
Applications of Polytopic Approximations of Reachable

Sets to Linear Dynamic Games and a Class of Nonlinear

Systems1
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Abstract

This paper presents applications of polytopic ap-
proximation methods for reachable set computation us-
ing dynamic optimization. The problem of comput-
ing exact reachable sets can be formulated in terms of
a Hamilton-Jacobi partial differential equation (PDE).
Numerical solutions which provide convergent approx-
imations of this PDE have computational complexity
which is exponential in the continuous variable dimen-
sion. Using dynamic optimization and polytopic ap-
proximation, computationally efficient algorithms for
overapproximative reachability analysis have been de-
veloped for linear dynamical systems [1]. In this pa-
per, we show that these can be extended to feedback
linearizable nonlinear systems, linear dynamic games,
and norm-bounded nonlinear systems. Three illustra-
tive examples are presented.

1 Introduction

Reachability analysis for continuous and hybrid sys-
tems is important for the automatic verification of
safety properties and for the synthesis of safe con-
trollers for these systems [2, 3]. Convergent approx-
imations of reachable sets for such systems can be
computed by solving the exact Hamilton-Jacobi partial
differential equation (PDE). Numerical methods have
been devised to compute these convergent overapprox-
imations [4, 5], which work well in up to three con-
tinuous variable dimensions, yet these methods are not
practical for solving high dimensional problems. There-
fore, approximate methods for reachable set computa-
tion have been proposed.
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Tiwari and Khanna [6] and Alur et al. [7] propose
predicate abstraction for reachable set computation:
this method can be used to extract equivalent finite
state models from complex, infinite state models, and
then to use them to find approximate reachable sets of
the original systems. In [8], Hwang et al. have used
an augmented form of predicate abstraction to com-
pute reachable sets for a simple biological cell network.
However, since the accuracy of reachability analysis us-
ing predicate abstraction greatly depends on the choice
of polynomials for abstraction, it is important to have
information about a given system a priori (from anal-
ysis and simulations) to get good results in the reach-
ability analysis. Chutinan and Krogh [9, 10] present a
method to approximate the flows of autonomous sys-
tems with convex polyhedra. An experimental system
called d/dt [7, 11, 12] has been developed to approxi-
mate reachable sets for linear dynamical systems using
griddy orthogonal polyhedra. In these methods, it is
difficult to compute the control input which is guaran-
teed to keep the system on the boundary or inside the
set, from the boundary of the overapproximative set.

Varaiya [1] designs a polytopic approximation for
linear time invariant systems using optimal control.
Kostousova [13] develops two-sided approximations of
reachable sets for linear dynamic systems using par-
allelotopes. Kurzhanski and Varaiya [14, 15] propose
an ellipsoidal approximation for forward and backward
reachable sets (a computational tool VeriSHIFT [16]
has been developed based on their ideas) and in [17, 18],
they define various types of reachable sets for linear
time-varying systems with bounded perturbations us-
ing both open and closed-loop input laws. In [18],
they propose ellipsoidal overapproximations of reach-
able sets for linear systems under uncertainty via solu-
tions of a particular type of differential equation. The
authors clearly state in the conclusions of both pa-
pers that the computational methods of reachable sets
and their approximations are topics for future research.
These statements were a motivation for the results pre-



sented in this paper.
In this paper, we use the method proposed by

Varaiya [1] to compute reachable sets for linear time
invariant systems using dynamic optimization, and in-
spired by the work of Khrustalev [19] and Kurzhan-
ski and Varaiya [14, 15, 17, 18], we extend it to more
general dynamical systems such as feedback lineariz-
able nonlinear systems, linear dynamic games, and
norm-bounded nonlinear systems. We present three
examples, one of which is a “benchmark” two-aircraft
three-dimensional collision avoidance example, which
is solved using feedback linearization with dynamic ex-
tension.

This paper is organized as follows. Motivation for
this study is described in Section 2. Computations of
polytopic reachable sets for linear dynamical systems,
feedback linearizable nonlinear systems, linear dynamic
games, and norm-bounded nonlinear systems are pre-
sented in Section 3. Examples are presented in Section
4. Conclusions are presented in Section 5.

