidth
of the human skin [13]. The information is transmitted using
vibrotactile patterns that are optimized for the human perceptual
system [14].

The current manuscript presents a consolidated robotic sys-
tem where several modules can be integrated, and combined
to achieve the purpose of bomb dismantling with the “human
in the loop.” Some of these modules appeared individually in
published conference papers [14], [15] or journal papers [12],
as stand-alone papers. However, the emphasis of this article
has the merit on the innovation in integration of the different
modules. Therefore, for completeness purposes, we discuss
different components in the context of the complete system, pro-
viding citations and references to the aforementioned published
works without repeating material that has been published. For
the comprehensiveness of the system, the contents in [12] are
briefly summarized. However, this article did not evolve from
it. In addition, there are other novel aspects in this article, such
as the novel organic electrochemical transistor (OECT)-based
chemical sensor that can characterize explosive residues, which
were not presented in previous articles.

The rest of this article is organized as follows. A literature
review of the technologies relevant to our EOD robot, tactile
sensing, and haptic rendering is given in Section II. The robot
platform and the overall system architecture are introduced in
Section III. Design principles of the OECT device for detecting
explosive residues are given in Section IV. The mechanism
and the fabrication process of the triboelectric nanogenerator
(TENG) tactile sensor in are provided in Section V. Algorithms
for visualization and object recognition based on tactile samples
are given in Section VI. Methodology for rendering multimodal
sensor signals is given in Section VII. Experiment results are
provided in Section VIII; discussions are given in Section IX.
Finally, Section X concludes this article.

In relation to the existing literature, our contributions include
the following.

1) A tactile-based teleoperation framework that can operate
effectively in scenarios where visual information is inef-
fective or unavailable.

2) An OECT device that enables the detection of explosive
residues.
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3) Integration of tactile sensors and haptic display devices
for safe interaction with hazardous objects.

4) Haptic and visual rendering methods that provide assis-
tance for EOD robot teleoperation.

II. RELATED WORK
A. Explosive Detection

Safe detection, identification, and proper rendering safe of
explosives has been a concern as urbanization extends to re-
gions that have been used as “hot zones” between groups in
armed conflicts, as often these buffer zones were delimited by
mines [16]. Since then, there has been a growing interest in
technologies that allow explosive detection and safe rendering
while minimizing the time on target and direct exposure of
technicians to threats. A common practice for explosive disposal
is either direct remote detonation, or defeat and disposal in cases
where detonation is not feasible or can have devastating effects.
When there is a question about the composition of the threat,
explosive detection is conducted first. Explosive detection can
either employ bulk detection or, as applicable to this work, trace
detection (ETD) [17], focused on examining residue on the sur-
face of the the package of interest. ETD includes various means
which encompasses techniques such as mass spectrometry/ion
mobility spectrometry [18], animal olfactory detection [19],
and electronic noses [20]. To et al. [21] provided a recent and
extensive discussion of various mechanisms of ETD. Previous
efforts were shown by Caygill et al. [22], where a sensor or
electronic nose ETD detection scheme was proposed. Such EOD
sensors can easily be installed on the robot and swabbing residue
can be quickly accomplished via remote operation. An extensive
amount of work in ETD sensors was allocated for the detection
of commercial explosives, such as nitroaromatics [23]. Those
solutions are not suitable for improvised explosives, especially
ammonium nitrate mixtures, which are becoming exceedingly
common [24], [25]. Hence, there is need to continue to work
toward new sensing technologies that can effectively detect both
commercial and improvised explosives, and at the same time,
dispose the explosive from afar.

To this end, sensor information is passed to an offsite operator
as a quantitative result (e.g., a change in mass or current). To do
so, two potential schemes for the development of these sen-
sors are: electrochemical [26], [27] and chemiresistive sensors.
These sensors measure currents resulting either from a transfer
of electrons between the sensor and analyte or as a result of
absorption of an analyte into an active material. Importantly,
while electrochemical sensors can detect explosives in vapor or
solution phase [28], [29], chemiresistive sensors are limited to
vapor phase detection—a concern for detecting nonvolatile or
hermetically sealed materials. However, both schemes’ working
principles can be incorporated into a solution phase sensor by
using an OECT.

An OECT uses a similar geometry and operation principle to
a metal-oxide—semiconductor field effect transistor (see Fig. 1)
however, it contains a semiconducting polymer channel (rather
than an inorganic semiconductor) whose resistance is tuned
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Fig. 1. Comparison of the device structure of (a) metal-oxide—semiconductor
field effect transistor and (b) organic electrochemical transistor (OECT).

via an adjacent electrolyte gate (rather than a solid insulating
dielectric) [30]. During typical operation, the gate bias pro-
duces an electric field, which drives dissolved ions from the
electrolyte into the semiconducting polymer channel, introduc-
ing or compensating excess charge carriers [31], [32]. OECTs
are flexible, compact, and use biocompatible materials; these
attractive properties make them particularly strong candidates
for bioelectronics [33] and biosensing. Here, their flexibility and
small size is suitable for ETD applications. OECT’s application
for biosensing stems from their ease of modification [34], [35]—
at gate and channel interfaces [36], [37], [38]. Their potential
viability for remote ETD stems from their solution phase sensing
mechanism—bypassing the concern of low explosive vapor
pressure [39], and they are low-power demand, and micron scale
in size allowing for ease of installation. In this work, we will
use a simple OECT design to demonstrate how basic OECT
operation can be applied to identify ammonium nitrate collected
from residue.