2 Background and Motivation

Consider a dynamical system,

ẋ(t) = f(x(t), u(t), d(t)),
x(0) ∈ X0 (or x(tf ) ∈ Y0), t ∈ [0, tf ] (1)

where 0 ≤ tf < ∞, x ∈ R
n, u ∈ U ⊂ R

m is the
control input, d ∈ D ⊂ R

p is the disturbance input,
X0 = {x : l(x) ≤ 0} is an initial set of states, and
Y0 = {x : y(x) ≤ 0} is a target set of states. We
assume f to be Lipschitz. The spaces of admissible
control input trajectories and disturbance input trajec-
tories are denoted as the spaces of piecewise continuous
functions U = {u(·) ∈ PC0|u(t) ∈ U, 0 ≤ t ≤ tf} and
D = {d(·) ∈ PC0|d(t) ∈ D, 0 ≤ t ≤ tf} respectively.
The forward and the backward reachable sets of the
system (1) are defined as follows.
Definition 1 The forward reachable set X (τ) at time
τ (0 < τ ≤ tf ), of the system (1) from the initial set
X0, is the set of all states x(τ), such that there exists a
control input u(t) ∈ U (0 ≤ t ≤ τ), for all disturbance
inputs d(t) ∈ D (0 ≤ t ≤ τ), for which x(τ) is reachable
from some x(0) ∈ X(0), along a trajectory satisfying
(1).

Definition 2 The backward reachable set Y(τ) at time
τ (0 ≤ τ < tf ), of the system (1) from the target set
Y0, is the set of all states x(τ), such that there exists a
control input u(t) ∈ U (τ ≤ t ≤ tf ), for all disturbance
inputs d(t) ∈ D (τ ≤ t ≤ tf ), for which some x(tf ) ∈
Y0 are reachable from x(τ), along a trajectory satisfying
(1).
It has been shown that a forward reachable set com-
putation can be formulated as a dynamic optimization
problem [15, 19]. The forward reachable set of the dy-
namical system (1) at time τ (0 < τ ≤ tf ) is shown to
be [15]:

X (τ) = {x : v(x, τ) ≤ 0} (2)

where v(x, τ) is a (viscosity) solution of the Hamilton-
Jacobi-Isaacs (HJI) partial differential equation,

Dtv(x, t) + max
u∈U

min
d∈D

{< Dxv(x, t), f(x, u, d) >} = 0

(3)
with v(x, 0) = l(x) and < p, q >= pT q the inner prod-
uct in R

n. Thus, the forward reachable set of the dy-
namical system (1) is the zero sublevel set of the solu-
tion to the HJI equation in (3).

Similarly, the backward reachable set of the dynam-
ical system (1) at time τ (0 ≤ τ < tf ) is a zero sublevel
set of the solution to the HJI equation [15],

Dtv(x, t) + min
u∈U

max
d∈D

{< Dxv(x, t), f(x, u, d) >} = 0

(4)
with v(x, tf ) = y(x).

In [4, 5], a numerical tool for computing conver-
gent approximations for backwards reachable sets is de-
signed and presented. This method is based on the level
set method for computing PDE solutions [20]. The
computational complexity of this tool is exponential in
the number of continuous variables dimensions: it has
been shown to work well in up to three continuous vari-
ables dimensions, yet for larger problems computation
time is currently prohibitive. Numerical convergence
has been demonstrated on several examples; we will use
a “benchmark” three-dimensional example from [5] in
the current paper.

Consider planar kinematic models of two aircraft,
labeled 1 and 2. Let (xr, yr, ψr) ∈ R

2 × [−π, π) rep-
resent the relative position and orientation of aircraft
2 with respect to aircraft 1. Given the absolute posi-
tions and orientations of the two aircraft, denoted as
xi, yi, ψi for i = 1, 2, the relative coordinates are de-
fined as: xr = cos ψ1(x2 − x1) + sin ψ1(y2 − y1), yr =
− sin ψ1(x2 − x1) + cos ψ1(y2 − y1), ψr = ψ2 − ψ1. The
relative kinematics are thus given by:

ẋr = −σ1 + σ2 cos ψr + ω1yr

ẏr = σ2 sin ψr − ω1xr (5)
ψ̇r = ω2 − ω1

where σi is the linear velocity of aircraft i and ωi is
its angular velocity. Safety is encoded as a 5 nautical
mile radius cylinder “protected zone” centered at the
origin of the relative frame. In this paper, following
the notation in Definition 2 (which is different from
that in [5]), we define the angular velocity of aircraft
2 (ω2) as the control input that steers the system (5)
into the target set and the angular velocity of aircraft
1 (ω1) as the disturbance input that keeps the system
(5) outside of the target set. Posing this problem as a
game, we label aircraft 1 as “evader” and aircraft 2 as
“pursuer”, and we compute the set of states (xr, yr, ψr)
for which for all possible disturbance inputs, ω1 action
of the evader, there is a control input, ω2 action of the
pursuer, such that the system state enters the protected



zone, which we consider the target set of the game. For
values σ1 = σ2 = 5 and ωi ∈ [−1, 1] (i ∈ {1, 2}), the
problem has been solved numerically, and the results
(solid surface) are shown in Figure 3 (Courtesy of I.
Mitchell [5]). This computation took approximately 15
minutes to run on a Sun UltraSparc II, in which 50 grid
nodes in each dimension were used.

In the following section, we extend Varaiya’s method
[1] to treat this kind of system and in Section 4, we
compare the above computation with the resulting ap-
proximation.

3 Computation of polytopic reachable sets

We first define the overapproximate reachable set
[15] (here we specialize to the case of (1) in which
there are no disturbances). Assume that x∗(0) ∈ X0

and u∗(t) ∈ U for all t ≥ 0 such that x∗(τ) ∈ X (τ)
(0 ≤ t ≤ τ). Then, an overapproximate solution to
the solution of the HJI equation in (3) is defined as a
function v+(x, t) satisfying [15, 19]:

dv+(x,t)
dt |x=x∗(t),u=u∗(t),ẋ=f(x,u)

= Dtv
+(x∗, t)+ < Dxv+(x∗, t), f(x∗, u∗) >

≤ Dtv
+(x∗, t) + maxu∈U{< Dxv+(x∗, t), f(x∗, u) >}

≤ µ(t)
(6)

where v+(x∗, t) is a piecewise continuous function, and
µ(t) is a positive-definite, integrable function. By inte-
grating (6) from 0 to τ , we obtain an overapproximative
reachable set of the dynamical system (1) at time τ as:

V +(τ) = {x|v+(x, τ) ≤
∫ τ

0

µ(t)dt+ max
x(0)∈X0

v+(x(0), 0)}
(7)

Next, we review the polytopic overapproximation of
reachable sets for linear dynamical systems and derive
computational methods for polytopic overapproximate
reachable sets for feedback linearizable nonlinear sys-
tems, linear dynamic games, and norm-bounded non-
linear systems.

3.1 Linear dynamical systems
In this section, we review the polytopic overapprox-

imation of reachable sets for linear systems from [1].
Consider a time-varying linear dynamical system

ẋ(t) = A(t)x(t)+B(t)u(t), x(0) ∈ X0, u(t) ∈ U (8)

where the initial set X0 and the admissible control in-
put set U are assumed to be convex polytopes which
have N and Nu faces respectively. In this paper, we
assume the initial set X0 is a polytope, but in general
the number of faces of the initial set is a design pa-
rameter since X0 may be a convex compact set and
thus the more the number of faces of X0 the better the
overapproximate reachable sets.

A convex polytope P with K faces can be rep-
resented in two ways; it can be represented as the

bounded intersection of K half spaces,

P =
K⋂

i=1

{x|hT
i x ≤ γi} (9)

where hi is a normal vector to the ith face of the poly-
tope P. A convex polytope can also be represented as
the convex hull of its vertices: if a convex polytope P
has m vertices {v1, · · · , vm}, then

P = {x|x =
m∑

i=1

αiv
i, αi ≥ 0,

m∑
i=1

αi = 1} (10)

Define a set of linear functions as

v+
i (x, t) = hT

i (t)x, i ∈ {1, 2, · · · , N} (11)

These linear functions are used to represent a convex
polytope as shown in (9). In order to find a polytopic
overapproximate reachable set, we solve for v+

i (x, t) in
(11) that satisfies (6). Then, (6) becomes

Dtv
+
i (x, t) + maxu∈U{< Dxv+

i (x, t), f(x, u) >}
= < ḣi(t), x(t) > + < A(t)T hi(t), x(t) >

+ maxu∈U{< hi(t), B(t)u(t) >} ≤ µ(t)
(12)

From optimal control theory [21], the adjoint equation
for linear systems when the input set does not depend
on x is λ̇(t) = −A(t)T λ(t). If we choose hi(t) = λ(t)
(i ∈ {1, 2, · · · , N}), then