B. EOD Robots

Robots have been deployed to EOD tasks to eliminate the risk
of an otherwise deadly scenario. For example, the TALON robot
is a telerobot with mounted cameras and a dexterous manipu-
lator, which enables it to view, grip, cut, and move IEDs [40].
IRobot PackBot EOD robot platform is a portable mobile plat-
form equipped with a seven degree-of-freedom (DOF) manip-
ulator, which allows a specialist to remotely disarm IEDs [41].
Other similar robot platforms include tEODor [42], the Van-
guard MK2 (Allen-Vanguard), Hornet MK-5 (InRob Tech Ltd),
the Wheelbarrow series (British Army), SILO-6 [43], and the
SOLEM system (Foster Miller), among others.

The mobility of EOD robots is provided by a moving ve-
hicle based on wheels or tracks. When detonation is needed,
disruptors can be installed. In other cases, a manipulator arm is
one of the most frequently used tool [44]. Many EOD robots
are also capable of carrying multiple sensors and tools. For
typical designs, the Wheelbarrow EOD robot can be equipped

with cameras, weapons, and chemical detection devices. The
SOLEM system was featured with night vision and thermal
imaging to enhance the visual perception. Other sensors for
distance measurements [45], or detecting chemical, biological,
radiological, and nuclear threats can also be equipped by EOD
robots based on the need of the task, as reported in literature [46].

EOD robots are usually controlled through computer inter-
faces, where EOD technicians are part of the loop [8], [41], [42].
In particular, reducing the interaction force when dealing with
IEDs is a concern because it would otherwise lead to detonation
without proper mitigation strategies. Haptic feedback can enable
teleoperators to feel the interaction force at their own hands,
which allows accurate dexterity and force, regulating the contact
at a fine scale. Nevertheless, such tactile feedback has not yet
been widely used [8]. There have been studies exploring the use
of haptic feedback for EOD robots. Kang et al. [47] designed the
haptic device for ROBHAZ-DT?2 robot, which can convey the
measured force and torque to the teleoperator. A force-based
bimanual haptic telepresence system for demining was devel-
oped in [9], allowing better characterization of mines buried
underground. Nahavandi et al. [48] present the HE-CIED robot,
which can convey the gripping force to the teleoperator through
a haptically -enabled gripper controller. Wormley et al. [49]
present Robo Sally, a bimanual robot control system with bionic
robot hands that could incorporate haptic feedbacks.

C. Triboelectric Tactile Sensor

Tactile sensors enable safe object engagement during teleop-
eration [50]. The availability of force or pressure information
enables awareness of the active force, hence reducing the in-
trusiveness associated with object manipulation. This is critical
for EOD disposal operations, as even slight stresses can result
in detonation. Tactile sensors have already been included into
manipulators, footpads, and artificial skins in robots. This article
will focus on triboelectric tactile devices for the following
reasons. First, the triboelectric tactile sensor may help in the
material or explosive classification by providing feedback via
one or more modalities. This is especially advantageous when
studying objects that are not visible. The triboelectric effect is
also known to be capable of characterizing material information
quickly and accurately [51]. Second, the triboelectric sensor only
needs a single electrode per taxel to be connected to a circuit [52],
allowing flexible designs for space-sensitive applications such
as remote bomb disposal and telesurgery.

D. Tactile Display

Tactile displays can be used to present pertinent information
to a telerobotic operator, offloading some information from the
audio and visual domains. A large body of research exists on
the use of haptic feedback for navigation and object explo-
ration, particularly in situations where visual feedback is not
available. Tappeiner et al. [53] studied the impact of haptic
feedback for discovery of buried objects in loose sand using
bimanual teleoperation. The authors found that augmenting
the visual feedback with a novel Touch and Guide in Tandem
haptic feedback method led to enhanced performance, reduced
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Fig. 2. Robot platform we developed for the EOD task. The system composes the following modules: 1) Taurus robot teleoperation system, 2) OECT device for

detecting explosive residues, 3) TENG tactile sensor, 4) learning algorithms for object visualization, and 5) haptic display devices and controllers.

motion variability, and reduced time on task. Park et al. [54]
also found that haptic feedback can significantly improve the
performance during telerobotic locomotion and item exploration
atan art museum. This system was applied as part of an assistive-
technology-based interface for arts exploration. Both visually
impaired and blindfolded sighted users experienced a reduction
in task completion time and effort.