< ḣi(t), x(t) > + < A(t)T hi(t), x(t) >= 0 (13)

This represents the evolution of the normal vector of
the ith face. Let hi(0), i ∈ {1, 2, · · · , N} be the normal
vectors of the faces of the initial set X0. Then, the
solution to (13) is

hi(t) = Φ(t, 0)hi(0), i ∈ {1, 2, · · · , N} (14)

where Φ(t, 0) is the state transition matrix satisfying
Φ̇ = −A(t)T Φ, Φ(0, 0) = I. If the system dynamics
in (8) is time invariant, then Φ(t, 0) = e−AT t and (14)
becomes

hi(t) = e−AT thi(0), i ∈ {1, 2, · · · , N} (15)

Thus, for a linear time invariant system, the evolution
of normal vectors can be determined analytically. We
denote {u1, · · · , umu} as the vertices of the input set
U . Since U is a convex polytope, the following must
hold: (for j ∈ {1, · · · ,mu})
max
u∈U

< hi(t), B(t)u(t) >= max
j

< hi(t), B(t)uj >≤ µ(t)

(16)
that is, the maximum is achieved at a vertex of U [1].
Furthermore, if the system dynamics in (8) is time in-
variant, (16) is simplified to

max
j

< hi(t), Buj >= max
j

< e−AT thi(0), Buj >≤ µ(t)

(17)



for j ∈ {1, · · · ,mu}. We choose µ(t) = maxj <
hi(t), B(t)uj > and note that µ(t) is always positive
for a properly chosen input set U (e.g., chosen such
that 0 ∈ U). Then, the linear function v+

i (x, t) in (11)
is a supporting hyperplane of the exact reachable set
[1]. A polytopic overapproximate forward reachable set
V +(t) for the dynamical system (8) is the intersection
of half spaces as follows:

V +(t) =
⋂N

i=1{x : v+
i (x, t) ≤ ∫ t

0
maxj < hi(s),

B(s)uj > ds + maxx(0)∈Xo
v+

i (x(0), 0)} (18)

V +(t) is a convex polytope which contains the exact
reachable set at time t since each v+

i (x, t) in (18) is a
supporting hyperplane of the exact reachable set. If
the system dynamics is linear time invariant, V +(t)
becomes

V +(t) =
⋂N

i=1{x : v+
i (x, t) ≤ ∫ t

0
maxj < e−AT shi(0),

Buj > ds + maxx(0)∈Xo
v+

i (x(0), 0)}
(19)

3.2 Feedback linearizable nonlinear systems
In this section, we consider a class of nonlinear sys-

tems [22], in which u(t) is a feedback control:

ẋ(t) = f(x) + g(x)u(t) (20)

u(t) = a(x) + b(x)v(t) (21)

We assume that there exists a diffeomorphism T : such
that z = T (x), which transforms, with a control input
u(t), a nonlinear system (20) into an equivalent linear
system. Then, we can compute an overapproximate
forward reachable set for the nonlinear system (20) as
follows:

• Step 1: Transform the nonlinear system (20) to an
equivalent linear system, ż(t) = A(t)z(t)+B(t)v(t)
with appropriate u(t) and T .

• Step 2: Compute a polytopic overapproximate for-
ward reachable set V +(t) of the linear system fol-
lowing the procedure in Section 3.1.

• Step 3: Using the inverse state transformation x =
T−1(z), we obtain the overapproximate forward
reachable set for the original nonlinear system (20)
from V +(t).

Since there is no approximation during the transforma-
tion and the transformation is a diffeomorphism on a
given domain of interest, the forward reachable set ob-
tained in Step 3 is guaranteed to be an overapproximate
forward reachable set of the nonlinear system (20).