While haptic feedback can improve telerobotic navigation and
exploration, the difference between the remote sense of touch
and the actual tactile experience is vast. Controllers that provide
force feedback can provide contact information for one or two
interaction points, and they may also provide some proprio-
ceptive information. Devices like Force Dimension’s Omega
series offer commercially available force feedback integrated
with multi-DOF control [55]. However, human touch typically
involves reception of a wide array of features not captured by
this mechanism, including skin stretch, pressure, temperature,
pain, weight, and texture [56]. Conveying these characteristics
to the skin during teleoperation is a complex task, particularly
when vision is not available. There are a number of technologies
intended to convey some of these individual features existing
in touch, such as TanvasTouch technology from [57], which
uses friction modulation on a touchscreen to allow the finger to
experience texture, as well as the Stretch-Pro from [58], which
simulates the natural skin stretch associated with motor tasks of
intact limbs for prosthetic users.

Another approach for conveying haptic information through
robotics involves encoding that information and presenting it in
a haptic modality that is more easily accessible and processed
at the user’s end. For example, with the current state-of-the-art
teleoperation system, it is not possible to deliver a material tactile
sensation immediately. However, material information can be
encoded as vibration, then haptics can be used to convey such
information to the operator in real time. Encoding information
through vibrotactile stimuli also provides an opportunity to work
around known limitations in tactile spatial resolution in order to

achieve maximum information transfer [59]. Reed et al. [13]
demonstrated that users can learn a high number of distinct
vibrotactile codes given sufficient training. Their results indicate
that users can learn to identify as many as 39 unique vibrotactile
codes differentiated by properties such as frequency, location,
duration, and apparent motion.

One other avenue by which haptic feedback can aid in tele-
operation tasks is by cueing operators to notice key information
on other modalities through specific signals, such as drawing
attention to a relevant portion of a screen. Hameed et al. [60]
demonstrated that haptic cues conveying the importance of an
interrupting task were reliably interpreted by operators and were
used by some to inform task switching.

E. Tactile Object Visualization

In teleoperation tasks, most tactile sensors can only charac-
terize volumetric objects by sampling a partial observation per
touch, which requires a sequence of observations to allow recog-
nition of the object. Nevertheless, human operators have a limit
in the memory capacity, which constrains the maximum number
of features that can be recalled afterward [61]. As suggested by
studies from [61] and [62], the pattern of features, and spatial
relationship between them became inaccurate if the length of
such contact sequences was beyond this limit. When such haptic
exploration sequence is used for object recognition, the accuracy
is not sufficiently high even if the exploration trajectories were
frequently repeated [63]. This in turn, has a negative effect on
the operator’s situational awareness.

In this article, we introduce visual cues of contact locations
that can be persistently visualized, aiming to reduce the memory
capacity required by the exploration tasks. The visual cues have
been previously applied to the field of telesurgery, which can
improve the task performance when being integrated into the
visual feedback [64]. Properly designed visual markers can im-
prove the situation awareness of teleoperators [65], and mitigate
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the negative effects when time delay exists [66]. When optical
information is not available, the discrete contact points can
be visualized by visual markers or as object models. Previous
studies have shown that it is possible to align observations
to its ground-truth model by pose estimation [67]. When the
ground-truth object model is not available, it is possible to
convert the points to surfaces by geometric learning techniques.
One of the most common approaches is the Gaussian process
implicit surface (GPIS) [68], which creates an implicit surface
based on a sparse point set. The reconstructed results are smooth,
with low noise, and of infinitely high resolution. The limitation
of such reconstruction technique is that the result is constrained
to be a watertight surface, which is not visually intuitive for
representing incomplete object observations obtained when the
exploration is ongoing. This issue can be addressed by incorpo-
rating the uGPIS algorithm proposed in our previous work [12].

III. SYSTEM ARCHITECTURE
A. System Description

The architecture of the proposed system is given in Fig. 2.
The system consists of the following modules:

1) Taurus robot teleoperation system;

2) OECT chemical sensor;

3) TENG tactile sensor;

4) learning algorithms for object visualization;

5) haptic display devices and controllers.

These modules are described in Sections IV-VIIL. Such a
system integration enables multimodal measurements and telep-
resence, which facilitates object characterization not only by
optical cameras, but also by tactile sensors. The analyzed results
from contact features, material characteristics are conveyed back
to the teleoperator using haptic devices (Omega.7 controller, and
vibrotactile sleeves) to enable improvements in operator’s situa-
tional awareness and suitable maneuvers for explosive disposal.
After the acquisition of contact samples, global properties of
objects, such as shape and category can be determined to assist
decision making.

B. Taurus Robot Teleoperation Platform

Taurus is a dexterous dual-arm teleoperation platform devel-
oped by SRI International. The robot is equipped with multiple
sensory channels to improve a teleoperator’s situational aware-
ness. The robot has stereo cameras that can provide real-time
visual feedback through TCP/IP communications. The visual
stream is displayed to the teleoperator through a 3-D monitor, or
optionally through VR headsets for an immersive teleoperation
workspace. Second, the robot provides tactile feedback that
enables interacting with objects safely. This is possible through
interfacing the robot tooltip control with a pair of Omega.7
controllers (Force Dimension).

Tactile and haptic feedback to the operator is supported using
two sources of force inference.

1) Slowly varying forces of less than 10 Hz are estimated

by resolving the position error vector of the joints of the
remote robot. With known stiffness, each error vector is

Fig. 3.

Taurus telepresence platform mounted on a UR16e robot.

converted into a tip force vector, which is subsequently
transformed into the input device reference frame. Integral
gains are disabled to permit joint position errors to be used
as a proxy for joint torque measurements.

2) High-frequency (20-100 Hz) vibrations of the end effec-
tors are measured using three-axis accelerometers, dis-
tally mounted on each arm. The tip accelerations are
resolved into the input device coordinate system, through
the camera system transformation. Then, these signals are
superimposed as force waveforms on the haptic interface
devices. A low-pass filter in the command signal chain
prevents the controller motion from instability (caused by
destabilizing feedback).

The bimanual movements are achieved by two 7-DOF arms.
Each arm is equipped with an end effector that can perform
object manipulation with high precision. The control system
operates in position-to-position mode, where the remote ma-
nipulator joints are sent to new angles every 4 ms based on
the transformed pose of the hand controllers. The tip pose is
returned at the same update rate, and is used to calculate the tip
position error vector. The joint level position control of the robot
runs in a 2-kHz hardware loop. The left gripper has a dovetail
adaptor, which allows tools to be mounted or changed during
the operation. The tools needed by EOD operators include the
wet swab for residue collection, and the TENG tactile sensor for
object characterization.

To extend the physical operational volume range, the Taurus
is mounted on a UR16e robot (Universal Robots), as shown
in Fig. 3. The UR16e robot, in turn, is controlled by a remote
computer using Real-Time Data Exchange protocol.

IV. EXPLOSIVE DETECTION

EOD’s effective decision making requires knowledge of the
particular explosive needed to be disposed of. In these scenarios,
improvised explosives will be the most prevalent and the ones
that most urgently need to be detected. One approach for detec-
tion relies on the fact that many explosives utilize ammonium
nitrate mixtures. Ammonium nitrate is readily soluble and disso-
ciates in many common solvents producing a viable electrolyte.
In this state, solution phase detection is accomplished using a
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(a) Schematic diagram depicting the proposed wet-swab sensing mechanism. In this process, residue is gathered using a swab which is subsequentially

transferred and dissolved in a small stock solution. An aliquot of solution is transferred to the OECT for inspection. (b) Schematic illustration of PEDOT:PSS
OECTs. When detecting ammonium nitrate, dissolved ions can penetrate the polymer blend and reversibly lower its conductivity monitored through drain current.
(c) Photo of the demonstrative OECT device. The inset shows a microscope image of the sensing area (highlighted in green).

wet-swab inspection scheme, as shown in Fig. 4(a). Here in, a
practical method for such detection requires the Taurus to swab
a package of interest to collect residue using the tooltips and
swabbing motion, and dissolve the residues in a reservoir of
solvent for final characterization. Swabbing is an inexpensive
and efficient means of collecting residue, making it ideal for
remote ETD [69], [70]. An aliquot is siphoned and inspected
using an OECT. Later, the OECT structure is generalized for
detection of other explosives.

For ammonium nitrate detection, if the dissolved aliquot con-
tains the salt, the applied voltage gate bias drives the explosive
ingredient to intercalate into the organic channel and change
the channel resistance [shown schematically in Fig. 4(c)]. The
OECT sensor architecture allows a solution phase (rather than
vapor phase) analysis bypassing the general concern of low
vapor pressures in energetics [39]. Additionally, an individual
OECT draws power under 1 W, is inexpensively prepared, and
has an area less than 1 mm?. A microscope image is given to
highlight the sensing area. These properties allow us to utilize
an array of OECTSs operating in parallel to receive immediate
chemical feedback on a variety of explosives.

Here, we demonstrate the operating principles in Fig. 4(c),
whichis applied to create a sensor sensitive enough to distinguish
solutions containing various trace quantities of ammonium
nitrate. These example OECTs employ a blend of poly(3,4-
ethylene dioxythiophene) polymer doped with poly(styrene
sulfonate) (PEDOT:PSS) for their channels. PEDOT:PSS is a

common choice for OECT sensors and is commercially available
making it a good channel material [34], [36], [37]. A photo of a
real OECT device based on this principle is shown in Fig. 4(b).

OECTs were prepared on glass substrates fabricated with
Au/Ti contacts and parylene insulation to produce channels
with dimensions of 20 by 500 um. 1.1 wt% PEDOT:PSS was
purchased from Sigma Aldrich; added was 5 wt% ethylene
glycol and trace 3-(glycidoxypropyl) trymethoxysiloxane and
dodecylbenzene sulfonic acid. The PEDOT:PSS blend was spin-
coated on the surface and annealed at 140 °C. Tested OECTs
utilized silver/silver chloride pellet gate electrodes submerged
in 100 pL of test solution (contained in a polydimethylsiloxane
well) serving as an electrolyte gate. Solutions utilizing known
concentrations of ammonium nitrate were prepared using high-
performance liquid chromatography (HPLC) grade water, pur-
chased from Sigma Aldrich, as a solvent. However, non-HPLC
grade deionized water was used to dissolve swabbed residue.
Sample surfaces were prepared by coating residue on copper
sheets. Measurements were recorded using a Lakeshore probe
station in tandem with a Keithley source meter controlled using
LabTracer software.