3.3 Linear dynamic games
Now, we consider the linear dynamic game:

ẋ(t) = A(t)x(t) + B(t)u(t) + C(t)d(t),
x(0) ∈ X0, u(t) ∈ U, d(t) ∈ D

(22)

where the initial set X0, the admissible control input
set U , and the disturbance input set D are assumed
to be convex polytopes which have N , Nu, and Nd

faces respectively. Then, the HJI equation in (3) for a
forward reachable set computation becomes [17, 18],

Dtv(x, t) + maxu∈U mind∈D{< Dxv(x, t),
A(t)x(t) + B(t)u(t) + C(t)d(t) >} = 0 (23)

To find an overapproximate solution to (23), we look
for a set of linear functions v+

i (x, t) in (11) satisfying
(13), and compute

Dtv
+
i (x, t) + maxu∈U mind∈D{< Dxv+

i (x, t),
A(t)x(t) + B(t)u(t) + C(t)d(t) >}

= maxu∈U{< hi(t), B(t)u(t) >}
+ mind∈D{< hi(t), C(t)d(t) >} ≤ µ(t)

(24)

We denote {u1, · · · , umu} and {d1, · · · , dmd} as the ver-
tices of U and D respectively. Since (24) is linear with
respect to u and d, the maximum and the minimum in
(24) are achieved at vertices of U and D as follows:

max
j

< hi(t), B(t)uj > + min
k

< hi(t), C(t)dk >≤ µ(t)

(25)
for j ∈ {1, · · · ,mu}, k ∈ {1, · · · ,md}.

We choose µ(t) = maxj < hi(t), B(t)uj > + mink <
hi(t), C(t)dk > and then a polytopic overapproximate
reachable set V +(t) for a linear dynamic game (22) is

V +(t) =
N⋂

i=1

{x : v+
i (x, t) ≤

∫ t

0

µ(s)ds+ max
x(0)∈X0

v+
i (x(0), 0)}

(26)

3.4 Norm-bounded nonlinear systems
In this section, we consider a norm-bounded nonlin-

ear system,

ẋ(t) = A(t)x(t) + B(t)u(t) + φ(x, t),
x(0) ∈ X0, u(t) ∈ U, ‖φ(x, t)‖ ≤ β(t) (27)

where the initial set X0 and the admissible control in-
put set U are assumed to be convex polytopes which
have N and Nu faces respectively and ‖ · ‖ represents
the Euclidean norm. β(·) is a positive-definite function.
Then, the HJI equation in (3) becomes

Dtv(x, t) + maxu∈U{< Dxv(x, t),
A(t)x(t) + B(t)u(t) + φ(x, t) >} = 0 (28)

To compute an overapproximate solution to the HJB
equation in (28), we find the linear functions v+

i (x, t)
in (11) satisfying (13), and compute

Dtv
+
i (x, t) + maxu∈U{< Dxv+

i (x, t),
A(t)x(t) + B(t)u(t) + φ(x, t) >}

= maxu∈U{< hi(t), B(t)u(t) >}+ < hi(t), φ(x, t) >
≤ maxu∈U{< hi(t), B(t)u(t) >} + 1

2 (‖hi(t)‖2 + ‖φ(x, t)‖2)
≤ maxj{< hi(t), B(t)uj >} + 1

2 (‖hi(t)‖2 + β(t)2) ≤ µ(t)
(29)



If we choose µ(t) such that

µ(t) = max
j

< hi(t), B(t)uj > +
1
2
(‖hi(t)‖2 + β(t)2)

(30)
then, a polytopic overapproximate reachable set V +(t)
for the norm-bounded dynamical system (27) is

V +(t) =
⋂N

i=1{x : v+
i (x, t) ≤ ∫ t

0
[maxj < hi(s), B(s)uj >

+ 1
2 (‖hi(s)‖2 + β(s)2)]ds + maxx(0)∈X0 v+

i (x(0), 0)}
(31)

If φ(x, t) belongs to a polytope with vertices
{φ1, · · · , φmφ}, a polytopic overapproximate reachable
set V +(t) becomes

V +(t) =
⋂N

i=1{x : v+
i (x, t) ≤ ∫ t

0
[maxj < hi(s), B(s)uj >

+ maxk{< hi(s), φk >}]ds + maxx(0)∈X0 v+
i (x(0), 0)}

(32)

4 Examples

We consider three examples: a linear system, a
norm-bounded nonlinear system, and we conclude with
the example which motivated this study, a nonlinear,
feedback linearizable, dynamic game. Note that equa-
tion (7) provides overapproximations of the sets of
reachable states over a range of times (the flow). In
the implementation, we compute overapproximations
of the reachable sets at specific instants of time with-
out interpolation between the sets.

4.1 Linear dynamical systems
In this section, we consider a linear dynamical sys-

tem ẋ = Ax + Bu, x(0) ∈ X0 where the control input
u(t) can vary inside a convex polytope U and the initial
set X0 is also a convex polytope. The system param-
eters (A,B,X0, and U) given in [11] are used. Figure
1 shows the evolution of the projection on x3 and x4

over time. This result is similar to that in [11], yet
computation time with the method shown in Section
3.1 is 1.17 seconds (which includes plotting the result
shown in Figure 1) using MATLAB on a 700MHz Pen-
tium III PC. For comparison, the algorithm proposed
in [11] takes 18 seconds using the same parameters.

4.2 Norm-bounded nonlinear systems
We consider a norm-bounded nonlinear system

ẋ = A(t)x + B(t)u(t) + φ(x, t), x(0) ∈ X0, u(t) ∈ U
(33)

where the initial set X0 and the control input set U
are convex polytopes. The nonlinear function φ(x, t) is
assumed to be norm-bounded i.e., ‖φ(x, t)‖ ≤ 1

3 t where
t > 0. The system parameters are defined as follows:

A =

[ −0.5 4.0
−3.0 −0.5

]
, B =

[ −1
0

]

X0 = [4, 5] × [4, 5], U = [−0.1, 0.1]

The evolution of the forward reachable set over time
is shown in Figure 2 and its computation time is 0.87
seconds (including plotting the result) using MATLAB
on the same PC.
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Figure 2: The forward reachable set of a norm-bounded
nonlinear system.

4.3 Conflict resolution between two aircraft
Last, we consider the two aircraft collision avoid-

ance problem, as an example of feedback linearizable
nonlinear systems and linear dynamic games. This is
the same problem (the motivation for this research) de-
scribed in Section 2. Aircraft 1 tries to avoid a conflict
with aircraft 2 no matter how aircraft 2 behaves, within
the limits of its capability. Thus, we want to compute
a backward reachable set (unsafe set) from the target
set (protected zone) which represents the states from
which the two aircraft would eventually have a conflict
no matter how aircraft 1 tries to avoid it [5].

Using dynamic extension [22] with σi as a new state
variable (compared to (5)), we obtain a new nonlinear
model which is feedback linearizable [23],

⎡
⎢⎢⎣

ẋi

ẏi

ψ̇i

σ̇i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σi cos ψi

σi sin ψi

ωi

ai

⎤
⎥⎥⎦ , (i ∈ {1, 2}) (34)

where ai is the acceleration of aircraft i and is a new
control input. Thus, the new state and input variables
are ξi := [xi yi ψi σi]T and ηi := [ai ωi]T respectively.
We introduce a change of the state variables zi = T (ξi)
and a change of the input variables ηi = M(ξi)ui as
in [23]. We denote that T and M are diffeomorphisms



everywhere except at σi = 0. Then, the feedback lin-
earized model of the nonlinear kinematic aircraft model
in (34) obtained through the transformations T and M
is [23]:

żi =
∂T

∂ξ i

ξ̇i ⇒ żi = Azi + Bui (35)

with A and B defined in [23]. The relative kinematic

Figure 3: Comparison between overapproximate (grid)
and exact (solid) backward reachable sets (un-
safe sets) of conflict resolution between two air-
craft.

aircraft model between two aircraft can be obtained by
introducing new states ξr := ξ2−ξ1 in the original non-
linear state space and zr := z2 − z1 in the linearized
state space. Thus, a linearized relative kinematic air-
craft model is

żr = Azr + Bu2 − Bu1, u2 ∈ U, u1 ∈ D, (36)

where the admissible control input set U and the dis-
turbance input set D are polytopes. This is a linear dy-
namic game since aircraft 1 (u1) tries to keep aircraft 2
from entering into its protected zone (target set) to pre-
vent a conflict, but aircraft 2 (u2) tries to enter the pro-
tected zone of aircraft 1. A target set (protected zone)
is assumed to be Y0 = [−5, 5]× [−5, 5]× [−π, π]. Using
dynamic extension, we have performed the computa-
tion in four dimensions (36) and projected the result
onto the relative coordinate in three-dimensional space.
A polytopic overapproximate backward reachable set
is first computed in the linearized space and then the
overapproximate backward reachable set in the orig-
inal state space is obtained through the transforma-
tions T and M . The overapproximate backward reach-
able set for conflict resolution with heading changes
only, using the target set Y0, normalized aircraft speeds
σ1 = σ2 = 5, angular velocities |ω1| ≤ 1 and |ω2| ≤ 1
is compared with the exact solution in [4] in Figure
3. The backward reachable set obtained by using the
polytopic approximation is overapproximate of the ex-
act reachable set and its computation time is about 1.0
seconds (including plotting the result as shown in Fig-
ure 3) using MATLAB on the same PC, yet the exact
solution [5] takes approximately 15 minutes on a Sun