V. TRIBOELECTRIC TACTILE SENSOR

A. Working Mechanism of the TENG

The structure of the TENG device can be divided into two
parts. The first part is called contact layer made of dielectric
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Fig. 6. (a) TENG device (size at around 5 cm x 5 cm). (b) Electrical output
of TENG under periodic physical contacts (sampled at 1000 Hz).

material such as silicone with a metal electrode on the other side.
The second part is a counter layer, which is an external object
that the TENG is about to approach. The basic working mech-
anism of TENG includes triboelectrification and electrostatic
induction [71]. Fig. 5 illustrates a complete operation cycle for a
TENG tactile sensor. When silicone and an external item come
into contact under mechanical pressure [as seen in Fig. 5(i)],
static charges may be generated on the contact region as a result
of contact electrification. Given that TENG’s structure may be
compared to that of a precharged capacitor, the distance between
TENG and the object surface is equivalent to the capacitance
change. As aresult, a charge flow can be created. This is depicted
in Fig. 5(ii). Fig. 6 illustrates a typical TENG signal during
one entire operating cycle. It comprises of a positive peak (red
shadow) representing a contact event and a negative peak (green
shadow) representing a contact-break event between the TENG
and the external object.
The output voltage of TENG can be described as

Voo = od (1)
€0

where d is the distance between TENG and the external object,
o is the surface charge density, and ¢ is the relative permittivity
of the contact layer.

Among these parameters, surface charge density is mainly
determined by the intrinsic material properties as reported in
the triboelectric series chart [72]. Any material’s triboelectric
series rank is determined by its tendency to gain or lose charges
during the contact-separation step, which is shown in Fig. 5. The
rank difference between the contact material from TENG and an
external material determines the quantity of triboelectric charge
generated, and hence, the output signal’s magnitude, phase,
and spectrum. This is the essential idea underlying material
identification in tactile sensing based on TENGs.

The output of TENG is also positively proportional to the input
pressure based on the previous reports [73], [74]. The reason can
be attributed to the change of effective contact area, which alters
the surface charge density shown in (1). The microlevel elastic
deformation will lead to a more intimate contact under large
pressure given that the stiffness of the contact layer (silicone) is
relatively low. Compared with a conventional capacitive tactile
sensor, TENG can directly establish force-sensitive behavior
with no further modification on sensor itself or external circuit.

B. Device Fabrication

Based on the aforementioned working principle (see Sec-
tion V-A), a prototype TENG trackpad with nine taxels [see
Fig. 6(a)] is designed and fabricated by the following steps.
First, the conductive electrode was printed onto the PCB board
with a 3 x 3 array spatial layout. Carbon grease was applied
as the electrode material due to its excellent conductivity and
compatibility with the printing process. After that, a layer of
silicone was cast-coated onto the PCB board to fully cover the
as-printed electrode. This silicone layer is used as the dielectric
layer, and also provides the protection for the electrodes. Given
that the average height of the electrode was 3 mm, the thickness
of the silicone layer was controlled to be 5 mm. The final step was
to bake the whole device at 50 °C for 10 min using a hotplate.

VI. OBIJECT VISUALIZATION

Two methods are proposed to create visualization based on the
collected tactile observations. The goal of using such visualiza-
tion is to provide a reference to the user about where the contact
locations are, so to reduce the cognitive load on the user. This is
done by (appeared in our previous work [12], [15]): converting
sparse tactile samples to a refined mesh model, and predicting
the object label by a volumetric deep learning classifier.

A. Visual Rendering

It is possible to visualize the underlying surface of objects
by creating the implicit surface from observed contact samples.
We achieve this by first addressing the limitations of Gaussian
process implicit surface (GPIS), which is an algorithm that was
commonly adopted by previous studies for visualizing tactile
sampled data [75], [76]. Given that the internal parts of objects
are not reachable by direct touch, the truncated signed distant
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field (TSDF) function required by the GPIS method cannot be
directly measured by tactile sensors. While it is possible to use
predicted TSDF function as a substitution, the prediction itself
may not be accurate and may result in reconstruction failure.

The aforementioned challenges are tackled using the unsigned
GPIS (uGPIS) algorithm proposed in our previous work [12]. To
summarize, the uGPIS is used to reconstruct the surface using
the occupancy possibility function f,(-) € [0, 1]. The occupancy
function is measured by the tactile sensor, which is defined as
follows:

1) contact point set O with f,(x,) = 1 forall x, € O;

2) trajectory point set V' that are within the free region of the

space with f,(x,) =0forallx, € V.

Since we only focus on visualizing points that have been
detected, a dummy point cloud grid U with f,(x,) = 0 for all
x,, € U is created to fill those unobserved regions that are afar
from the object (greater than a threshold distance d,). Then, a
Gaussian process with the radial basis function kernel is used for
surface regression. The kernel parameters are learned by fitting
on the training set that consists of all points in V, O, U, and the
labels f,(xy), fo(X0), fo(xu) for each point set, respectively.

As an improvement to our previous work [12], the visualiza-
tion is created by extracting a given number of iso-surfaces (K
level set values), at an equal interval between the range of 5%
and 95% percentile number of (f,(x1), fo(X2), - . ., fo(xn)) for
all x; € O (denoted as [T5, Tys]). This is an improvement over
our previous work [12] where now the percentile range is used
as a filter to remove outliers that are difficult to be regressed.
Using this approach improves the effect of visualization.

B. Object Recognition

Object recognition is used to assist the teleoperator, in order
to understand the type of objects being touched. One problem
is that the point cloud data collected from tactile sampling
may have multifactorial variances. These variances are result of
arbitrary object rotation, sparsity, measurement noise, etc. Such
variances in the input data may affect the performance in most
deep learning schemes. To tackle this issue, Triangle-Net, a deep
neural network, which is robust toward multifactorial variances
is applied [15].

Here, we briefly introduce the Triangle-Net model in [15]. The
working principle is to learn on a representation that remains in-
variant to multifactorial variances. Rather than directly learning
on point clouds, the input features to the network are triangle
parameters generated by randomly selecting a given number of
triads (denoted as Z(x;,X;, X)) from the input point cloud.
Note that using a fixed number of triads enables the network
to tackle an arbitrary number of input points. Empirically, a
greater number of triads contribute to higher accuracies at the
cost of computational load. We found through experiments that
using 4096 triads is sufficient for point clouds with a thousand
or lower number of points. The entry of each feature includes
triangle’s edge distance, triangle’s inner angle, angles between
triangle edges and the contact force direction. Once the features
are obtained, a deep neural network (denoted as Hg) is used to
map the triangular features to a high-dimensional space. Last,
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Fig.7. Photo of a participant wearing one tactile display on the upper left arm
and the other on the right forearm (from [14]).

all features are aggregated by a dimension-wise max function to
obtain a latent vector. This process is represented as follows:
o (x;) = max He (Dm (Xi,%5,Xp)) . 2)
i,5,k€E
A classification network can be built upon the latent vector
&/ (%;). In our implementation, both function Hg and the clas-
sification heads are chosen as multilayer perception networks.
This design allows the network to be trained end-to-end by an
optimizer, such as the Adam optimizer in our case [15].

VII. HAPTIC DISPLAY

The data from the TENG sensor can be presented to the oper-
ator haptically. This approach offloads some information from
the audio and visual channels allowing more cognitive resources
on the operator side. Moreover, humans gather information for
material categorization and pressure sensing haptically, so there
is a natural motivation to continue to present that information
via the skin even when mediated by a robotic system.

The display consists of two haptic sleeves, one worn on the
forearm and the other on the opposite upper arm, as shown in
Fig. 7. Different body sites were selected on the left and right
arms to avoid misplacement errors of homologous locations (for
example, see [77] and [78]). Each is comprised of an array of 12
tactors. This design aims to present categorical information (i.e.,
discrete categories of materials or levels of pressure) thresholded
from the continuous data produced by the TENG sensors.

The arms were selected as the display site due to their high
tactile sensitivity and ease of access [56]. Compared to other
areas sensitive to touch (face, fingers, and feet), the arms are
more available for use during a teleoperation task. There is also
a natural analogy between the two arms of the operator and
the two end effectors of the Taurus robot. It would be possible
to map the TENG signals from the right-end effector to the
right arm and from the left-end effector to the left arm. The
decision to use vibrotactile signals and discretize information
such as contact pressure was motivated by the known limitations
of control stability and force transparency in force feedback,
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Fig. 8. (a) Preliminary results of OECTs tested using solutions of known

ammonium nitrate concentration. (b) Results when the OECT was challenged
by a solution containing residue gathered by swabbing with the Taurus (black),
compared to the case where the device was challenged with ionized water (blue)
used to collect residue.

as well as the research by Reed et al [13], demonstrating that
participants could be trained to identify 39 unique vibrotactile
signals encoding categorical information (English phonemes)
with a mean recognition rate of 86%.

In order to determine the most effective encoding of material
categories or pressure levels to vibrotactile signals, experiments
were conducted to determine the selective attentional limitations
of the system. These are described in Section VIII-C.

VIII. EXPERIMENTS
A. Residue Detection

The first method of OECT testing measured the transient
response produced by solutions of known ammonium nitrate
concentration [see Fig. 8(a)]. A test device contained the analyte
solution of interest to serve as an electrolyte gate. The gate
voltage was, first, held at VG = 0 V, then, stepped the bias
to VG = +1 V while measuring drain current, ID (using a
constant source-drain bias of —0.5 V). The step change in gate
bias produced a transient rise in current, ensuring a general
response time of <30 s. Importantly, the OECT could analyze
solutions with 1-10 4M ammonium nitrate concentrations. This
concentration can be reached by collecting ~1 g of residue—a
quantity that can be achieved via swabbing [69], [70]. Second,
OECTs were tested using electrolytes prepared by swabbing
residue from a surface [see Fig. 8(b)]. Specifically, ammonium
nitrate was collected using the Taurus to swab a hard metal
surface containing salt residue. The swabbing process required
~90 s and collected enough residue to induce a two order of
magnitude decrease in drain current, a reasonable timeframe for
improvised explosive detection.