h�2�(t)�

h�3�(t)�

h�1�(t)�

h�4�(t)�

ac�1�

ac�2�

unsafe�
zone�

ψr�

Figure 4: Conflict scenario: Aircraft 2 reaches the bound-
ary of the unsafe zone of aircraft 1 with a given
initial relative angle ψr.

UltraSparc II with 50 grid nodes in each dimension.
Figure 4 shows a conflict scenario in which aircraft 2
tries to enter the unsafe zone. When aircraft 2 reaches
the boundary of the unsafe zone as shown in Figure 4,
the optimal control input for aircraft 1 can be easily
obtained as follows:

u∗
1(t) = arg maxu1∈D{< Dxv(x, t),−B(t)u1(t)) >}

= arg maxj < e−AT th1(0),−Buj
1 >

(37)
Figure 5 shows a simulation for conflict resolution

−20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

conflict resolution with the optimal strategies ψ
r
 = 115o

x
r

y r

ac1 

ac2

unsafe zone

Figure 5: Conflict resolution simulation with relative ini-
tial states (xr = 10, yr = −20, ψr = 115o).
Aircraft 1 tries to avoid a conflict with aircraft
2 with the optimal strategy.

between the two aircraft with the initial condition
(xr = 10, yr = −20, ψr = 115o). Since both air-
craft behave optimally, the relative position of aircraft
2 moves along the boundary of the unsafe set. As ex-
pected, chattering occurs along the boundary. To avoid
such a phenomenon, we could introduce a buffer zone
around the boundary so that the control inputs change
smoothly as aircraft 2 approaches the boundary.

5 Conclusions

The polytopic approximation gives an overapproxi-
mation of the exact reachable set and is computation-
ally efficient: it requires solving matrix exponentials
instead of a Hamilton-Jacobi partial differential equa-
tion. The data structure of the polytopic approxima-
tion method becomes more complicated than that of
the ellipsoidal approximation method [15] as the num-
ber of faces of the polytope increases, yet the compu-



tation of the matrix exponential is easier than solv-
ing the (usually Riccati type) differential equation re-
quired for the ellipsoidal methods. The optimal control
input can be easily computed from the Hamiltonian
since the Hamiltonian is linear with respect to the con-
trol, and the control input set is a convex polytope.
The polytopic approximation method can be applied
to high dimensional systems which may not be solved
exactly without substantially increasing the computa-
tional time.

References

[1] P. Varaiya. Reach set computation using optimal
control. In Proceedings of the KIT Workshop on Ver-
ification of Hybrid Systems, pages 377–383, Grenoble,
France, 1998.

[2] J. Lygeros, C. J. Tomlin, and S. Sastry. Con-
trollers for reachability specifications for hybrid sys-
tems. Automatica, 35(3):349–370, 1999.

[3] C. J. Tomlin, J. Lygeros, and S. Sastry. A game
theoretic approach to controller design for hybrid sys-
tems. Proceedings of the IEEE, 88(7):949–970, July
2000.

[4] I. Mitchell, A. Bayen, and C. J. Tomlin. Val-
idating a Hamilton-Jacobi approximation to hybrid
system reachable sets. In M. D. DiBenedetto and
A. Sangiovanni-Vincentelli, editors, Hybrid Systems:
Computation and Control., LNCS 2034, pages 418–431.
Springer-Verlag, 2001.

[5] I. Mitchell, A. M. Bayen, and C. J. Tomlin. Com-
puting reachable sets for continuous dynamic games
using level set methods. IEEE Transactions on Auto-
matic Control, December 2001. Submitted.

[6] A. Tiwari and G. Khanna. Series of abstrac-
tion for hybrid automata. In C. J. Tomlin and M. R.
Greenstreet, editors, Hybrid Systems: Computation
and Control., LNCS 2289, pages 465–478. Springer-
Verlag, 2002.

[7] R. Alur, T. Dang, and F. Ivančić. Reachability
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