B. Characterization of the TENG Tactile Sensor

To study the pressure sensitivity of the TENG sensing unit, its
electrical output as a function of loading forces was investigated.
For copper material, the result is shown in Fig. 9(a). The elec-
trical signal of the TENG increased in an approximately linear
manner with increasing pressure between 9 and 250 kPa. The
pressure sensitivity of the TENG unit is defined as S = 7 SAAI o>

where AP is the change of pressure, Al is the change of the
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Fig. 9. (a) Relationship between the TENG electrical output and input pres-
sure (red line: linear regression result). (b) Different TENG electrical output
amplitude for various contact materials.

signal current resulting from the change in the pressure, and /s
is the saturated current under the pressure test. The calculated
sensitivity is around 2.7 Pa~!, showing a promising performance
for pressure sensing-related application.

When the pressure of the device was fixed at 60 kPa, the
electrical response of the TENG with five different materials is
shown in Fig. 9(b). There was a clear signal amplitude difference
observed among these five materials. This indicates that the rel-
ative amplitude strength relationship could potentially provide
a starting point for a material identification strategy.

C. Selective Attention to Haptic Stimuli

To map the tactile information to a haptic display, it was
necessary to understand the number of discrete haptic signals the
operator could reliably identify under various attentional condi-
tions. An experiment was conducted to determine the attentional
limitations of an operator when haptic stimuli were presented
simultaneously on both arms (appeared earlier in [14]). Ten par-
ticipants were trained and tested on identification of vibrotactile
stimuli presented via the displays show in Fig. 7. Participants
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were randomly assigned a nonsymmetric configuration of the
displays, with one display worn on the left (right) forearm
and the other worn on the right (left) upper arm. Nine distinct
vibrotactile stimuli were employed in the study, characterized
by a combination of location on the tactor array (dorsal distal,
volar middle, or dorsal proximal) and frequency (300 Hz, 60 Hz,
or 300 Hz with 60-Hz amplitude modulation). All stimuli were
presented at 25 dB above the participant’s detection threshold.

First, participants were allowed to train by freely playing the
nine stimuli or using self-testing with feedback. After training,
participants completed five sessions of testing across five days.
For each session, five conditions were tested for one 100-trial
run each, for a total of 2500 trials per participant. The conditions
were: left arm stimulated, left arm attended (L, L); right arm
stimulated, right arm attended (R, R); both arms stimulated, left
arm attended (LR, L); both arms stimulated, right arm attended
(LR, R); and both arms stimulated, both arms attended (LR,
LR). The order of these five conditions was randomized for each
session.

Participants demonstrated evidence of an ability to selectively
attend to stimuli on a certain arm, with particularly strong
performance for location information. Average percent-correct
(pc) scores were calculated across all runs and participants. Sta-
tistically significant differences were found between the results
of the single-arm conditions (avg = 92%), selective attention
conditions (avg = 82%), and divided attention condition (50%).
The slight decreasing trend seems primarily attributable to per-
formance for frequency identification, as average pc scores for
location information only were notably high across all condi-
tions, both for the undivided attention conditions, (L, L), (R, R),
(LR, L), and (LR, R) (avg = 98%), and the divided attention
condition (85%). Information transfer (/7") estimates suggest
that using six alternatives (three location alternatives and two fre-
quency alternatives) could allow participants to perform highly
under selective attention conditions. The I7 results also indicate
that participants could identify 24 combinations of left/right arm,
location, and frequency information.

The results of this study indicate that as many as 24 categories
of information from the tactile sensor can be reliably identified
by an EOD operator. Knowing the selective attentional limita-
tions of this system allows us to offload the contact information
from the visual modality. Being able to display contact infor-
mation simultaneously on both arms could also enable tactile
object exploration with both end effectors.

D. Augmented Tactile Visualization

Experiments were conducted to create augmented visualiza-
tions based on tactile samples. For this, a simulation was created
to collect tactile samples from virtual objects. This experiment
appeared in [12]. A human teleoperator was involved in the
experiment by controlling the position of a simulated tactile
sensor. The control command, together with the produced force
when interacting with objects, were transmitted bidirectionally
by an Omega. 7 haptic device (Force Dimension). In Fig. 10, the
reconstructed surfaces for three virtual objects are demonstrated:
a banana, a bowl, and a scissor. It can be seen that the shape of
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Fig. 10.  (a) Simulation for obtaining point samples. (b) Example of objects,
and the region covered by contacts point clouds (green). (c) Isosurface from
augmentation.

the reconstructed isosurface is consistent with the groundtruth
object and the point priors as well. Moreover, the robustness of
the reconstruction process was demonstrated when the sampled
points only cover a partial region of the object, showing that
reasonable reconstruction results can still be obtained even if
the objects does not hold the watertight assumption.

Recognizing corrupted tactile samples can increase operator’s
cognitive load. Therefore, the predicted object type is displayed
as an assistant approach. This is implemented by leveraging
a point cloud recognition network Triangle-Net [15], which
achieved satisfactory accuracies in both human-guided tactile
exploration dataset and corrupted virtual object datasets. In our
previous work [15], experiments were conducted on a highly
corrupted ModelNet 40 dataset [79], which has 40 categories
with 12 311 CAD models in total. All the objects were down-
sampled to 16 points per object and are rotated by arbitrary
SO(3) transformation around the center. Under such an extreme
corrupted condition, the Triangle-Net achieved 70.35% top-1
accuracy. In comparison, the PointNet model only achieved
35.28% due to the combined variations from the unknown object
pose and the sparsity [15].

In our previous study [12], evaluations were conducted using
human-guided tactile sampling data in a simulated environment.
Triangle-Net [15] achieved a 76.7% top-five classification ac-
curacy using the collected contact points from the simulated
tactile exploration environment, while the baseline algorithms
PointNet [80] and DGCNN [81] only achieved 38.4% and 39.7%
top-five accuracy, respectively. Future work includes conduct-
ing a systematical human subject study, in order to evaluate
on recognizing samples from concealed objects by the real
Taurus robot. The study will focus on human performance in
teleoperation situations. An example is to compare human’s
object recognition accuracy without assistance, to situations
with assistance information available to the user (predicted shape
and object category information).

IX. DISCUSSIONS

Our work thus far has focused on developing a series of
technologies for IED characterization using the Taurus teleop-
erated robot. While the purpose of this article is to showcase
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the functional module of each part, we anticipate the system
could be integrated in the following ways. First, a more compact
tactile sensor needs to be developed to facilitate integration with
Taurus gripper. The new tactile sensors will need to be small
enough to be carried by the Taurus dovetail adapter. Its feedback
channels need to be integrated into the robot’s communication
protocols. A compact design of haptic sleeves could allow for
ease of use by the teleoperator without affecting the user’s hand
dexterity. In addition, we plan to develop a swabbing tool for
residue collection that can be carried by the robot. Preliminary
studies have shown that designs similar to whisker filaments
may be suitable for this application, as they allow for conformal
swabbing of surfaces while being minimally intrusive to the
object surface.

The tactile feedback from the Taurus robot gripper is neces-
sary for safe teleoperation, as it provides information about the
contact force direction and high-frequency vibration signals that
are critical to haptics rendering through Omega.7 controllers.
Nevertheless, it is still not sensitive enough for contact detec-
tion in a minimally intrusive way. In comparison, the TENG
sensor may allow for highly sensitive contact detection and
characterization. Further, the TENG sensor also allows for the
discrimination of the materials and the applied pressure, which
can be achieved through interpreting the information (e.g., pulse
shape, rise/fall time, etc.) from the original triboelectric wave-
forms leveraging machine learning approaches. The current
work establishes a platform to explore more complex problems
such as using tactile signals to help visualize the properties of
the objects (e.g., surface, materials, etc.). The demonstration
of the capability to identify and discriminate different materials
warrants more comprehensive follow-up efforts. One interesting
direction is conveying material information (e.g. category) to
the operator using haptics in real-time, in addition to informing
about contact events only. This can be achieved through map-
ping different material categories detected by TENG sensor to
different body sites using haptics sleeves.

Conducting human subjects studies would be a necessary step
in building such an integrated system. We plan to systematically
conduct evaluations on a series of tasks, such as simulated IED
material analysis through a TENG sensor, residue collection
and composition analysis through OECT sensor, and performing
mechanical separation of simulated IED devices through robot
manipulation.

X. CONCLUSION

In this article, we investigated a suite of techniques for a
tactile-based EOD robot, aiming to mitigate the risk from deadly
scenarios. Compared to conventional EOD robots, the proposed
techniques allowed us to extend the application of EOD robots
to scenarios where visual information cannot provide suffi-
cient situational awareness for successful task execution. In the
described system, we leveraged the Taurus robot, which was
controlled remotely through teleoperation. To identify the risk,
an OECT device was designed to search for the occurrence
of explosive residues. By having this information, the risk
can be assessed in advance, and precautionary actions can be

undertaken to prevent further harm, or disengagement maneu-
vers can be executed. Safe interaction with suspicious objects
was accomplished by the combination of tactile sensors and
haptic display devices, allowing users to get real-time force feed-
back and multimodal information for object characterization.
The accumulated evidence, in the form of observations from
suspicious objects, could be visualized to enable an intuitive
understanding of the environment and to increase situational
awareness. Because of the number and complexity of simulta-
neous tasks that the EOD operator was required to perform, an
experiment was conducted to determine the attentional limita-
tions of the users. Future work includes an experiment that will
involve the transmission of more complex semantic information
using the aforementioned vibrotactile sleeves, such as contact
events, texture cues, and alert levels identified from the explosive
residues.

The main outcomes of this work were the ability to recognize
the type of explosive residues by a quantity that can be achieved
by swabbing (around 1 pg), triboelectric tactile sensor that were
capable of conveying pressure and material type, highly robust
deep learning methods that can recognize object category from
contact samples with multifactoral disturbances (only requires
8-16 points per object), and haptic/visual rendering methods that
can provide the navigational guidance. Future work will include
the integration of the proposed technologies into the Taurus
manipulation platform for simulated IED characterization tasks
or disassembly procedures, and render the semantic information
from the TENG and OECT devices through haptic devices.
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